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Reading for weeks 10 & 11

Robust De-anonymization of Large Sparse Datasets

Arvind Narayanan and Vitaly Shmatikov
The University of Texas at Austin

Abstract

We present a new class of statistical de-
anonymization  attacks against  high-dimensional
micro-data, such as individual preferences, recommen-
dations, transaction records and so on. Our techniques
are robust to perturbation in the data and tolerate some
mistakes in the adversary’s background knowledge.

We apply our de-anonymization methodology to the
Netflix Prize dataset, which contains anonymous movie
ratings of 500,000 subscribers of Netflix, the world’s
largest online movie rental service. We demonstrate
that an adversary who knows only a little bit about
an individual subscriber can easily identify this sub-
scriber’s record in the dataset. Using the Internet
Movie Database as the source of background knowl-
edge, we successfully identified the Netflix records of
known users, uncovering their apparent political pref-
erences and other potentially sensitive information.

1 Introduction

Datasets containing micro-data, that is, information
about specific individuals, are increasingly becoming
public in response to “open government” laws and to
support data mining research. Some datasets include
legally protected information such as health histories;
others contain individual preferences and transactions,
which many people may view as private or sensitive.

Privacy risks of publishing micro-data are well-
known. Even if identifiers such as names and Social
Security numbers have been removed, the adversary can
use background knowledge and cross-correlation with
other databases to re-identify individual data records.
Famous attacks include de-anonymization of a Mas-
sachusetts hospital discharge database by joining it with
a public voter database [25] and privacy breaches caused
by (ostensibly anonymized) AOL search data [16].

Micro-data are characterized by high dimensionality

and sparsity. Each record contains many attributes (i.e.,
columns in a database schema), which can be viewed as
dimensions. Sparsity means that for the average record,
there are no “similar” records in the multi-dimensional
space defined by the attributes. This sparsity is empir-
ically well-established [7, 4, 19] and related to the “fat
tail” phenomenon: individual transaction and preference
records tend to include statistically rare attributes.

Our contributions. Our first contribution is a formal
model for privacy breaches in anonymized micro-data
(section 3). We present two definitions, one based on the
probability of successful de-anonymization, the other on
the amount of information recovered about the target.
Unlike previous work [25], we do not assume a pri-
ori that the adversary’s knowledge is limited to a fixed
set of “quasi-identifier” attributes. Our model thus en-
compasses a much broader class of de-anonymization
attacks than simple cross-database correlation.

Our second contribution is a very general class of
de-anonymization algorithms, demonstrating the funda-
mental limits of privacy in public micro-data (section 4).
Under very mild assumptions about the distribution from
which the records are drawn, the adversary with a small
amount of background knowledge about an individual
can use it to identify, with high probability, this individ-
ual’s record in the anonymized dataset and to learn all
anonymously released information about him or her, in-
cluding sensitive attributes. For sparse datasets, such as
most real-world datasets of individual transactions, pref-
erences, and recommendations, very little background
knowledge is needed (as few as 5-10 attributes in our
case study). Our de-anonymization algorithm is robust
to the imprecision of the adversary’s background knowl-
edge and to perturbation that may have been applied to
the data prior to release. It works even if only a subset
of the original dataset has been published.

Our third contribution is a practical analysis of
the Netflix Prize dataset, containing anonymized
movie ratings of 500,000 Netflix subscribers (sec-
tion 5). Netflix—the world’s largest online DVD rental
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| What does it mean to preserve privacy?
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IN THE INFORMATION realm, loss of privacy is usually
associated with failure to control access to
information, to control the flow of information, or

to control the purposes for which information is
employed. Differential privacy arose in a context

in which ensuring privacy is a challenge even if all
these control problems are solved: privacy-preserving
statistical analysis of data.

The problem of statistical disclosure control—
revealing accurate statistics about a set of respondents
while preserving the privacy of individuals—has
avenerable history, with an extensive literature
spanning statistics, theoretical computer science,
security, databases, and cryptography (see,
for example, the excellent survey of Adam and
Wortmann,' the discussion of related work in Blum et
al.,> and the Journal of Official Statistics dedicated to
confidentiality and disclosure control).
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This long history is a testament to
the importance of the problem. Sta-
tistical databases can be of enormous
social value; they are used for appor-
tioning resources, evaluating medical
therapies, understanding the spread
of disease, improving economic util-
ity, and informing us about ourselves
as a species.

The data may be obtained in diverse
ways. Some data, such as census,
tax, and other sorts of official data,
is compelled; other data is collected
opportunistically, for example, from
traffic on the Internet, transactions
on Amazon, and search engine query
logs; other data is provided altruisti-
cally, by respondents who hope that
sharing their information will help
others to avoid a specific misfortune,
or more generally, to increase the
public good. Altruistic data donors
are typically promised their individ-
ual data will be kept confidential—in
short, they are promised “privacy.”
Similarly, medical data and legally
compelled data, such as census data
and tax return data, have legal privacy

key insights

B |n analyzing private data, only
by focusing on rigorous privacy
guarantees can we convert the cycle
of “propose-break-propose again”
into a path of progress.

A natural approach to defining privacy is
to require that accessing the database

hes the ly hing about any
individual. But this is probl ic: the
whole point of a statistical database is to
teach general truths, for example, that
smoking causes cancer. Learning this
fact hes the data ly hing
about the likelihood with which
certain individuals, not necessarily
in the database, will develop cancer.
We therefore need a definition that
separates the utility of the database
(learning that smoking causes cancer)
from the increased risk of harm due to
joining the database. This is the intuition
behind differential privacy.

B This can be achieved, often with low
distortion. The key idea is to randomize
responses so as to effectively hide the
presence or absence of the data of any
individual over the course of the lifetime
of the database.
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DATABASES ARE Can a set of equations keep U.S. census data private?
No LUNGER A By Jeffrey Mervis | Jan. 4,2019, 2:50 PM
THEORETICAL
DANGER.
The U.S. Census Bureau is making waves among social scientists with what it calls a “sea
. change” in how it plans to safeguard the confidentiality of data it releases from the decennial
SIMSON GARFINKEL 7 n 2020 the U.S. Census Bureau will conduct the census.
JOHN M. ABOWD, AND COﬂStItUtIOI’]aUy mandated decennial Census of The agency announced in September 2018 that it will apply a mathematical concept called
CHRISTIAN MARTINDALE Population and Hou sing. Because a census involves differential privacy to its release of 2020 census data after conducting experiments that suggest
. f current approaches can't assure confidentiality. But critics of the new policy believe the Census
U.S. CENSUS BUREAU = CO[[E?tlng la rge.amoyn.ts of prl.vc:ate data Un(.jEI." the Bureau is moving too quickly to fix a system that isn't broken. They also fear the changes will
3 promise of confidentiality, traditionally statistics are degrade the quality of the information used by thousands of researchers, businesses, and
published only at high levels of aggregation. Published govemment,agencies;
statistical tables are vulnerable to DRAs (database The move has implications that extend far beyond the research community. Proponents of
reconstruction ClttGCkS] in which the underlvine microdata differential privacy say a fierce, ongoing legal battle over plans to add a citizenship question to
. ! L R ¥ g . the 2020 census has only underscored the need to assure people that the government will
is recovered merely by finding a set of microdata that is protect their privacy.
consistent with the published statistical tabulations. A
DRA can be performed by using the tables to create a set A noisy conflict
of mathematical constraints and then solvine the resultin The Census Bureau's job is to collect, analyze, and disseminate useful information about the
. . . ; g g U.S. population. And there's a lot of it: The agency generated some 7.8 billion statistics about
set of simultaneous equations. This article shows how the 308 million people counted in the 2010 census, for example.
such an attack can be addressed by addmg noise to the At the same time, the bureau is prohibited by law from releasing any information for which “the
published tabulations, so that the reconstruction no longer data furnished by any particular establishment or individual ... can be identified.”
results inthe Original data. This has imPUCGtionS forthe Once upon a time, meeting that requirement meant simply removing the names and addresses
2020 Census. of respondents. Over the past several decades, however, census officials have developed a bag
< of statistical tricks aimed at providing additional protection without undermining the quality of
The goal of the census is to count every person once, G S
acmqueue | september-october 2018 1
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DataSynthesizer: Privacy-Preserving Synthetic Datasets
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ABSTRACT

To facilitate collaboration over sensitive data, we present DataSyn-
thesizer, a tool that takes a sensitive dataset as input and generates
a structurally and statistically similar synthetic dataset with strong
privacy guarantees. The data owners need not release their data,
while potential collaborators can begin developing models and
methods with some confidence that their results will work similarly
on the real dataset. The distinguishing feature of DataSynthesizer is
its usability — the data owner does not have to specify any parame-
ters to start generating and sharing data safely and effectively.

DataSynthesizer consists of three high-level modules — DataDe-
scriber, DataGenerator and ModelInspector. The first, DataDescriber,
investigates the data types, correlations and distributions of the at-
tributes in the private dataset, and produces a data summary, adding
noise to the distributions to preserve privacy. DataGenerator sam-
ples from the summary computed by DataDescriber and outputs
synthetic data. ModelInspector shows an intuitive description of the
data summary that was computed by DataDescriber, allowing the
data owner to evaluate the accuracy of the summarization process
and adjust any parameters, if desired.

We describe DataSynthesizer and illustrate its use in an urban
science context, where sharing sensitive, legally encumbered data
between agencies and with outside collaborators is reported as the
primary obstacle to data-driven governance.

The code implementing all parts of this work is publicly available
at https://github.com/DataResponsibly/DataSynthesizer.

CCS CONCEPTS

« Security and privacy — Data anonymization and sanitiza-
tion; Privacy protections; Usability in security and privacy;

KEYWORDS
Data Sharing; Synthetic Data; Differential Privacy
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1 INTRODUCTION

Collaborative projects in the social and health sciences increasingly
require sharing sensitive, privacy-encumbered data. Social scien-
tists, government agencies, health workers, and non-profits are
eager to collaborate with data scientists, but formal data sharing
agreements are too slow and expensive to create in ad hoc situa-
tions — our colleagues report that 18 months is a typical timeframe
to establish such agreements! As a result, many promising collab-
orations can fail before they even begin. Data scientists require
access to the data before they can understand the problem or even
determine whether they can help. But data owners cannot share
data without significant legal protections in place. Beyond legal
concerns, there is a general reluctance to share sensitive data with
non-experts before they have “proven themselves,” since they do
not understand the context in which the data was collected and
may be distracted by spurious results.

To bootstrap these collaborations without incurring the cost
of formal data sharing agreements, we saw a need to generate
datasets that are structurally and statistically similar to the real data
but that are 1) obviously synthetic to put the data owners at ease,
and 2) offer strong privacy guarantees to prevent adversaries from
extracting any sensitive information. These two requirements are
not redundant: strong privacy guarantees are not always sufficient
to convince data owners to release data, and even seemingly random
datasets may not prevent subtle privacy attacks. With this approach,
data scientists can begin to develop models and methods with
synthetic data, but maintain some degree of confidence that their
work will remain relevant when applied to the real data once proper
data sharing agreements are in place.

We propose a tool named DataSynthesizer to address this prob-
lem. Assume that the private dataset contains one table with m
attributes and n tuples, and that the values in each attribute are
homogeneous, that is, they are all of the same data type. We are
interested in producing a synthetic dataset such that summary sta-
tistics of all numerical, categorical, string, and datetime attributes
are similar to the private dataset. What statistics we preserve de-
pends on the data type, as we will discuss in Section 3.

DataSynthesizer infers the domain of each attribute and derives
a description of the distribution of attribute values in the private
dataset. This information is saved in a dataset description file, to
which we refer as data summary. Then DataSynthesizer is able to
generate synthetic datasets of arbitrary size by sampling from the
probabilistic model in the dataset description file.

Epistemic Parity: Reproducibility as an Evaluation Metric
for Differential Privacy

Lucas Rosenblatt”
New York University
New York, NY, USA

lucas.rosenblatt@nyu.edu

Bernease Herman
University of Washington Ukrainian Catholic University
Seattle, WA, USA Lviv, Ukraine

bernease@uw.edu

Anastasia Holovenko

anastasia.holovenko@ucu.edu.ua

Wonkwon Lee Joshua Loftus Elizabeth McKinnie
New York University London School of Economics University of Colorado
New York, NY, USA London, UK Boulder, CO, USA

wl2733@nyu.edu J.R.Loftus@lse.ac.uk elizabeth.mckinnie@colorado.edu

Taras Rumezhak

Ukrainian Catholic University

Lviv, Ukraine
rumezhak@ucu.edu.ua

Bill Howe
University of Washington
Seattle, WA, USA
billhoweGuw.edu

ABSTRACT

Differential privacy (DP) data synthesizers are increasingly
proposed to afford public release of sensitive information, of-
fering theoretical guarantees for privacy (and, in some cases,
utility), but limited empirical evidence of utility in practical
settings. Utility is typically measured as the error on rep-
resentative proxy tasks, such as descriptive statistics, mul-
tivariate correlations, the accuracy of trained classifiers, or
performance over a query workload. The ability for these
results to generalize to practitioners’ experience has been
questioned in a number of settings, including the U.S. Cen-
sus. In this paper, we propose an evaluation methodology
for synthetic data that avoids assumptions about the rep-
resentativeness of proxy tasks, instead measuring the likeli-
hood that published conclusions would change had the au-
thors used synthetic data, a condition we call epistemic par-
ity. Our methodology consists of reproducing empirical con-
clusions of peer-reviewed papers on real, publicly available
data, then re-running these experiments a second time on
DP synthetic data and comparing the results.

We instantiate our methodology over a benchmark of re-
cent peer-reviewed papers in the social sciences. We express
the authors’ claims computationally to automate the exper-
iment, generate DP synthetic datasets using multiple state-
of-the-art mechanisms, then estimate the likelihood that
these conclusions will hold. We find that, for reasonable
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privacy regimes, DP synthesizers can achieve high epistemic
parity for several papers in our benchmark. However, some
papers, and particularly some specific findings, are difficult
to reproduce for any of the synthesizers. Given these re-
sults, we recommend a new class of mechanisms that offer
stronger utility guarantees (as measured by epistemic par-
ity) and more nuanced privacy protection using application-
specific risks and threat models.

1. INTRODUCTION

Differential privacy (DP) has been studied intensely for
over a decade, and has recently enjoyed uptake in both the
private and public sectors. In situations where the down-
stream analysis is known, one can design specialized mech-
anisms with high utility [37, 38]. But an active research
area is to design general DP data synthesizers (henceforth,
synthesizers) that model the entire data distribution, inject
noise, then sample the noisy model to generate synthetic
datasets intended to be broadly usable in a variety of unan-
ticipated applications. Evidence to support claims of gen-
eral utility is typically presented as results on proxy tasks
over common public datasets (e.g., the ubiquitous Adult
dataset |33] Proxy tasks may include descriptive statis-
tics, queries involving one or two variables [25, 24, 50} 51/,
classification accuracy [12} 50, 58] and information theoretic
measures [56|. Although these proxy tasks are procedurally
representative of real tasks, the implicit claim of generaliza-
tion to practice is rarely explored.

Limited empirical evidence on relevant tasks undermines
trust in the practical use of DP. The US Census Bureau
adopted DP for disclosure avoidance in the 2020 census, in-
terpreting federal law (the Census Act, 13 U.S.C. § 214, and
the Confidential Information Protection and Statistical Effi-
ciency Act of 2002) as a mandate to use advanced methods







Plausible Deniability?

Did you go out drinking over the weekend?

let’s call this property P (Truth=Yes) and Google  fipacain
estimate p, the fraction of the class for
Whom P hOldS About 245,000,000 results (0.45 secon ds)

1.flip a coin C1

1.if C1 is tails, then respond truthfully
2.if C1 is heads, then flip another coin C2
1.if C2 is heads then Yes
2.else C2 is tails then respond No P ABAI

\\__/

v

the expected fraction of Yes answers is:
3 1 1 p

thus, we estimate p as:

1

A==p+-(1-p)=—+= ~
4p+4( p)=—+ p=2A—5
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Feedback



Randomized response

Did you go out drinking over the weekend?

let’s call this property P (Truth=Yes) and
estimate p, the fraction of the class for
whom P holds

1.flip a coin C1
1.if C1 is tails, then respond truthfully
2.if C1 is heads, then flip another coin C2 randomization - adding noise - is
1. €2 is heads then Yes what gives plausible deniability
2.else C2 is tails then respond No a process privacy method

the expected number of Yes answers is:

3 1 1 p
A=—p+—(1-p)=—+—=
J P =P)=+5

privacy comes from plausible deniability




Privacy: two sides of the coin

protecting an individual learning about the population

plausible deniability noisy estimates
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Some other options

« Data release approaches that fail to protect privacy (these are
prominent classes of methods, there are others):

« sampling (“just a few”) - release a small subset of the database

* aggregation (e.g., k-anonymity - each record in the release is
indistinguishable from at least k-1 other records)

« de-identification - mask or drop personal identifiers

« guery auditing - stop answering gqueries when they become
unsafe




Sampling (“just a few”)

Suppose that we take a random small sample D’ of D and release it without any
modification

If D’ is much smaller than D, then every respondent is unlikely to appear in D’

This technique provides protection for “the typical” (or for “most”) members of
the dataset

But it may be argued that atypical individuals are the ones needing stronger
protection!

In any case, this method is problematic because a respondent who does appear
has no plausible deniability!

Suppose next that appearing in the sample D’ has terrible consequences. Then,
every time subsampling occurs - some individual suffers horribly!




Aggregation without randomization

« Alice and Bob are professors at State University.

* In March, Alice publishes an article: “.... the current freshman class at
State U is 3,005 students, 202 of whom are from families earning over $1M
per year.”

* In April, Bob publishes an article: “... 201 families in State U’s freshman

class of 3,004 have household incomes exceeding $1M per year.”

« Neither statement discloses the income of the family of any one student.
But, taken together, they state that John, a student who dropped out at
the end of March, comes from a family that earns $1M. Anyone who has
this auxiliary information — that John dropped out at the end of March
— will be able to learn about the income of John's family.

this Is known as a problem of composition, and can be seen
as a kind of a differencing attack




A basic differencing attack

« X:count the number of HIV-positive people in D
« Y:countthe number of HIV-positive people in D not named Freddie;

« X -Y tells you whether Freddie is HIV-positive

what if X-Y > 1, do we still have a problem?




Reconstruction: death by a 1000 cuts

Another serious issue for aggregation without randomization, or with an insufficient amount
of randomization: reconstruction attacks

The Fundamental Law of Information Recovery (starting with the seminal results by
Irit Dinur & Kobbi Nissim, PODS 2003): overly accurate estimates of too many statistics
can completely destroy privacy

Under what conditions can an adversary reconstruct a candidate database D’ that agrees with the
real database D in 99% of the entries?

Suppose that D has n tuples, and that noise is bounded by some quantity E. Then there exists an
adversary that can reconstruct D to within 4E positions, issuing all possible 2" queries

AF — 4n < n
401 100

Put another way: if the magnitude of the noise is less than n/401, then 99% of D can be reconstructed
by the adversary. Really, any number higher than 401 will work

There are also reconstruction results under a limited number of queries




Reconstruction: death by a 1000 cuts

Privacy-Preserving Data Analysis for the
deral Statistical Agencies

CCC

Computing Community Consortium
Catalyst

January 2017

John Abowd, Lorenzo Alvisi, Cynthia Dwork, Sampath Kannan, Ashwin Machanavajjhala, and

Jerome Reiter
The Fundamental Law of Information Recovery has troubling

implications for the publication of large numbers of statistics by a
statistical agency: it says that the confidential data may be
vulnerable to database reconstruction attacks based entirely on
the data published by the agency itself. Left unattended, such
we’ll discuss the use of  risks threaten to undermine, or even eliminate, the societal
differential privacy by the o hofits inherent in the rich data collected by the nation's
2020 US Census later today o _ o _
statistical agencies. The most pressing immediate problem for
any statistical agency is how to modernize its disclosure limitation
methods in light of the Fundamental Law.




De-identification

« Also known as anonymization

« Mask or drop identifying attribute or attributes, such as social security
number (SSN), name, mailing address

« Turns out that this also doesn’t work because auxiliary information is
available

« Fundamentally, this is due to the curse of dimensionality: high-
dimensional data is sparse, the more you know about individuals, the less
likely it is that two individuals will look alike

de-identified data can be re-identified with a linkage attack




A linkage attack: Governor Weld

In 1997, Massachusetts Group Insurance
Commission released "anonymized" data
on state employees that showed every
single hospital visit! Latanya Sweeney, a grad student,
sought to show the ineffectiveness
of this “anonymization.”

She knew that Governor Weld
resided in Cambridge,
Massachusetts, a city of 54,000

residents and seven ZIP codes. For twenty dollars, she purchased the

complete voter rolls from the city of
Cambridge, a database containing, among
other things, the name, address, ZIP code,

Only six people in Cambridge shared birth date, and sex of every voter.
his birth date, only three of them men,
and of them, only he lived in his ZIP

90l Follow up: ZIP code, birthdate, and sex

sufficient to identify 87% of Americans!

https://arstechnica.com/tech-policy/2009/09/your-secrets-live-online-in-
databases-of-ruin/



https://arstechnica.com/tech-policy/2009/09/your-secrets-live-online-in-databases-of-ruin/

The Netflix prize linkage attack

« In 2006, Netflix released a dataset containing ~100M movie ratings by ~500K users
(about 1/8 of the Nexflix user base at the time)

 FAQ: “Is there any customer information in the dataset that should be kept private?”
“No, all customer identifying information has been removed, all that remains are ratings

and dates. This follows our privacy policy, which you can review here. Even if, for example, you
knew all your own ratings and their dates you probably couldn’t identify them reliably in the data
because only a small sample was included (less than one-tenth of our complete dataset) and
that data was subject to perturbation. Of course, since you know all your own ratings that

really isn’t a privacy problem is it?”

The real question: How much does the adversary need to know about a Netflix
subscriber to identify her record in the dataset, and thus learn her complete movie

viewing history?

[Narayanan and Shmatikov, IEEE S&P 2008]




The Netflix prize linkage attack

« Very little auxiliary information is needed to de-anonymize an average subscriber
record from the Netflix Prize dataset

« Perturbation, you say? With 8 movie ratings (of which 2 may be completely wrong)
and dates that may have a 14-day error, 99% of records be uniquely identified in the
dataset

« For 68%, two ratings and dates (with a 3-day error) are sufficient

« Even without any dates, a substantial privacy breach occurs, especially
when the auxiliary information consists of movies that are not blockbusters:
Two movies are no longer sufficient, but 84% of subscribers can be uniguely identified
if the adversary knows 6 out of 8 movies outside the top 500

We cannot assume a priori that any data is harmless!

[Narayanan and Shmatikov, IEEE S&P 2008]




The Netflix prize linkage attack

il .l
4 MIGIE
il il

NETFLIX SPILLED YOUR
An in-the-closet lesbian mother is suing Netflix for privacy BROHEB ACI{ MOUNT AIN SECREFR

invasion, alleging the movie rental company made it
possible for her to be outed when it disclosed insufficiently LA‘NSUIT GLAIMS
anonymous information about nearly half-a-million
customers as part of its $1 million contest to improve its
recommendation system.

The suit known as Doe v. Netflix (.pdf) was filed in federal
court in California on Thursday, alleging that Netflix
violated fair-trade laws and a federal privacy law protecting
video rental records, when it launched its popular contest in
September 2006.

The suit seeks more than $2,500 in damages for each of more = g |
\4 Sl 7 7
than 2 million Netflix customers. Ll




The Netflix prize linkage attack

NETFLIX CANCELS
RECOMMENDATION CONTEST
AFTER PRIVAGY LAWSUIT

Netflix is canceling its second $1 million Netflix Prize to
settle a legal challenge that it breached customer privacy as
part of the first contest’s race for a better movie-
recommendation engine.
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Privacy: two sides of the coin

protecting an individual learning about the population

plausible deniability noisy estimates




Privacy-preserving data analysis

rustea] rtrusted

RESPONDENTS CURATOR

respondents contribute the curator is untrusted, the analyst is untrusted,
their personal data collects data, releases it to extracts value from data
analysts

slide by Gerome Miklau



Privacy-preserving data analysis

trusted urrusted

RESPONDENTS CURATOR
respondents in the the curator is trusted to the analyst is untrusted
population seek collect data and is and wants to gain the
protection of their responsible for safely most accurate insights
personal data releasing it Into the population

slide by Gerome Miklau



Privacy-preserving data analysis

RESPONDENTS (trusted) CURATOR (untrusted) ANALYST

MIM @ ‘!‘g

. population
'/ properties

|:|:l'> “134 students from

; families earning $1M”

sensitive
* personal
—=>  facts
g “Bob Smith’s family
earns $1M”

W/

sensitive data items sensitive database

slide by Gerome Miklau



Example: US Census

COLLECTOR ANALYST

lobal properties
Vi °

Commutng | — " qave workers $ on avorager
patterns N the US “Public transportation should be built at
collected by the location B.7
census X sensitive facts

I:::> “Alice lives at address X"

“Bob worked for Y, but now works for Z2”

sensitive data set

slide by Gerome Miklau



Example: Social networks

COLLECTOR ANALYST

global properties

“How rapidly do rumors spread in
this network?”
“Are people most likely to form
friendships with those who share
their attributes?”

sensitive facts

“Alice is present in this network”
“Alice and Bob are connected”

sensitive data set

slide by Gerome Miklau




Defining private data analysis

« Take 1: If nothing is learned about any individual in the dataset, then no individual
can be harmed by analysis.

« Dalenius’ Desideratum: an ad omnia (Latin: “for all”) privacy goal for statistical
databases, as opposed to ad hoc (Latin: “for this”). Anything that can be learned
about a respondent from the statistical database should be learnable without
access to the database.

« Put another way, the adversary’s prior and posterior views about an individual
should not be different.

«  This objective is unachievable because of auxiliary information.

« Example: Alice knows that John smokes. She read a medical research study
that found a causal relationship between smoking and lung cancer. Alice
concludes, based on study results and her prior knowledge about John, that he
has a heightened risk of developing lung cancer.

«  Further, the risk is to everyone in a particular group (smokers, in this example),
iIrrespective of whether they participated in the study.




Defining private data analysis

« Take 1: If nothing is learned about any individual in the dataset, then no individual
can be harmed by analysis.

« Dalenius’ Desideratum: an "ad omnia” (opposed to ad hoc) privacy goal for
statistical databases: Anything that can be learned about a respondent from the
statistical database should be learnable without access to the database.

« Put another way, the adversary’s prior and posterior views about an individual
should not be different.

« Take 2: The information released about the sensitive dataset is virtually
indistinguishable whether or not a respondent’s data is in the dataset. This is
an informal statement of differential privacy: that no information specific to an
Individual is revealed.




Defining private data analysis

DO0I:10.1145/1866739.1866758 . . .
This long history is a testament to
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A Firm that accessing the database teaches the analyst

ity, and informing us about ourselves
as a species.
The data may be obtained in diverse

Fou ndation . 40O s EOMEAT At nothing about any individual. But this is problematic:

is compelled; other data is collected
opportunistically, for example, from
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Differential privacy: the formalism

We will define privacy with respect to a database D that is made up of rows
(equivalently, tuples) representing individuals. Tuples come from some universe of
datatypes (the set of all possible tuples).

The 11 norm of a database D, denoted HDH1 Is the number of tuples in D.

The 11 distance between databases D1 and D2 represents the number of tuples
on which they differ. HDI _ D2| ‘1

We refer to a pair of databases that differ in at most 1 tuple as neighboring
databases HD1 — DZH <1

Of these D1 and D2, one, say D2, is a subset of the other, and, when a proper
subset, the larger database D2 contains 1 extra tuple.




Differential privacy: the formalism

The information released about the sensitive dataset is virtually indistinguishable
whether or not a respondent’s data is in the dataset. This is an informal

statement of differential privacy. That is, no information specific to an individual
IS revealed.

A randomized algorithm M provides g-differential privacy if, for all
neighboring databases D1 and Dz, and for any set of outputs S:

Pr{M(D)eS]<e Pr{M(D,)€S]

£ (epsilon) is a privacy parameter

* lower € = stronger privacyf

The notion of neighboring databases is integral to plausible deniability: D1 can
represent a database with a particular respondent’s data, D2 can represent a
neighboring database but without that respondent’'s data




Differential privacy: the formalism

X

1)

&

—M(D,) x'2 —

X, + X *

local random coins 3 local random coins

—M(D,)

A randomized algorithm M provides g-differential privacy if, for all
neighboring databases D1 and Dz, and for any set of outputs S:

Pr{M(D)eS]<e Pr{M(D,)€S]

Think of database of respondents D=(x4, .., Xn) as fixed (not random),
M(D) is a random variable distributed over possible outputs

Neighboring databases induce close distributions on outputs

based on a slide by Adam Smith



Back to randomized response

Did you go out drinking over the weekend?

1.flipacoin C1 Denote:
1.if C1 is tails, then respond truthfully . Truth=Yes by P
2.if C1 is heads, then flip another coin C2 » Response=Yes by A
1.if C2 is heads then Yes ® Cl=tailsby T
2.else C2 is tails then respond No ® Cl=heads and C2=tails by HT

® Cl=heads and C2=heads by HH

A randomized algorithm M provides g-differential privacy if, for all
neighboring databases D1 and D2, and for any set of outputs S:

Pr{M(D,) e S]< e Pr[M(D,) € S]

Pr[A| P]|=3Pr[4A|—-P
Pr[A| P]= Pr[T]+ Pr[ HH] = 4| P]=3Pr 4| =P]
4 = e£=1n3
1 our version of randomized response is (1n

Pr[A|—=P]=Pr[HH]= Z 3)-differentially private




A closer look at differential privacy

A randomized algorithm M provides g-differential privacy if, for all
neighboring databases D1 and D2, and for any set of outputs S:

Pr{M(D,) € S]< e Pr{M(D,) € S]

' lower £ = stronger privacy '

« The state-of-the-art in privacy technology, first proposed in 2006

* Has precise mathematical properties, captures cumulative privacy loss over
multiple uses with the concept of a privacy budget

« Privacy guarantee encourages participation by respondents

« Robust against strong adversaries, with auxiliary information, including also
future auxiliary information!

* Precise error bounds that can be made public




A closer look at differential privacy

A randomized algorithm M provides g-differential privacy if, for all
neighboring databases D1 and D2, and for any set of outputs S:

Pr{M(D,) € S]< e Pr{M(D,) € S]

' lower £ = stronger privacy '

g (epsilon) cannot be too small: think 1/10, not 1/2°0

Differential privacy is a condition on the algorithm M (process privacy).
Saying simply that “the output is safe” does not take into account how it was
computed, and is insufficient.




Local differential privacy

rustea] rtrusted

RESPONDENTS CURATOR

respondents contribute the curator is untrusted, the analyst is untrusted,
their personal data collects data, releases it to extracts value from data
analysts

slide by Gerome Miklau



Global differential privacy

trusted urrusted

RESPONDENTS CURATOR
respondents in the the curator is trusted to the analyst is untrusted
population seek collect data and is and wants to gain the
protection of their responsible for safely most accurate insights
personal data releasing it Into the population

slide by Gerome Miklau
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Query sensitivity

The 11 sensitivity of a query g, denoted Aq, is the maximum difference in the
result of that query on a pair of neighboring databases

Ag =max , , |g(D)—q(D")

' lower £ = stronger privacy '

 Example 1: counting queries

« “"How many elements in D satisty property P ?” What’s Aq ?

« “What fraction of the elements in D satisfy property P ?”

« Example 2: max/ min
« “What is the maximum employee salary in D ?” What’s Aq ?

Intuition: for a given g, the higher the sensitivity, the more noise
we need to add to meet the privacy guarantee




Query sensitivity

The 11 sensitivity of a query g, denoted Aq, is the maximum difference in the
result of that query on a pair of neighboring databases

Ag =max , , |g(D)—q(D")

query g query sensitivity Aq
select count(*) from D 1
select count(*) from D p

where sex = Male and age > 30




Query sensitivity

The 11 sensitivity of a query g, denoted Aq, is the maximum difference in the
result of that query on a pair of neighboring databases

Ag =max , , |g(D)—q(D")

query g query sensitivity Aq

select count(*) from D 1

select count(*) from D
where sex = Male and age > 30

select MAX(salary) from D ?




Query sensitivity

The 11 sensitivity of a query g, denoted Aq, is the maximum difference in the
result of that query on a pair of neighboring databases

Ag =max , , |g(D)—q(D")

query g query sensitivity Aq
select count(*) from D 1
select count(*) from D ’
where sex = Male and age > 30
select MAX(salary) from D MAX(salary)-MIN(salary)
select gender, count(*) 3

from D group by gender




Query sensitivity

The 11 sensitivity of a query g, denoted Aq, is the maximum difference in the
result of that query on a pair of neighboring databases

Ag =max , , |g(D)—q(D")

query g query sensitivity Aq
select count(*) from D 1
select count(*) from D ’

where sex = Male and age > 30

select MAX(salary) from D MAX(salary)-MIN(salary)

1 (disjoint groups, presence or absence
of one tuple impacts only one of the
counts)

select gender, count(*)
from D group by gender




Query sensitivity

The 11 sensitivity of a query g, denoted Aq, is the maximum difference in the
result of that query on a pair of neighboring databases

Ag =max , , |g(D)—q(D")

query sensitivity Aq

1 (disjoint groups, presence or absence
of one tuple impacts only one of the
counts)

select gender, count(*)
from D group by gender

an arbitrary list of m counting 3
queries .




Query sensitivity

The 11 sensitivity of a query g, denoted Aq, is the maximum difference in the
result of that query on a pair of neighboring databases

Ag =max , , |g(D)—q(D")

query sensitivity Aq

1 (disjoint groups, presence or absence
of one tuple impacts only one of the
counts)

select gender, count(™)
from D group by gender

m (no assumptions about the queries, and
so a single individual may change the
answer of every query by 1)

an arbitrary list of m counting
queries




Adding noise

RESPONDENTS (trusted) CURATOR (untrusted) ANALYST

Privacy parameter €

Queries /
T Analysis
S ./,Zl g
N N
“safe” answers:
/ true answers + noise
sensitive data items sensitive database
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Adding noise

Use the Laplace mechanism to answer q in a way that's &-
differentially private M(e):q(D)+ L ap( aq ]

The Laplace distribution, centered at O with scale b, denoted Lap(b), is
the distribution with probability density function:

o5 T T T 1 }l.l=0, |b=1 T
=0, b=2 =—
0.4 — ﬂ u=0, b=4 =— _
u=-5, b=4 —— . o |
03 |- . fix sensitivity Aq, verify that more
noise is added for lower &

0.2

0.1

* lower € = stronger privacy '

0
10 -8 6 -4 2 0 2 4 6 8 10
https://en.wikipedia.org/wiki/Laplace_distribution




Laplace Mechanism

PriM(x) = y] . _ —|x|
PrIM () = y] <e Lapy,(x|b) = exp <T> /2b o
-y QI -1y - )
Calculate: Q(x) A0 <ly-0Q(x)—-y+QXx)|
Return;: Q(x) + s~ Lap(-7) < [Q(x) —Q(x)| = AQ
How do we see that Laplace Mechanism is -DP? 1 e
Recall: 5= A0
Pr[M(x, Q) = y] = Pr[Q(x) +5 = ] PriM(x, Q) = y|
o PrM(x, Q) = y]
=Pr[s =y — Q(x)] ly — ,
B y — Q)] —ly — Q)|
B —ly — Q)] = (exp p /2b) [/ (exp /2b)
= exp - /2b b
1
(same for M(x/, Q)) = exp (_E (—ly =) —(=ly - Q(x')l))>

< exp(i X AQ) < exp(¢)




Adding noise

(trusted) CURATOR (untrusted) ANALYST i -
p=0
5

04

A AN

T oTO

0.3

0.2

0.1

0

e=1
e=1
<:| Cuunt(sex=Ma|E’ HQE=1B) 10 -8 6 -4 2 0 2 4 6 8 10

Ae

[——> true answer + noise(-3,3)

. Laplace noise centered at 0,
sensitive database in interval (-3,3) with 95% prob.
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Entire workflow must be DP

(trusted) CURATOR (untrusted) ANALYST

e=1

<{—3 Data cleaning
<—— Feature selection

<{— Regression

Me

——> Regression coefficients

sensitive database

slide by Gerome Miklau



Privacy-preserving synthetic data

(trusted) CURATOR (untrusted) ANALYST

e=1

e =1 Give me
: the data!

<::I Cleaning
'::> <::| Feature

selection

noisy table <_—— Regression

sensitive database or “synthetic data”
or (at Census): “public-use microdata”

slide by Gerome Miklau
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