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Interpretability for different stakeholders
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Staples discounts

THE WALL STREET JOURNAL

December 2012
WHAT THEY KNOW
Websites Vary Prices, Deals Based on Users’
Information
By Jennifer Valentino-DeVries, Jeremy Singer- It was the same Swingline stapler, on the same Staples.com website. But
Vine and Ashkan Soltani

December 24, 2012 for Kim Wamble, the price was $15.79, while the price on Trude Frizzell's

WHAT PRICE WOULD YOU SEE?

screen, just a few miles away, was $14.29.

A key difference: where Staples seemed to think they were located.

A Wall Street Journal investigation found that the Staples Inc. website
displays different prices to people after estimating their locations. More
than that, Staples appeared to consider the person's distance
from a rival brick-and-mortar store, either OfficeMax Inc. or Office

Depot Inc. If rival stores were within 20 miles or so, Staples.com usually
showed a discounted price.

https://www.wsj|.com/articles/SB10001424127887323777204578189391813881534



https://www.wsj.com/articles/SB10001424127887323777204578189391813881534
https://www.wsj.com/market-data/quotes/SPLS
https://www.wsj.com/market-data/quotes/OMX
https://www.wsj.com/market-data/quotes/ODP
https://www.wsj.com/market-data/quotes/ODP
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Online job ads

Samuel Gibbs

Wednesday 8 July 2015 11.29 BST

Automated testing and analysis of company's advertising system reveals male
job seekers are shown far more adverts for high-paying executive jobs

One experiment showed that Google displayed adverts for a career coaching service for executive jobs 1,852
times to the male group and only 318 times to the female group. Photograph: Alamy

July 2015

Women less likely to be shown ads for
high-paid jobs on Google, study shows

The AdFisher tool simulated job seekers that did
not differ in browsing behavior, preferences or
demographic characteristics, except in gender.

One experiment showed that Google displayed
ads for a career coaching service for “$200k+”
executive jobs 1,852 times to the male group
and only 318 times to the female group.
Another experiment, in July 2014, showed a
similar trend but was not statistically significant.

https://www.theguardian.com/technoloqy/2015/jul/08/women-less-likely-ads-high-paid-jobs-google-study



http://fusion.kinja.com/google-showed-women-ads-for-lower-paying-jobs-1793848970
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e -"i :&c:h?:::esm

DASHBOARD EDIT ACCOUNT INFO LoGgour

DOB: Oct 27, 1959 (53 years old)

AdSense

Name, aliases, birthdate, phone
numbers, etc.

Location
Detailed address history and
related data, maps, etc.

sy Related Persons
"' Known family members, business
associates, roommates, etc.

Marriage / Divorce
Marriage and divorce records on
file...

ge Criminal History
Arrest records, speeding tickets,
mugshots, etc.

Licenses
FAA licenses, DEA licenses,
Other Licenses, etc.

Sex Offenders
Sex offenders living near Latanya
Sweeney's primary location.

https://www.technologyreview.com/s/510646/racism-is-
poisoning-online-ad-delivery-says-harvard-professor/

Criminal History

| ] | ]
This section contains possible citation, arrest, and criminal reco W h at a re We ex | a I n I n ?
While our database does contain hundreds of millions of arrest M

what information they will and will not release.

We share with you as much information as we possibly can, b
that Latanya Sweeney has never been arrested; it simply mea

e To Whom are we explaining?

Possible Matching Arrest Records

Name County and State

T Why are we explaining?

Racism is Poisoning Online Ad Delivery,
Says Harvard Professor

Google searches involving black-sounding names are
more likely to serve up ads suggestive of a criminal record
than white-sounding names, says computer scientist




Nutritional labels

SIDE-BY-SIDE COMPARISON

] g
utrition Facts| |[Nutrition Facts Tal
e —— at are we explainin
Servings Per Container About 8 8 servings per container .
Serving size 2/3 cup (559)
Amount Per Serving I . 5 o
Calories 230 Calories from Fat 72 | | Amount per serving Secunty & anacy Overview
~omve || Calories 230 . ) C
Smart Device Co [o Whom are we explaining?
Saturated Fat 1g 5% % Dally “1';;(, ® H
Total Fat 8g
Trans Fat 0g
Cholesterol 0mg 0% Saturated Fat 1g 5% Smart Video Doorbell NS200
Firmware version: 2.5.1 - updated on: 11/12/2020
Sodium 160mg 7% Trans Fat 0 The device was manufactured in: China
Total Carbohydrate 37g 12% Cholesterol Omg 0% —— ' .
Dietary Fiber 4g 16% Sodium 160mg 7% E : = ’ 2
Security updates  Automatic- Available until at least 1/1/2022 &
Sugars 1g Total Carbohydrate 37g 13% A | Password- Factory default-User changeable, Multifactor . .
Protein 3g Dietary Fiber 4g 14% Mamchanisms authentication, Muttiple user accounts are allowed o
e -
Vitamin A 10% T°:a' IS:ga'? ;:idded - ( \( e
= = ncludes ugars  20% : » 1 ‘ ) ’
Vit c 8% 2
Calcum sone || Protein 3g —— )
= e — | Visual Audio Physiological Location
fron A% Vitamin D 2mcg 10% Sensor RSl '
* Percent Daily Values are based on a 2,000 calorie diet - type Microphooe
Your daily value may be higher or lower depending on Calcium 260mg 20% Purpose z‘”‘d"‘gm Proving device Se=nl Personal data
your calorie needs. 45% nctions functions, Research -> ‘: . B
T e = 2 pata  Datastored ondevice | Kenifed iiasne b — applicant’s personal da
S esven; 2% o st e - Practices j IdetdihedOption o DT analy— rofile, social media accounts and credit score
ggf,’"’s“’w' lLoss (:an g?,o'"g g?,o"‘" * The % Daily Value (DV) telis you how much a nutrient in e ] e o= p ’ '
Tom‘rgﬂmnw,m oo e 360090'"9 37:90'"9 a serving of food contributes 10 a daily diet. 2,000 calories Shared with zm Manufacturer
Dietary Fiber 259 309 a day is used for general nutrition advice. sokito | e T Al assisted personality Scori ng
) : Additional )

Note: The images above are meant for illustrative purposes to show how the new Nutrition (s . 3 7 : PR L

Facts label might look compared to the old label. Both labels represent fictional products. Othigocolicti dot mmﬁfﬂm e cenie 1 assessment:

When the original hypothetical label was developed in 2014 (the image on the left-hand

side), added sugars was not yet proposed so the “original” label shows 1g of sugar as an
example. The image created for the “new” label (shown on the right-hand side) lists 12g o
More

Information

Privacy policy www.NS200.smartdeviceco.com/policy

Detailed Security & Privacy Label:
wwwi.iotsecurityprivacy.org/labels

[m]y.£250]
total sugar and 10g added sugar to give an example of how added sugars would be broken 2
out with a % Daily Value. D %

ALERT: Applicants for this position DO NOT have the option to

selectively decline use of Al analysis for any of their personal
An example of the old nutrition labels, left, and the new one. The new nutrition labels will display data or to review and challenge the results of such analysis.

calories and serving size more prominently, and include added sugars for the first time. CMU lot Security and Privacy Label CISPL 1.0 iotsecurityprivacy.org @
PHOTO: FOOD AND DRUG ADMINISTRATION/ASSOCIATED PRESS

https:/iwww.wsj.com/articles/why-the-  https://www.wsj.com/articles/imag hittps: /www,wsi.com/articles/hiring-job-
labels-on-your-food-are-changing-or- ine-a-nutrition-labelfor- candidates-ai-11632244313
not-1501758003 cybersecurity-11607436000 —
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This week's reading

2016 IEEE Symposium on Security and Privacy

Algorithmic Transparency via

Quantitative Input Influence:

Theory and Experiments with Learning Systems

Anupam Datta Shayak Sen Yair Zick
Carnegie Mellon University, Pittsburgh, USA
{danupam, shayaks, yairzick} @cmu.edu

Abstract—Algorithmic systems that employ machine learning
play an increasing role in making substantive decisions in modern
society, ranging from online personalization to insurance and
credit decisions to predictive policing. But their decision-making
processes are often opaque—it is difficult to explain why a certain
decision was made. We develop a formal foundation to
the transparency of such decisi king systems. S
we introduce a family of Quantitative Input Influence (QII)
measures that capture the degree of influence of inputs on outputs
of systems. These measures provide a foundation for the design
of transparency reports that accompany system decisions (e.g.,
explaining a specific credit decision) and for testing tools useful
for internal and external oversight (e.g., to detect algorithmic
discrimination).
nctiv

our causal QII measures carefully account for
correlated inputs while measuring influence. They support a
general class of transparency queries and can, in particular,
explain decisions about individuals (e.g., a loan decision) and
groups (e.g., disparate impact based on gender). Finally, since
single inputs may not always have high influence, the QII
measures also quantify the joint influence of a set of inputs
(e.g., age and income) on outcomes (e.g. loan decisions) and the
marginal influence of individual inputs within such a set (e.g.,
income). Since a single input may be part of multiple influential
sets, the average marginal influence of the input is computed
sing principled aggregation measures, such as the Shapley value,
previously applied to measure influence in voting. Further, since
transparency reports could compromise privacy, we explore the
transparency-privacy tradeoff and prove that a number of useful
transparency reports can be made differentially private with very
little addition of noi

Our empirical validation with standard machine learning algo-
rithms demonstrates that QII measures are a useful transparency
mechanism when black box access to the learning i
available. In particular, they provide better explanations than
standard associative measures for a host of scenarios that we
consider. Further, we show that in the situations we consider,
QII is efficiently approximable and can be made differentially
te while preserving accuracy.

I. INTRODUCTION

Algorithmic decision-making systems that employ machine
learning and related statistical methods are ubiquitous. They
drive decisions in sectors as diverse as Web services, health-
care, education, insurance, law enforcement and defense [1],
[2]. [3]. [4]. [5]. Yet their decision-making processes are often
opaque. Algorithmic transparency is an emerging research area
aimed at explaining decisions made by algorithmic systems.

© 2016, Anupam Datta. Under license to IEEE.
DOI 10.1109/SP.2016.42
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The call for algorithmic transparency has grown in in-
tensity as public and private sector organizations increas-
ingly use large volumes of personal information and complex
data analytics systems for decision-making [6]. Algorithmic
transparency provides several benefits. First, it is sential
to enable identification of harms, such discrimination,
introduced by algorithmic decision-making (e.g., high interest
credit cards targeted to protected groups) and to hold entities
in the decision-making chain accountable for such practices.
This form of accountability can incentivize entities to adopt
appropriate corrective measures. Second, transparency can
help detect errors in input data which resulted in an adverse
decision (e.g., incorrect information in a user’s profile because
of which

e:

surance or credit was denied). Such errors can then
be corrected. Third, by explaining why an adverse decision
was made, it can provide guidance on how to reverse it (e.g..
by identifying a specific factor in the credit profile that needs
to be improved).

Our Goal. While the importance of algorithmic transparency
is recognized, work on computational foundations for this
research area has been limited. This paper initiates progress
in that direction by focusing on a concrete algorithmic
parency question:

How can we measure the influence of inputs (or features) on
decisions made by an algorithmic system about individuals or
groups of individuals?

Our goal is to inform the design of transparency reports,
which include answers to transparency queries of this form.
To be concrete, let us consider a predictive policing system
that forecasts future criminal activity based on historical data;
individuals high on the list receive visits from the police.
An individual who receives a visit from the police may seek
a transparency report that provides answers to personalized
transparency queries about the influence of various inputs
(or features), such as race or recent criminal history, on the
system’s decision. An oversight agency or the public may
desire a transparency report that provides answers to aggregate
transparency queries, such as the influence of sensitive inputs
(e.g.. gender, race) on the system’s decisions concerning the
entire population or about systematic differences in decisions

a co‘rviv'p:ulel
society

LIME

“Why Should | Trust You?”
Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro Sameer Singh Carlos Guestrin
University of Washington University of Washington University of Washington
Seattle, WA 98105, USA Seattle, WA 98105, USA Seattle, WA 98105, USA
marcotcr@cs.uw.edu sameer@cs.uw.edu guestrin@cs.uw.edu

ABSTRACT

Despite widespread adoption, machine learning models re-
main mostly black boxes. Understanding the reasons behind
predictions is, however, quite important in assessing trust,
which is fundamental if one plans to take action based on a
prediction, or when choosing whether to deploy a new model.
Such understanding also provides insights into the model,
which can be used to transform an untrustworthy model or

prediction into a trustworthy one.

In this work, we propose LIME, a novel explanation tech-
nique that explains the predictions of any classifier in an in-
terpretable and faithful manner, by learning an interpretable
model locally around the prediction. We also propose a
method to explain models by presenting representative indi-
vidual predic and their explanations in a non-redundant
way, framing the task as a submodular optimization prob-
lem. We demonstrate the flexibility of these methods by
explaining different models for text (e.g. random forests)
and image classification (e.g. neural networks). We show the
utility of explanations via novel experiments, both simulated
and with human subjects, on various scenarios that require
trust: deciding if one should trust a prediction, choosing
between models, improving an untrustworthy classifier, and
identifying why a classifier should not be trusted.

ons

1. INTRODUCTION

Machine learning is at the core of many recent advances in
science and technology. Unfortunately, the important role
of humans is an oft-overlooked aspect in the field. Whether
humans are directly using machine learning classifiers as tools,
or are deploying models within other products, a vital concern
remains: if the users do not trust a model or a prediction,
they will not use it. It is important to differentiate between
two different (but related) definitions of trust: (1) trusting a
prediction, i.e. whether a user trusts an individual prediction
sufficiently to take some action based on it, and (2) trusting
whether the user trusts a model to behave in
s if deployed. Both are directly impacted by

a model
reasonable w

Permission to make digital or hard copies of all or part of this work for personal or
classroom use i granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherw
republish. to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org

KDD 2016 San Francisco, CA, USA

© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4232-2/16/08...$15.00

DO http://dx.doi.org/10.1145/29396

039778

how much the human understands a model’s behaviour, as
opposed to seeing it as a black box.

Determining trust in individual predictions is an important
problem when the model is used for decision making. When
using machine learning for medical diagnosis [6] or terrorism
detection, for example, predictions cannot be acted upon on
blind faith, as the consequences may be catastrophic.

Apart from trusting individual predictions, there is also a
need to evaluate the model as a whole before deploying it “in
the wild”. To make this decision, users need to be confident
that the model will perform well on real-world data, according
to the metrics of interest. Currently, models are evaluated
using accuracy metr
However, real-world data is often significantly different, and
further, the evaluation metric may not be indicative of the
product’s goal. Inspecting individual predictions and their
explanatior a worthwhile solution, in addition to such
metrics. In this case, it is important to aid users by suggesting
which instances to inspect, especially for large datasets.

In this paper, we propose providing explanations for indi-
vidual predictions as a solution to the ing a prediction”
problem, and selecting multiple such predictions (and expla-
olution to the “trusting the model” problem.
Our main contributions are summarized as follows.

>s on an available validation dataset.

nations) as a s

e LIME, an algorithm that can explain the predictions of any
classifier or regressor in a faithful way, by approximating
it locally with an interpretable model.

SP-LIME, a method that selects a set of representative
instances with explanations to address the “trusting the
model” problem. via submodular optimization.

e Comprehensive evaluation with simulated and human sub-
Jjects, where we measure the impact of explanations on
trust and associated tasks. In our experiments, non-experts
using LIME are able to p er from a pair
generalizes better in the real world. Further, they are able
to greatly improve an untrustworthy classifier trained on
20 newsgroups, by doing feature engineering using LIM
We also show how understanding the predictions of a neu-
ral network on images helps practitioners know when and
why they should not trust a model.

which ¢

2. THE CASE FOR EXPLANATIONS

By “explaining a prediction”, we mean presenting textual or
visual artifacts that provide qualitative understanding of the
relationship between the instance’s components (e.g. words
in text, patches in an image) and the model’s prediction. We
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This week's reading

A Unified Approach to Interpreting Model
Predictions

Scott M. Lundberg
Paul G. Allen School of Computer Science
University of Washington
Seattle, WA 98105
slund1@cs.washington.edu

Su-In Lee
Paul G. Allen School of Computer Science
Department of Genome Sciences
University of Washington
Seattle, WA 98105
suinlee@cs.washington.edu

Abstract

Understanding why a model makes a certain prediction can be as crucial as the
prediction’s accuracy in many applications. However, the highest accuracy for large
modern datas s often achieved by complex models that even experts struggle to
interpret, such as ensemble or deep learning models, creating a tension between
accuracy and interpretability. In response, various methods have recently been
proposed to help users interpret the predictions of complex models, but it is often
unclear how these methods are related and when one method is preferable over
another. To address this problem, we present a unified framework for interpreting
predictions, SHAP (SHapley Additive exPlanations). SHAP assigns each feature
an importance value for a particular prediction. Its novel components include: (1)
the identification of a new class of additive feature importance measures, and (2)
theoretical results showing there is a unique solution in this class with a set of
desirable properties. The new class unifies six existing methods, notable because
several recent methods in the class lack the proposed desirable properties. Based
on insights from this unification, we present new methods that show improved
computational performance and/or better consistency with human intuition than
previous approaches.

1 Introduction

The ability to correctly interpret a prediction model’s output is extremely important. It engenders
appropriate user trust, provides insight into how a model may be improved, and supports understanding
of the process being modeled. In some applications, simple models (e.g., linear models) are often

preferred for their ease of interpretation, even if they may be less accurate than complex ones.

However, the growing availability of big data has increased the benefits of using complex models, so
bringing to the forefront the trade-off between accuracy and interpretability of a model’s output. A

wide variety of different methods have been recently proposed to address this issue [5, 8,9, 3,4, 1].

But an understanding of how these methods relate and when one method is preferable to another is
still lacking.

Here, we present a novel unified approach to interpreting model predictions.! Our approach leads to
three potentially surprising results that bring clarity to the growing space of methods:

1. We introduce the perspective of viewing any explanation of a model’s prediction as a model itself,

which we term the explanation model. This lets us define the class of additive feature attribution
methods (Section 2), which unifies six current methods.

'https://github.com/slundberg/shap

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

LevSHAP

PROVABLY ACCURATE SHAPLEY VALUE ESTIMATION
VIA LEVERAGE SCORE SAMPLING

Christopher Musco & R. Teal Witter
New York University
{cmusco, rtealwitter}@nyu.edu

ABSTRACT

Originally introduced in game theory, Shapley values have emerged as a central
tool in explainable machine learning, where they are used to attribute model pre-
dictions to specific input features. However, computing Shapley values exactly
is expensive: for a general model with n features, O(2™) model evaluations are
necessary. To address this issue, approximation algorithms are widely used. One
of the most popular is the Kernel SHAP algorithm, which is model agnostic and
remarkably effective in practice. However, to the best of our knowledge, Kernel
SHAP has no strong non-asymptotic complexity guarantees. We address this issue
by introducing Leverage SHAP, a light-weight modification of Kernel SHAP that
provides provably accurate Shapley value estimates with just O(nlog n) model
evaluations. Our approach takes advantage of a connection between Shapley value
estimation and agnostic active learning by employing leverage score sampling, a
powerful regression tool. Beyond theoretical guaraniees, we show that Lever-
age SHAP consistently outperforms even the highly optimized implementation of
Kernel SHAP available in the ubiquitous SHAP library [Lundberg & Lee, 2017].

1 INTRODUCTION

‘While Al is increasingly deployed in high-stakes domains like education, healthcare, finance, and
law, increasingly complicated models often make predictions or decisions in an opague and un-
interpretable way. In high-stakes domains, transparency in a model is crucial for building trust.
Moreover, for researchers and developers, understanding model behavior is important for identi-
fying areas of improvement and applying appropriate safe guards. To address these challenges,
Shapley values have emerged as a powerful game-theoretic approach for interpreting even opaque
models (Shapley, 1951; Etrumbelj & Kononenko, 2014; Datta et al., 2016; Lundberg & Lee, 2017).
These values can be used to effectively quantify the contribution of each input feature to a model’s
output, offering at least a partial, principled explanation for why a model made a certain prediction.

Concretely, Shapley values originate from game-theory as a method for determining fair *payouts”
for a cooperative game involving n players. The goal is to assign higher payouts to players who
contributed more to the cooperative effort. Shapley values quantify the contribution of a player by
measuring how its addition to a set of other players changes the value of the game. Formally, let the
value function v : 2") — R be a function defined on sets § [n]. The Shapley value for player i is:
v(SU{i}) —v(S

( §n}_)1) () o

181

b=
SC\{i}

The denominator weights the marginal contribution of player i to set S by the number of sets of size
|8, so that the marginal contribution to sets of each size are equally considered. With this weight-
ing, Shapley values are known to be the unique values that satisfy four desirable game-theoretic
properties: Null Player, Symmetry, Additivity, and Efficiency (Shapley, 1951). For further details
on Shapley values and their theoretical motivation, we refer the reader to Molnar (2024).

A popular way of using Shapley values for explainable Al is to attribute predictions made by a model
f ¢+ k™ — R on a given input x € R"™ compared to a baseline input y € R™ (Lundberg & Lee,
2017). The players are the features and ©(S) is the prediction of the model when using the features




What are we explaining?

How does a system work??
How well does a system work?
What does a system do?

Why was | ___ (mis-diagnosed / not
offered a discount / denied credit) 7

Are a system’s decisions discriminatory?

Are a system’s decisions illegal?




But isn't accuracy sufficient?

SCIENTIFIC
. METHOD

L
CONCLUSION
s

HYPOTHESIS

EXPERIMENT

How is accuracy measured? FPR/
FNR /...

Accuracy for whom: over-all or in sub-
populations?

Accuracy over which data?

There is never 100% accuracy.
Mistakes for what reason?




Facebook’'s real-name policy

&~  Tweet Shane Creepingbear is a member of the Kiowa Tribe of Oklahoma
Shane Creepingbear @Creepingbear - Oct 13, 2014 A October 13, 2014
Hey yall today | was kicked off of Facebook for having a fake name.

Happy Columbus Day great job #facebook #goodtiming #racist
#ColumbusDay

= TIME L7 Facebook Thinks Some Native American Names
Are Inauthentic

BY JOSH SANBURN FEERUARY 14, 2015

February 14, 2015

If you’re Native American, Facebook might think your name is fake.

The social network has a history of telling its users that the names they're
attempting to use aren’t real. Drag queens and overseas human rights activists,

for example, have experienced error messages and problems logging in in the
past.

The latest flap involves Native Americans, including Dana Lone Hill, who is

Lakota. Lone Hill recently wrote in a blog post that Facebook told her her name
was not “authentic” when she attempted to log in.




When accuracy Is not enough

Explaining Google’s Inception NN

probabilities of the top-3 classes
and the super-pixels predicting each

Electric guitar - incorrect but Acoustic guitar Labrador
reasonable, similar fretboard

[Ribeiro, Singh & Guestrin, 2016]




When accuracy Is not enough

Train a neural network to predict V. husky

S

Predicted: Predicted: husky Predicted: Predicted: Predicted: husky Predicted:
True: True: husky True: True: husky True: husky True:

Only 1 mistake!!!

slide by Marco Tulio Ribeiro, KDD 2016

[Ribeiro, Singh & Guestrin, 2016]




When accuracy Is not enough

Explanations for neural network prediction

Predicted: Predicted: husky Predicted:
Irue. True: husky Irue.

Predicted: husky Predicted:
True: husky Irue.
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slide by Marco Tulio Ribeiro, KDD 2016

[Ribeiro, Singh & Guestrin, 2016]




LIME: Recap

Why should [ trust you?

Explaining the predictions of any classifier

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin

Check out our paper, and open source project at

https://github.com/marcoter/lime

https://www.youtube.com/watch?v=hUnRCxnydCc

[Ribeiro, Singh & Guestrin, 2016]
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QIl: Auditing black-box models

Credit Decisions
Classifier

User data

Credit Decisions
Classifier O

.

[Datta, Sen & Zick, 2016]




Transparency report: Mr. X

How much influence do individual features have a given
classifier’'s decision about an individual?
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Images by Anupam Datta

[Datta, Sen & Zick, 2016]




Transparency report: Mr. Y

Explanations for superficially similar
individuals can be different

0.4
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Images by Anupam Datta

[Datta, Sen & Zick, 2016]




Qll: Quantitative Input Influence

Goal: determine how much influence an input, or a set of inputs, has on a
classification outcome for an individual or a group

Transparency gueries / guantities of interest
Individual: Which inputs have the most influence in my credit denial?
Group: Which inputs have the most influence on credit decisions for women?

Disparity: Which inputs influence men getting more positive outcomes than
women?

[Datta, Sen & Zick, 2016]




Qll: Quantitative Input Influence

For a quantity of influence Q and an input feature I, the Qll of i on Q is the
difference in Q when i is changed via an intervention.

_ ?
Key ideas te?
Intervene on an input feature, — .

User data Credit Decisions

measure its importance Classifier

aggregate feature importance
using its Shapley value

Images by Anupam Datta

[Datta, Sen & Zick, 2016]




Running example

Consider lending decisions by a bank, based on gender, age, education, and
income. Does gender influence lending decisions?

» Observe that 20% of women receive the positive classification.

* To check whether gender impacts decisions, take the input dataset and replace
the value of gender in each input profile by drawing it from the uniform
distribution: set gender in 50% of the inputs to female and 50% to male.

* |[f we still observe that 20% of female profiles are positively classified after the
Intervention - we conclude that gender does not influence lending decisions.

Do a similar test for other features, one at a time. This is known as Unary Ql|

[Datta, Sen & Zick, 2016]




Unary QI

Images by Anupam Datta

For a quantity of influence Q and an input feature I, the Qll of i on Q is the
difference in Q when i is changed via an intervention.

Classifier —
(uses On|y DeCISIOH

income)

Income

n

replace features with random values from the population, examine the
distribution over outcomes

[Datta, Sen & Zick, 2016]




Unary QI

For a quantity of influence Q and an input feature I, the Qll of i on Q is the
Only accept old,
high-income

difference in Q when i is changed via an intervention.
individuals

Classifier Decision

Income%

Intervening on one feature at a time will not have any effect

Images by Anupam Datta

[Datta, Sen & Zick, 2016]




Marginal QI

* Not all features are equally important within a set.

* Margtnal QlI: Influence of age and income over only income.
(({age, income}) — ((jincome

Need to aggregate Marginal Qll across all sets
* But age Is a part of many sets! ( Y i )
B t({age, gender,job}) — «({gender, job}
_ _ ({age}) — u({}) t(({age, gender}) — «({gender})
(({age,job}) — u({job}) (({age, gender, job}) — «({gender, job})

(({age, gender, income?) — t({gender, income}

(({age, gender, income, job}) — t({gender, income, job},

[Datta, Sen & Zick, 2016]




Aggregating influence across sets

ldea: Use game theory methods: voting systems, revenue division

“In voting systems with multiple agents with differing weights, voting power often
does not directly correspond to the weights of the agents. For example, the US
presiaential election can roughly be modeled as a cooperative game where each
state is an agent. The weight of a state is the number of electors in that state
(i.e., the number of votes it brings to the presidential candidate who wins that state).
Although states like California and Texas have higher weight, swing states like
Pennsylvania and Ohio tend to have higher power in determining the outcome of
elections.”

[Datta, Sen & Zick, 2016]




QI summary

* A principled (and beautiful!) framework for determining the influence of
a feature, or a set of features, on a decision

« Works for black-box models, with the assumption that the full set of
inputs is available

 Accounts for correlations between features

« “Parametrizes” on what quantity we want to set (Qll), how we intervene,
how we aggregate the influence of a feature across sets

* EXperiments in the paper: interesting results

 Also in the paper: a discussion of transparency under differential
privacy

[Datta, Sen & Zick, 2016]




https://bit.ly/3DrCGIm
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Calculating SHAP values
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> f(x)

Slide Credit: R. Teal Witter



Example:

O% (biking

enjoyment)

Temperature
Wind speed

Chance of rain

Helicopters

Traffic

Slide Credit: R. Teal Witter



Example:

Temperature
Wind speed

Chance of rain

Helicopters

Traffic

So

Slide Credit: R. Teal Witter



Example:

Temperature
Wind speed

Chance of rain

Helicopters

Traffic
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Example:

Temperature
Wind speed

Chance of rain

Helicopters

Traffic

So

f(x)

> 7/10

Enjoyment

Slide Credit: R. Teal Witter



Explaining Predictions

Attribute the prediction to features relative to a baseline

t‘\ “Since the traffic is 8 instead of 3, the ride is 1.7 less enjoyable.”
OO

Slide Credit: R. Teal Witter
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Attribute the prediction to features relative to a baseline

t‘\ “Since the traffic is 8 instead of 3, the ride is 1.7 less enjoyable.”
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\

Attribution value!
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Explaining Predictions

Attribute the prediction to features relative to a baseline

@
O% “Since the traffic is 8 instead of 3, the ride is 1.7 less enjoyable.”

Temperature
Wind speed

Chance of rain

Helicopters

Traffic
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Explaining Predictions

Attribute the prediction to features relative to a baseline

@
o% “Since the traffic is 8 instead of 3, the ride is 1.7 less enjoyable.”

Temperature
Wind speed

Chance of rain

Helicopters

Traffic

Explicand

= —
73°
11mph

30%

Baseline

89°
Imph

0%

-

Slide Credit: R. Teal Witter



Explaining Predictions

Attribute the prediction to features relative to a baseline

@
O% “Since the traffic is 8 instead of 3, the ride is 1.7 less enjoyable.”

Temperature EEa [ 500 ] & =2 & % & f(x)

Wind speed 11mph 1mph 89° 11mph30% 5 3 5/10

Chance of rain | 30% 0% 89° 11mph 30% S5 8 4/10
Helicopters 2 5

Traffic 8 3 73% 1mph 0% 5 3 6/10

: : 73° 1mph 0% 5 8 8/10

Explicand Baseline

Slide Credit: R. Teal Witter



Attribution Values

What is the effect of the feature in different settings?

Slide Credit: R. Teal Witter
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What is the effect of the feature in different settings?

Consider subsets S € [n] and define v(S) = f(x°) where
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Consider subsets S € [n] and define v(S) = f(x°) where

S § ewa f(X)
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Attribution Values

What is the effect of the feature in different settings?

Consider subsets S € [n] and define v(S) = f(x°) where

S § ewa f(X)

{23} B 11mph30% B B 5/10
2,35} B 11mph30% B 8 4/10
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Attribution Values

What is the effect of the feature in different settings?

Consider subsets S € [n] and define v(S) = f(x°) where

S § ewa f(X)

{2,3} 89° 11mph 30% 5 3 5/10
{2,3,5} 89° 11mph30% 5 8 4/10

Next: Define attribution value ¢; for every feature i € [n]

Slide Credit: R. Teal Witter



Desirable Properties

Null Player: If a feature never changes the prediction, then its attribution value is O

Slide Credit: R. Teal Witter
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Null Player: If a feature never changes the prediction, then its attribution value is 0

Sym met Y. if two features always induce the same change, then their attribution values are

the same

Add |t|V|ty: For two predictive functions, the attribution value of a feature in the combined
function is the sum of the attribution values for each function
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the same

Add |t|V|ty: For two predictive functions, the attribution value of a feature in the combined
function is the sum of the attribution values for each function

EfﬁCiency: The attribution values sum to the difference between the predictions on the

explicand and baseline

Slide Credit: R. Teal Witter



Desirable Properties

Null Player: If a feature never changes the prediction, then its attribution value is 0

Sym met Y. if two features always induce the same change, then their attribution values are

the same

Add |t|V|ty: For two predictive functions, the attribution value of a feature in the combined
function is the sum of the attribution values for each function

EfﬁCiency: The attribution values sum to the difference between the predictions on the

explicand and baseline

< Shapley values!

Slide Credit: R. Teal Witter



Shapley Values for Feature Attribution

For a set function v: 2™ = R, the ith Shapley value is

=

scn\{i}

Slide Credit: R. Teal Witter



Shapley Values for Feature Attribution

For a set function v: 2™ = R, the ith Shapley value is

1 z v(SU{i}) — v(S)

n

scln\{i}

Slide Credit: R. Teal Witter



Shapley Values for Feature Attribution

For a set function v: 2™ = R, the ith Shapley value is

b, = 1 z . v(S U({i}_)l)— v(S)
Scn]\{i} S|

n

Slide Credit: R. Teal Witter



Shapley Values for Feature Attribution

For a set function v: 2™ = R, the ith Shapley value is

P S . v(S {i}_)l_ v(S)
sclnl\{i} ( S| )

n
P; =

Can be re-written as:

Slide Credit: R. Teal Witter



Shapley Values for Feature Attribution

For a set function v: 2™ = R, the ith Shapley value is

P S . v(S {i}_)l_ v(S)
sclnl\{i} ( S| )

n

P

Can be re-written as:

Slide Credit: R. Teal Witter



Shapley Values for Feature Attribution

For a set function v: 2™ = R, the ith Shapley value is

P S . v(S {i}_)l_ v(S)
sclnl\{i} ( S| )

n

b =

Can be re-written as:

Slide Credit: R. Teal Witter



Shapley Values for Feature Attribution

For a set function v: 2™ = R, the ith Shapley value is

P S . v(S {i}_)l_ v(S)
sclnl\{i} ( S| )

n

b =

Can be re-written as:

Slide Credit: R. Teal Witter



Additive feature attribution methods

README.md

OQutput=04 Output=0.4
1
Age = 65 Age = 65
sex=F Explanation m Sex=F
BP =180 BP =180
BMI = 40 BMI = 40
Base rate = 0.1 Base rate = 0.1

https://github.com/slundberg/shap

[Lundberg & Lee, 2017]


https://github.com/slundberg/shap
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