Responsible Data Science

Introduction and Overview

January 23, 2024

Professor Umang Bhatt

Center for Data Science & Computer Science and Engineering New York University

Center for Data Science

Course logistics

Instructor: Umang Bhatt

Assistant Professor and Faculty Fellow Center for Data Science New York University

Ph.D. in Engineering from University of Cambridge M.S. and B.S. in ECE from Carnegie Mellon University

Research: Trustworthy Machine Learning

- Algorithmic Transparency (Explainable AI and Uncertainty Quantification)
- Human-Machine Collaboration
- Decision Support Systems

And also:

- NGOs: Center for Democracy and Technology, OECD, Mozilla Foundation, Partnership on AI, Responsible AI Institute
- Outreach: Deep Learning Indaba, The Alan Turing Institute

Office hours: Tuesdays 5-6 ET and by appointment

Instructor: Jonathan Colner

Assistant Professor and Faculty Fellow Center for Data Science New York University

Ph.D. in Political Science from UC Davis B.A. in Political Science from University of Chicago

Research: Local Political Institutions

- Policymaking in City Councils
- Collecting Local Administrative Data using AI

Office hours: Thursdays 5-6 ET and by appointment

Teaching Assistants

Kate Boxer

Daniela Pinto Veizaga

Marina Castano Ishizaka

Elaf Almahmoud

Mihir Upadhyay

Kendall Brogle

Assignments and grading

Grading: homeworks - $10\% \times 2 = 20\%$. Drop lowest of 3 HWs.

project - 20% final - 22% midterm - 22% labs - 8% guest lecture summaries - 8%

No credit for late homework.

Assignment schedule posted to Bright Space (under Course information), subject to change.

This week's reading

Who lives. Who dies. Who decides?

rich. Mona Sloane and Falaah Arif Khan

WE ARE AI

DOI:10.1145/3376898

A group of industry, academic, and government experts convene in Philadelphia to explore the roots of algorithmic bias.

BY ALEXANDRA CHOULDECHOVA AND AARON ROTH

A Snapshot of the Frontiers of Fairness in Machine Learning

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica May 23, 2016

what is responsible AI?

AI: algorithms, data, decisions

Artificial Intelligence (AI)

a **system** in which **algorithms** use **data** and make **decisions** on our behalf, or help us make decisions

The promise of AI

Opportunity

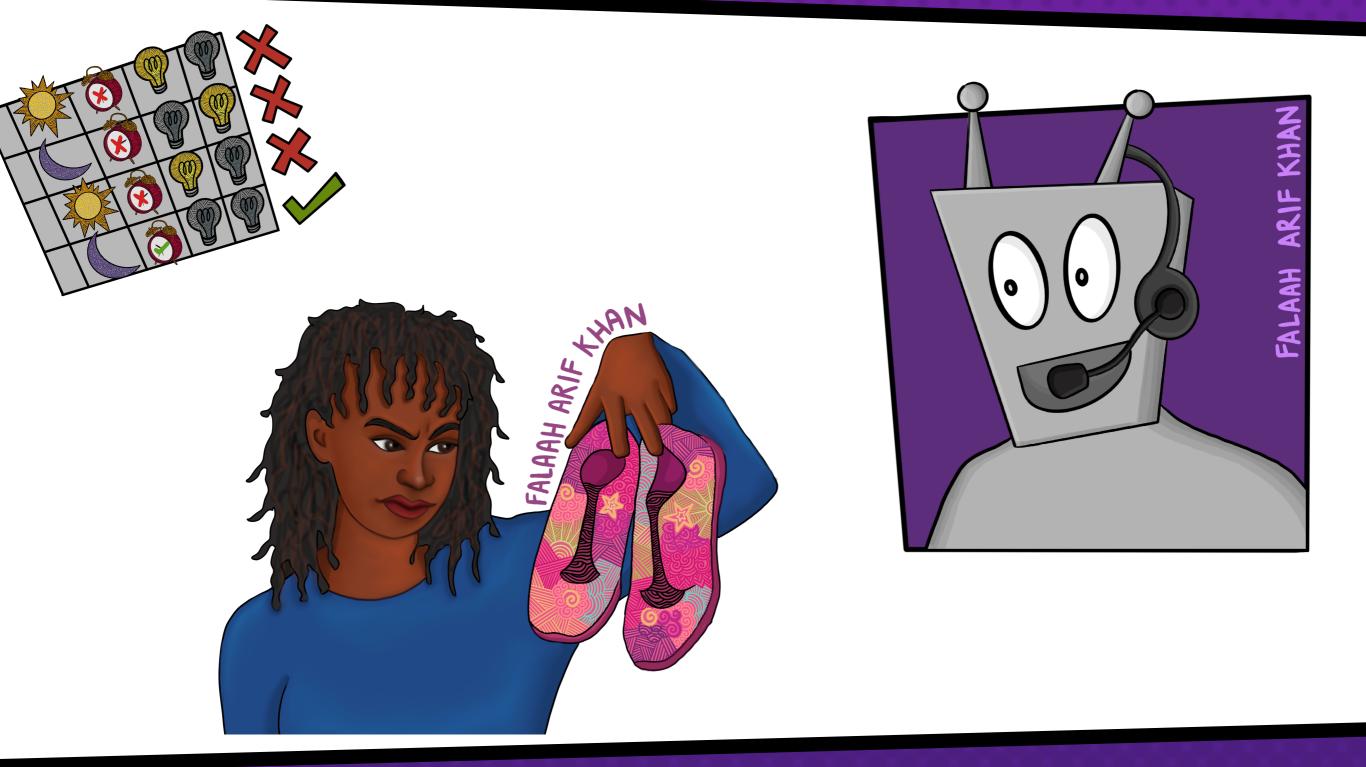
make our lives convenient

accelerate science

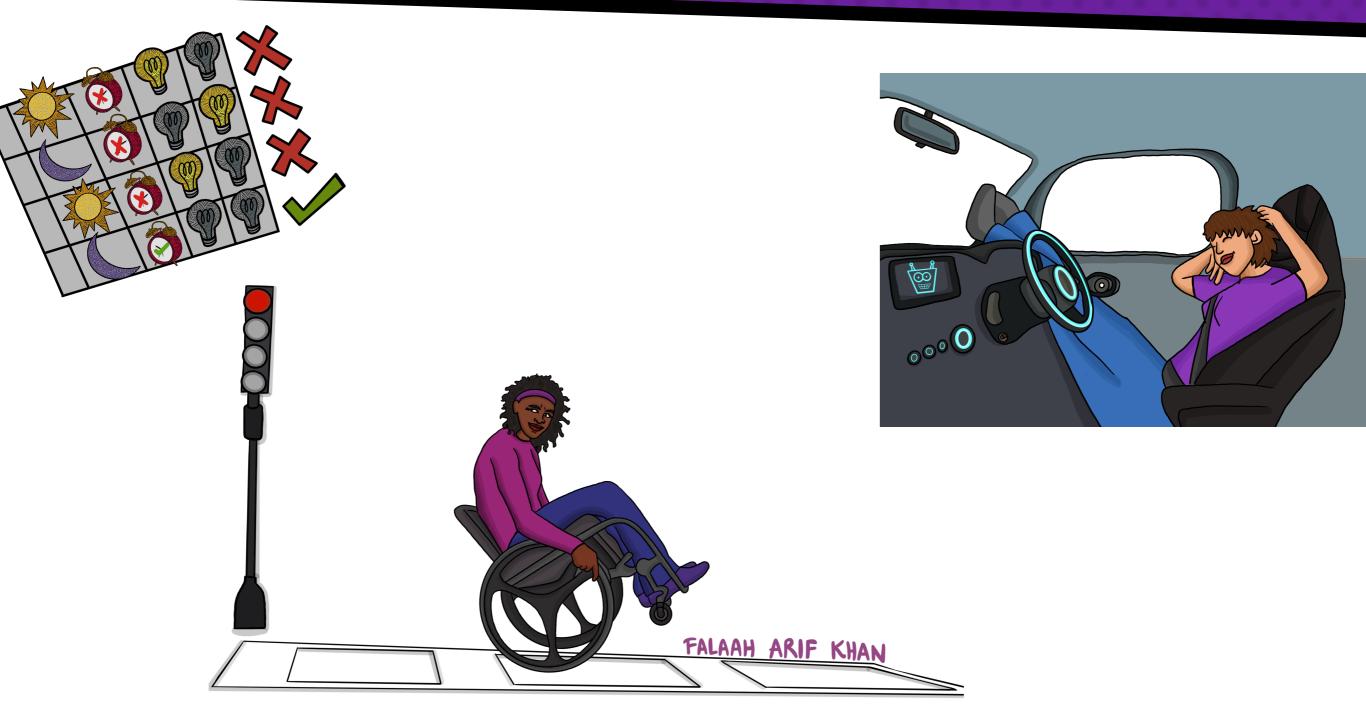
boost innovation

transform government

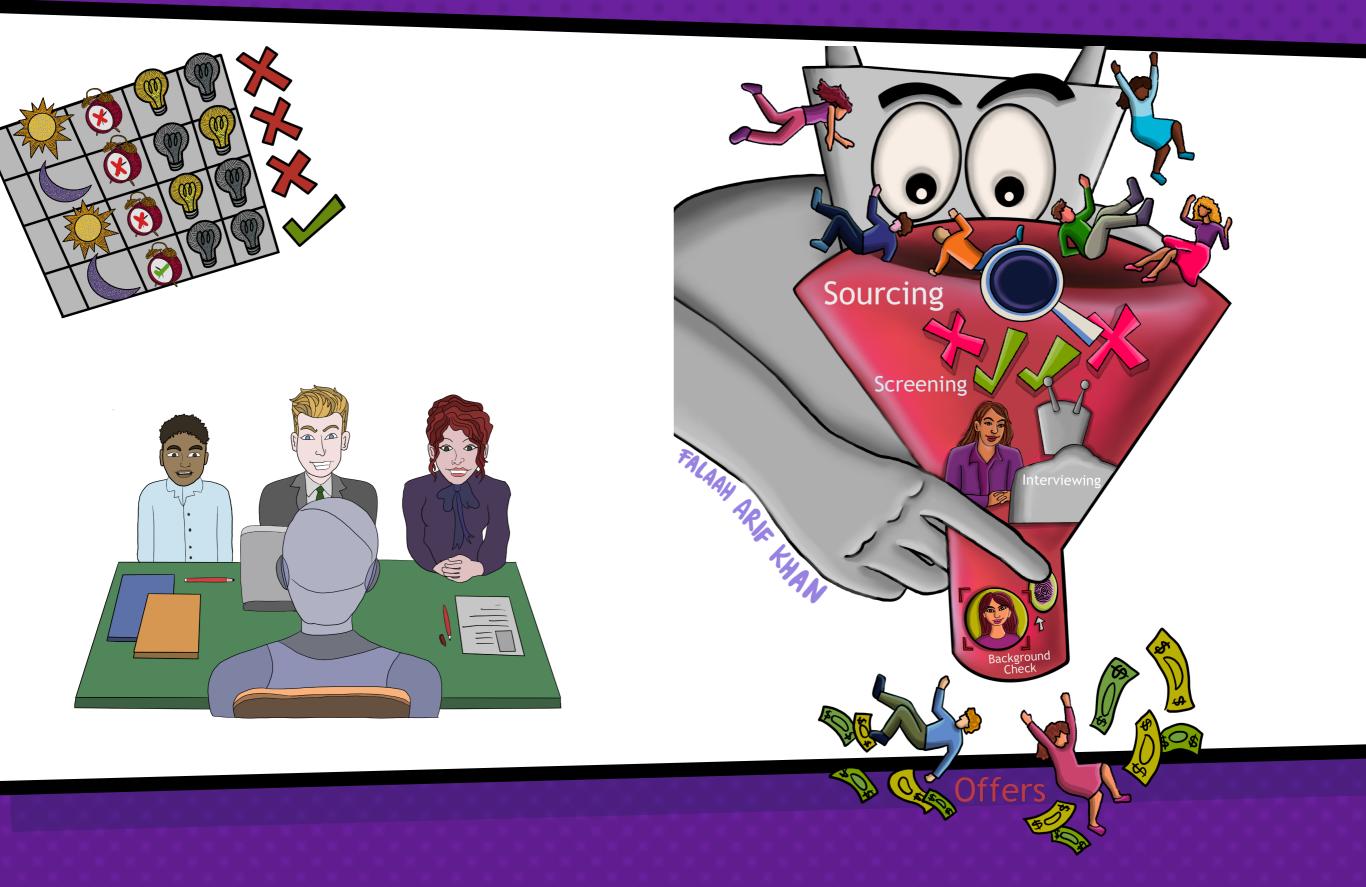
Machines make mistakes



Mistakes lead to harms



Harms can be cumulative



what is responsible AI?

examples

Medical imaging

to

zed

b

		Positive factors	
		clear need for improvement	
	fastMRI	can validate predictions	
	Accelerating MR Imag	technical readiness	
What is fastMRI?	fastMRI is a collaborative re between Facebook AI Resea NYU Langone Health. The aim	decision-maker readiness	
	the use of AI to make MRI sca	ns up to 10 times raw data and image datasets	
	faster.	repository, which contains baseline	
	By producing accurate images sampled data, Al image recons	IDaders for the fastimiting dataset.	

potential to improve the patient's experience

and to make MRIs accessible for more people.

https://fastmri.org/

FACEBOOK AI

NYU Langone Health

Automated hiring systems

MIT **Technology February 2013 Review**

Racism is Poisoning Online Ad Delivery, Says Harvard Professor

The New York Times March 2021 We Need Laws to Take On Racism and Sexism in Hiring Technology

Artificial intelligence used to evaluate job candidates must not become a tool that exacerbates discrimination.

Sourcing

CAAH AR

Screening

Offer

REUTERS

October 2018

Amazon scraps secret AI recruiting tool that showed bias against women

Women less likely to be shown ads for high-paid jobs on Google, study shows

Hiring before automation

Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination

September 2004

Marianne Bertrand

Sendhil Mullainathan

AMERICAN ECONOMIC REVIEW VOL. 94, NO. 4, SEPTEMBER 2004 (pp. 991-1013)

We study race in the labor market by sending fictitious resumes to help-wanted ads in Boston and Chicago

newspapers. To manipulate perceived race, resumes are randomly assigned African-American- or White-sounding names. **White names receive 50 percent more callbacks for interviews.** Callbacks are also more responsive to resume quality for White names than for African-American ones. The racial gap is uniform across occupation, industry, and employer size. We also find little evidence that employers are inferring social class from the names. Differential treatment by race still appears to still be prominent in the U. S. labor market.

discussion

Describe a use case

what are the **goals** of the AI system? what are the **benefits** and to **whom**? what are the **harms** and to **whom**?

Use case: Staples discounts

THE WALL STREET JOURNAL.

WHAT THEY KNOW

Websites Vary Prices, Deals Based on Users' Information

By Jennifer Valentino-DeVries, Jeremy Singer-Vine and Ashkan Soltani December 24, 2012

WHAT PRICE WOULD YOU SEE?

It was the same Swingline stapler, on the same Staples.com website. But for Kim Wamble, the price was \$15.79, while the price on Trude Frizzell's screen, just a few miles away, was \$14.29.

A key difference: where Staples seemed to think they were located.

A Wall Street Journal investigation found that the Staples Inc. website displays different prices to people after estimating their locations. More than that, **Staples appeared to consider the person's distance from a rival brick-and-mortar store**, either OfficeMax Inc. or Office Depot Inc. If rival stores were within 20 miles or so, Staples.com usually showed a discounted price.

https://www.wsj.com/articles/SB10001424127887323777204578189391813881534

December 2012

Use case: AdFisher

theguardian

Samuel Gibbs

Wednesday 8 July 2015 11.29 BST

Automated testing and analysis of company's advertising system reveals male job seekers are shown far more adverts for high-paying executive jobs

(1) One experiment showed that Google displayed adverts for a career coaching service for executive jobs 1,852 times to the male group and only 318 times to the female group. Photograph: Alamy

July 2015

Women less likely to be shown ads for high-paid jobs on Google, study shows

The AdFisher tool simulated job seekers that did not differ in browsing behavior, preferences or demographic characteristics, except in gender.

One experiment showed that Google displayed ads for a career coaching service for "\$200k+" executive jobs **1,852 times to the male group and only 318 times to the female group**. Another experiment, in July 2014, showed a similar trend but was not statistically significant.

https://www.theguardian.com/technology/2015/jul/08/women-less-likely-ads-high-paid-jobs-google-study

Use case: Resume screening

Jeffrey Dastin

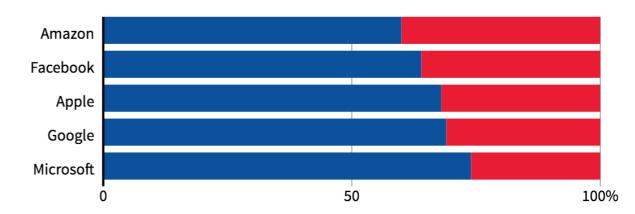
BUSINESS NEWS OCTOBER 9, 2018 / 11:12 PM / 6 MONTHS AGO

Amazon scraps secret AI recruiting tool that showed bias against women

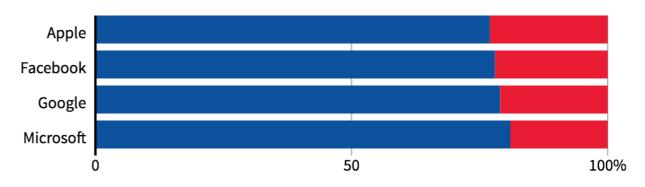
"In effect, Amazon's system taught itself that male candidates were preferable. It penalized resumes that included the word "women's," as in "women's chess club captain." And it downgraded graduates of two all-women's colleges, according to people familiar with the matter. They did not specify the names of the schools."

GLOBAL HEADCOUNT Male Female

October 2018



EMPLOYEES IN TECHNICAL ROLES



"Note: Amazon does not disclose the gender breakdown of its technical workforce."

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-thatshowed-bias-against-women-idUSKCN1MK08G

Use case: Instant Checkmate

Ads by Google

Latanya Sweeney, Arrested? 1) Enter Name and State. 2) Access F Checks Instantly. www.instantcheckmate.com/

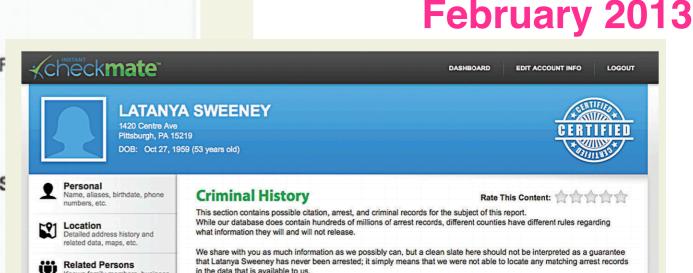
Latanya Sweeney Put ic Records Found For: Latanya S w v.publicrecords.com/

Tanya

w.

KHAN

LAAH AKIF



(?)

View Details

Racism is Poisoning Online Ad Delivery, Says Harvard Professor

Google searches involving black-sounding names are more likely to serve up ads suggestive of a criminal record than white-sounding names, says computer scientist

racially identifying names trigger ads suggestive of a criminal record

https://www.technologyreview.com/s/510646/racism-is-poisoning-online-ad-delivery-says-harvard-professor/

Use case: Amazon same-day delivery

Bloomberg

Amazon Doesn't Consider the Race of Its Customers. Should It?

"... In six major same-day delivery cities, however, **the service area excludes predominantly black ZIP codes** to varying degrees, according to a Bloomberg analysis that compared Amazon same-day delivery areas with U.S. Census Bureau data."

https://www.bloomberg.com/graphics/2016-amazon-same-day/

Julia Stoyanovich

Use case: Amazon same-day delivery

Bloomberg

Amazon Doesn't Consider the Race of Its Customers. Should It?

"The most striking gap in Amazon's same-day service is in Boston, where three ZIP codes encompassing the primarily black neighborhood of Roxbury are excluded from sameday service, while the neighborhoods that surround it on all sides are eligible." Boston Charlestown East Boston Nort Allston/ Enc Brighton South End Roxbury amaica Plain Roslindale West Dorchester Roxbury Hyde Park

https://www.bloomberg.com/graphics/2016-amazon-same-day/

Julia Stoyanovich

examples: racial bias in risk assessment

Racial bias in criminal sentencing

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica May 23, 2016

May 2016

A commercial tool COMPAS automatically predicts some categories of future crime to assist in bail and sentencing decisions. It is used in courts in the US.

The tool correctly predicts recidivism 61% of the time.

Blacks are almost twice as likely as whites to be labeled a higher risk but not actually re-offend.

The tool makes **the opposite mistake among whites**: They are much more likely than blacks to be labeled lower risk but go on to commit other crimes.

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Racial bias in criminal sentencing

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica May 23, 2016 May 2016 A commercial tool COMPAS automatically predicts some categories of future crime to assist in bail and sentencing decisions. It is used in courts in the US.

Prediction Fails Differently for Black Defendants

	WHITE	AFRICAN AMERICAN
Labeled Higher Risk, But Didn't Re-Offend	23.5%	44.9%
Labeled Lower Risk, Yet Did Re-Offend	47.7%	28.0%

Overall, Northpointe's assessment tool correctly predicts recidivism 61 percent of the time. But blacks are almost twice as likely as whites to be labeled a higher risk but not actually re-offend. It makes the opposite mistake among whites: They are much more likely than blacks to be labeled lower risk but go on to commit other crimes. (Source: ProPublica analysis of data from Broward County, Fla.)

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Racial bias in healthcare

Dissecting racial bias in an algorithm used to manage the health of populations

Ziad Obermeyer^{1,2,*}, Brian Powers³, Christine Vogeli⁴, Sendhil Mullainathan^{5,*,†}

+ See all authors and affiliations

Science 25 Oct 2019: Vol. 366, Issue 6464, pp. 447-453 DOI: 10.1126/science.aax2342

October 2019

Health systems rely on commercial prediction algorithms to identify and help patients with complex health needs. We show that a widely used algorithm, typical of this industry-wide approach and affecting millions of patients, exhibits significant racial bias: At a given risk score, Black patients are considerably sicker than White patients, as evidenced by signs of uncontrolled illnesses. Remedying this disparity would increase the percentage of Black patients receiving additional help from 17.7 to 46.5%. The bias arises because the algorithm predicts health care costs rather than illness, but unequal access to care means that we spend less money caring for Black patients than for White patients. Thus, despite health care cost appearing to be an effective proxy for health by some measures of predictive accuracy, large racial biases arise. We suggest that the choice of convenient, seemingly effective proxies for ground truth can be an important source of algorithmic bias in many contexts.

https://www.science.org/doi/10.1126/science.aax2342

Racial bias in healthcare

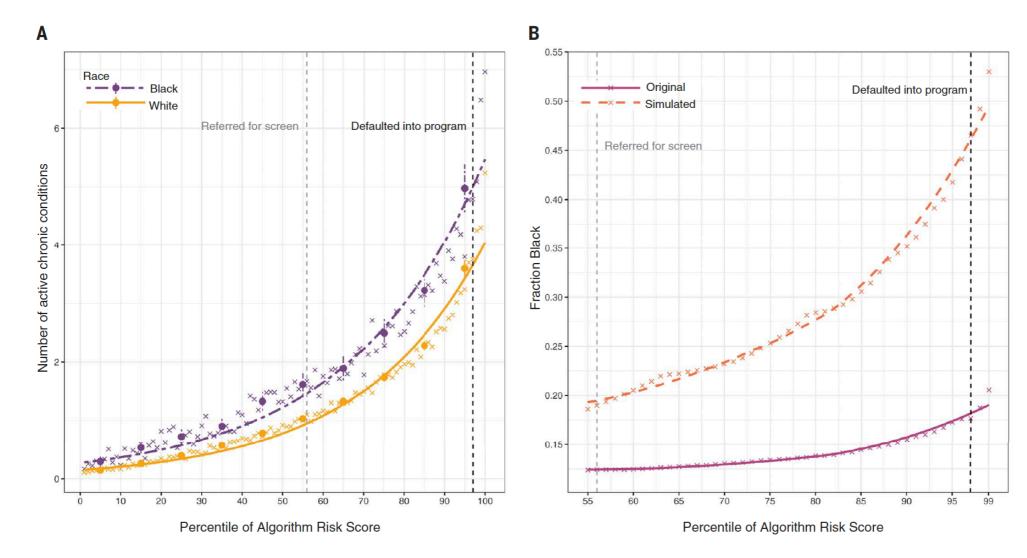


Fig. 1. Number of chronic illnesses versus algorithm-predicted risk, by race. (**A**) Mean number of chronic conditions by race, plotted against algorithm risk score. (**B**) Fraction of Black patients at or above a given risk score for the original algorithm ("original") and for a simulated scenario that removes algorithmic bias ("simulated": at each threshold of risk, defined at a given percentile on the *x* axis, healthier Whites above the threshold are replaced with less healthy Blacks below the threshold, until the marginal patient is equally healthy). The \times symbols show risk percentiles by race; circles show risk deciles with 95% confidence intervals clustered by patient. The dashed vertical lines show the auto-identification threshold (the black line, which denotes the 97th percentile) and the screening threshold (the gray line, which denotes the 55th percentile).

https://www.science.org/doi/10.1126/science.aax2342

r/ai

Fixing bias in algorithms?

The New York Times

By Sendhil Mullainathan

Dec. 6, 2019

ECONOMIC VIEW

Biased Algorithms Are Easier to Fix Than Biased People

Racial discrimination by algorithms or by people is harmful — but that's where the similarities end.

Tim Cook

December 2019

In one study published 15 years ago, **two people applied for a job**. Their résumés were about as similar as two résumés can be. One person was named Jamal, the other Brendan.

In a study published this year, **two patients sought medical care**. Both were grappling with diabetes and high blood pressure. One patient was black, the other was white.

Both studies documented **racial injustice**: In the first, the applicant with a black-sounding name got fewer job interviews. In the second, the black patient received worse care.

But they differed in one crucial respect. In the first, hiring managers made biased decisions. In the second, the culprit was a computer program.

https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html

Fixing bias in algorithms?

pliable.

The New York Times

By Sendhil Mullainathan

Dec. 6, 2019

ECONOMIC VIEW

Biased Algorithms Are Easier to Fix Than Biased People

Racial discrimination by algorithms or by people is harmful — but that's where the similarities end.

December 2019 Changing algorithms is easier than changing people: software on computers can be updated; the "wetware" in our brains has so far proven much less

[...] In a 2018 paper [...], I took a cautiously optimistic perspective and argued that **with proper regulation, algorithms can help to reduce discrimination**.

But the key phrase here is "proper regulation," which we do not currently have.

We must ensure all the necessary inputs to the algorithm, including the data used to test and create it, are carefully stored. * [...] We will need a well-funded regulatory agency with highly trained auditors to process this data.

Tim Cook

https://www.nytimes.com/2019/12/06/business/algorithm-bias-fix.html

a push for regulation

Automated Decision Systems (ADS)

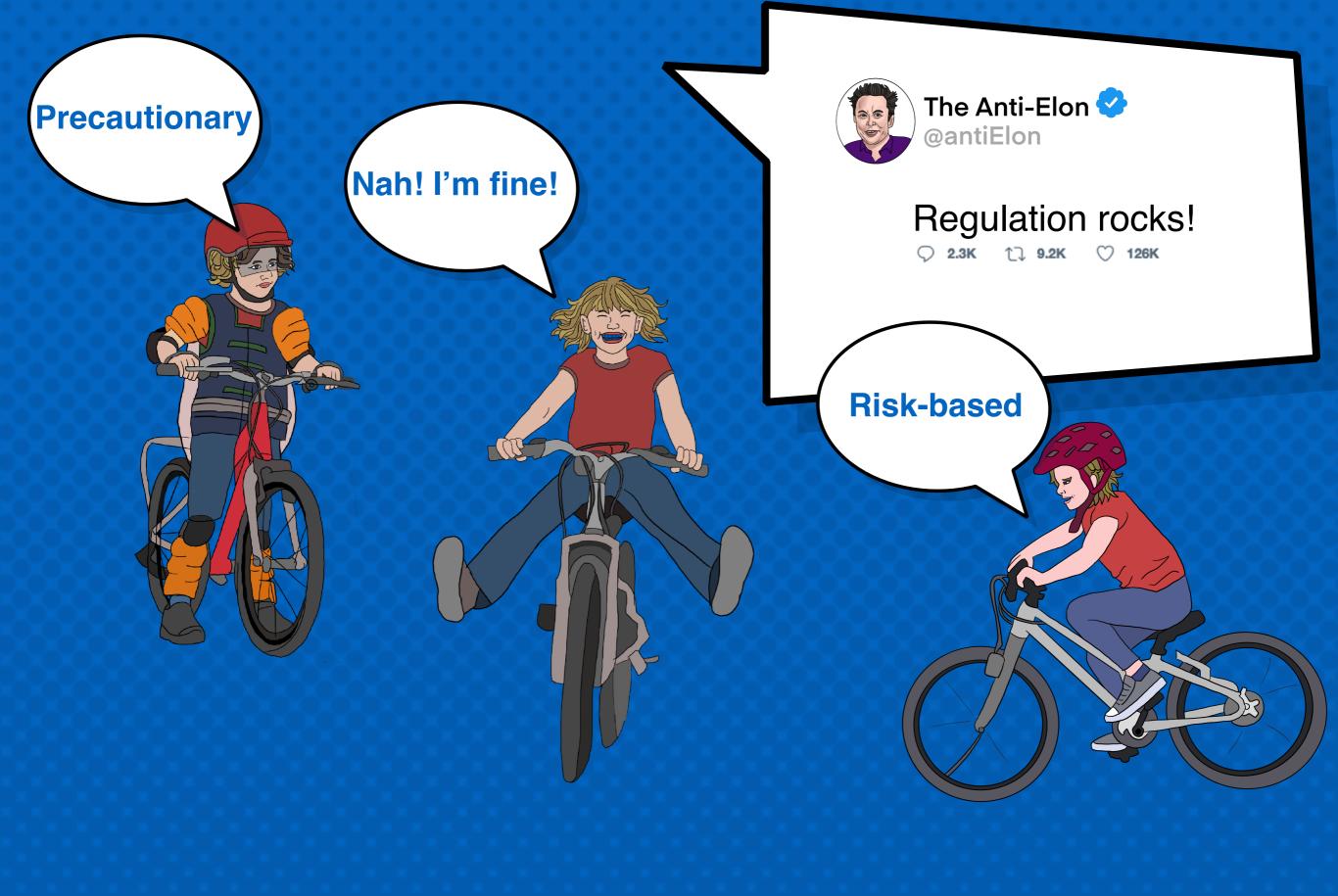
50

CE/c (/)

Automated Decision Systems (ADS)

process data about people help make consequential decisions combine human & automated decision making aim to improve efficiency and promote equity are subject to auditing and public disclosure

Regulating ADS?



New York City Local Law 49 of 2018

January 11, 2018

An **Automated Decision System (ADS)** is a "computerized implementation of algorithms, including those derived from machine learning or other data processing or artificial intelligence techniques, which are used to make or assist in making decisions."

Form task force that surveys the current use of ADS in City agencies and develops procedures for:

- requesting and receiving an **explanation** of an algorithmic decision affecting an individual (3(b))
- interrogating ADS for bias and discrimination against members of legallyprotected groups (3(c) and 3(d))
- allowing the **public** to **assess** how ADS function and are used (3(e)), and archiving ADS together with the data they use (3(f))

ADS regulation in NYC: take 1

Principles

- using ADS **where** they promote innovation and efficiency in service delivery
- promoting fairness, equity, accountability, and transparency in the use of ADS
- reducing potential harm across the lifespan of ADS

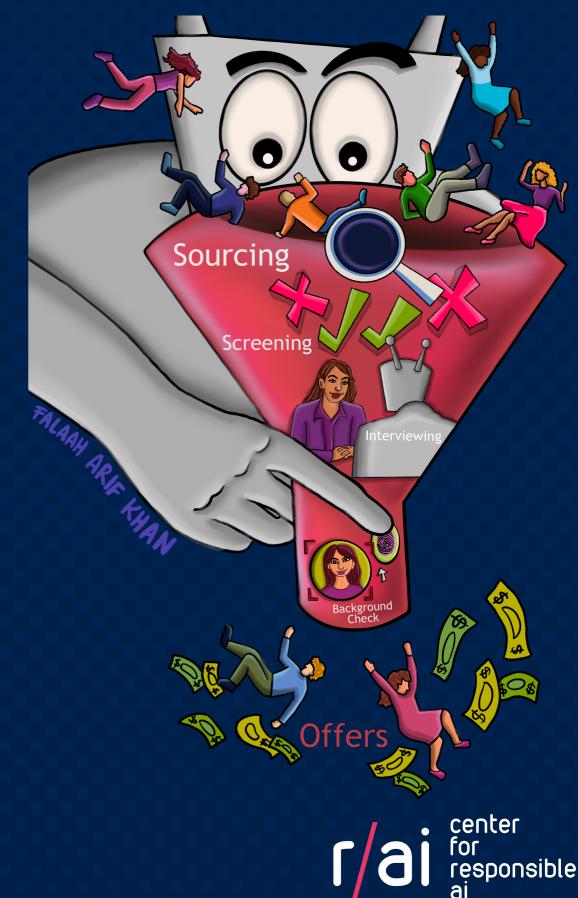
New York City Local Law 144 of 2021

December 11, 2021

This bill would require that a **bias audit** be conducted on an automated employment decision tool prior to the use of said tool. The bill would also require that candidates or employees that reside in the city **be notified about the use of such tools** in the assessment or evaluation for hire or promotion, as well as, **be notified about the job qualifications and characteristics that will be used** by the automated employment decision tool. Violations of the provisions of the bill would be subject to a civil penalty.

A related domain: AI in hiring

"Automated hiring systems act as modern gatekeepers to economic opportunity." *Jenny Yang*



Algorithmic discrimination

Women less likely to be shown ads for high-paid jobs on Google, study shows

Amazcha

MIT Technology February 2013 Review

Racism is Poisoning Online Ad Delivery, Says Harvard Professor

THE WALL STREET JOURNAL. September 2014

Are Workplace Personality Tests Fair?

Growing Use of Tests Sparks Scrutiny Amid Questions of Effectiveness and Workplace Discrimination

October 2018

Amazon scraps secret AI recruiting tool that showed bias against women

The need for regulation

Opinion

We Need Laws to Take On Racism and Sexism in Hiring Technology

The New York Times

March 17, 2021

By Alexandra Reeve Givens, Hilke Schellmann and Julia Stoyanovich

Ms. Givens is the chief executive of the Center for Democracy & Technology. Ms. Schellman and Dr. Stoyanovich are professors at New York University focusing on artificial intelligence.

The bill should also require validity testing, to ensure that the tools actually measure what they claim to, and it must make certain that they measure characteristics that are relevant for the job. Such testing would interrogate whether, for example, candidates' efforts to blow up a balloon in an online game really indicate their appetite for risk in the real world — and whether risk-taking is necessary for the job.

a center for responsible ai

The need for regulation

Opinion

We Need Laws to Take On Racism and Sexism in Hiring Technology

The New York Times

March 17, 2021

By Alexandra Reeve Givens, Hilke Schellmann and Julia Stoyanovich

Ms. Givens is the chief executive of the Center for Democracy & Technology. Ms. Schellman and Dr. Stoyanovich are professors at New York University focusing on artificial intelligence.

In addition, the City Council must require vendors to tell candidates how they will be screened by an automated tool **before** the screening, so candidates know what to expect. **People who are blind, for example, may not suspect that their video interview could score poorly if they fail to make eye contact with the camera.** If they know what is being tested, they can engage with the employer to seek a fairer test.

THESE GHOSTS ARE MAKING THEIR WAY INTO DATA-DRIVEN PRODUCTS AS WELL.

TAKE THE INFAMOUS FACIAL RECOGNITION SOFTWARE THAT HAS BEEN ALL OVER THE NEWS RECENTLY. RACIAL INJUSTICES ARE PROBLEMATIC ENOUGH, BUT HAVE YOU CONSIDERED HOW THESE MODELS DISCRIMINATE AGAINST BLACK DISABLED PEOPLED?

HOW WELL DO YOU THINK FACIAL RECOGNITION WOULD PERFORM ON BLIND BLACK PEOPLE?

HAVING BEEN TRAINED ON THE FACIAL DYNAMICS OF SIGHTED WHITE PEOPLE, FACIAL RECOGNITION TECHNOLOGY PEDDLES AN ABLEIST AND RACIST NARRATIVE.

Nutritional labels for job seekers

THE WALL STREET JOURNAL.

September 22, 2021

center

esponsible

Hiring and AI: Let Job Candidates Know Why They Were Rejected

Labels that explain a hiring process that uses AI could allow job seekers to opt out if they object to the employer's data practices. PHOTO: ISTOCKPHOTO/GETTY IMAGES

By Julia Stoyanovich Updated Sept. 22, 2021 11:00 am ET Artificial-intelligence tools are seeing ever broader use in hiring. But this practice is also hotly criticized because we rarely understand how these tools select candidates, and whether the candidates they select are, in fact, better qualified than those who are rejected.

To help answer these crucial questions, **we should give job seekers more information about the hiring process and the decisions**. The solution I propose is a twist on something we see every day: **nutritional labels**. Specifically, job candidates would see simple, standardized labels that show the factors that go into the AI's decision.

Nutritional labels for job seekers

THE WALL STREET JOURNAL.

September 22, 2021

Hiring and AI: Let Job Candidates Know Why They Were Rejected

Labels that explain a hiring process that uses AI could allow job seekers to opt out if they object to the employer's data practices. PHOTO: ISTOCKPHOTO/GETTY IMAGES

By Julia Stoyanovich Updated Sept. 22, 2021 11:00 am ET

ACCOUNTANT

Acme Partners

Qualifications:	BS in accounting, GPA >3.0, Knowledge of financial and accounting systems and applications
Personal data to be analyzed:	An AI program could be used to review and analyze the applicant's personal data online, including LinkedIn profile, social media accounts and credit score.
Additional assessment:	AI-assisted personality scoring
selectively	s for this position DO NOT have the option to decline use of AI analysis for any of their personal review and challenge the results of such analysis.

https://www.wsj.com/articles/hiring-job-candidates-ai-11632244313

Nutritional labels for public disclosure

ACCOUNTANT

Acme Partners

assessment:

Qualifications:BS in accounting, GPA >3.0, Knowledge of fin
accounting systems and applicationsPersonal data
to be analyzed:An AI program could be used to review and analyze the
applicant's personal data online, including LinkedIn
profile, social media accounts and credit score.AdditionalAI-assisted personality scoring

ALERT: Applicants for this position DO NOT have the option to selectively decline use of AI analysis for any of their personal data or to review and challenge the results of such analysis.

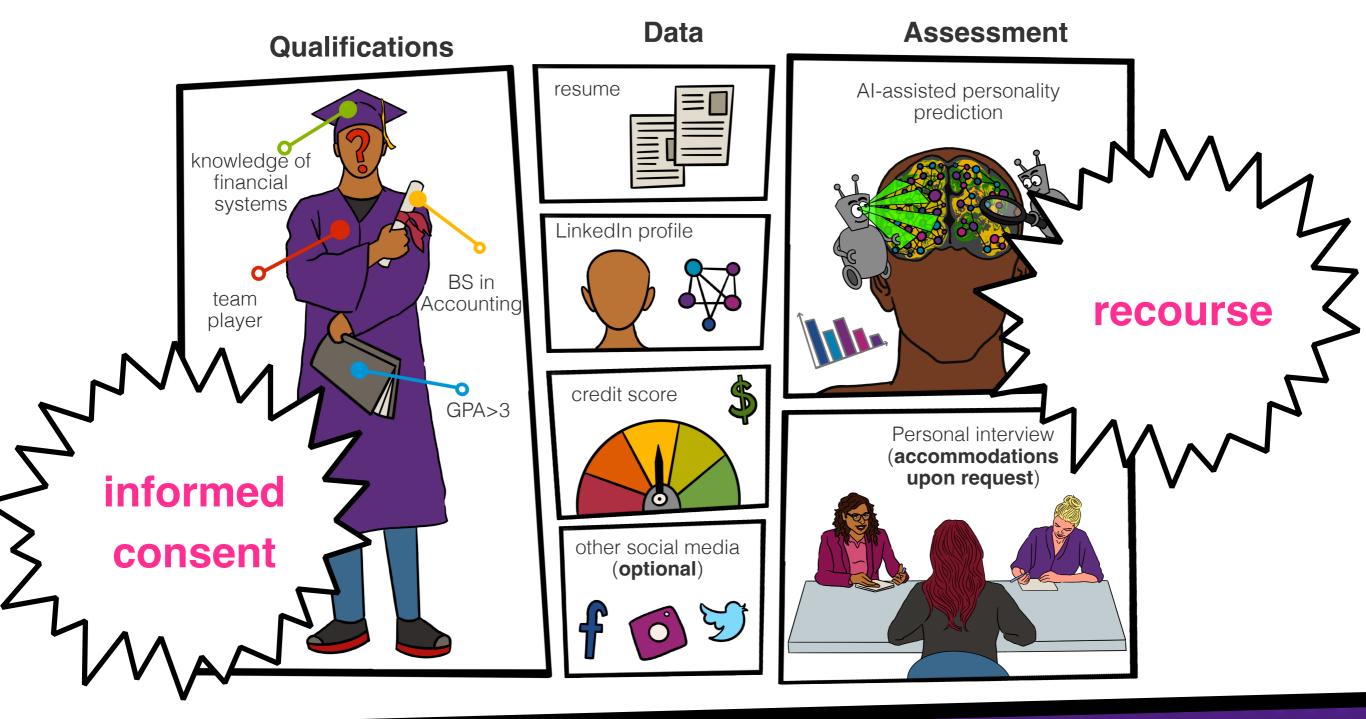
https://www.wsj.com/articles/hiring-jobcandidates-ai-11632244313 comprehensible: short, simple, clear

consultative: provide actionable info

comparable: implying a standard

[Stoyanovich & Howe, 2019]

Anatomy of a job posting label



https://www.wsj.com/articles/hiring-job-candidates-ai-11632244313

Course overview

module 1: algorithmic fairness

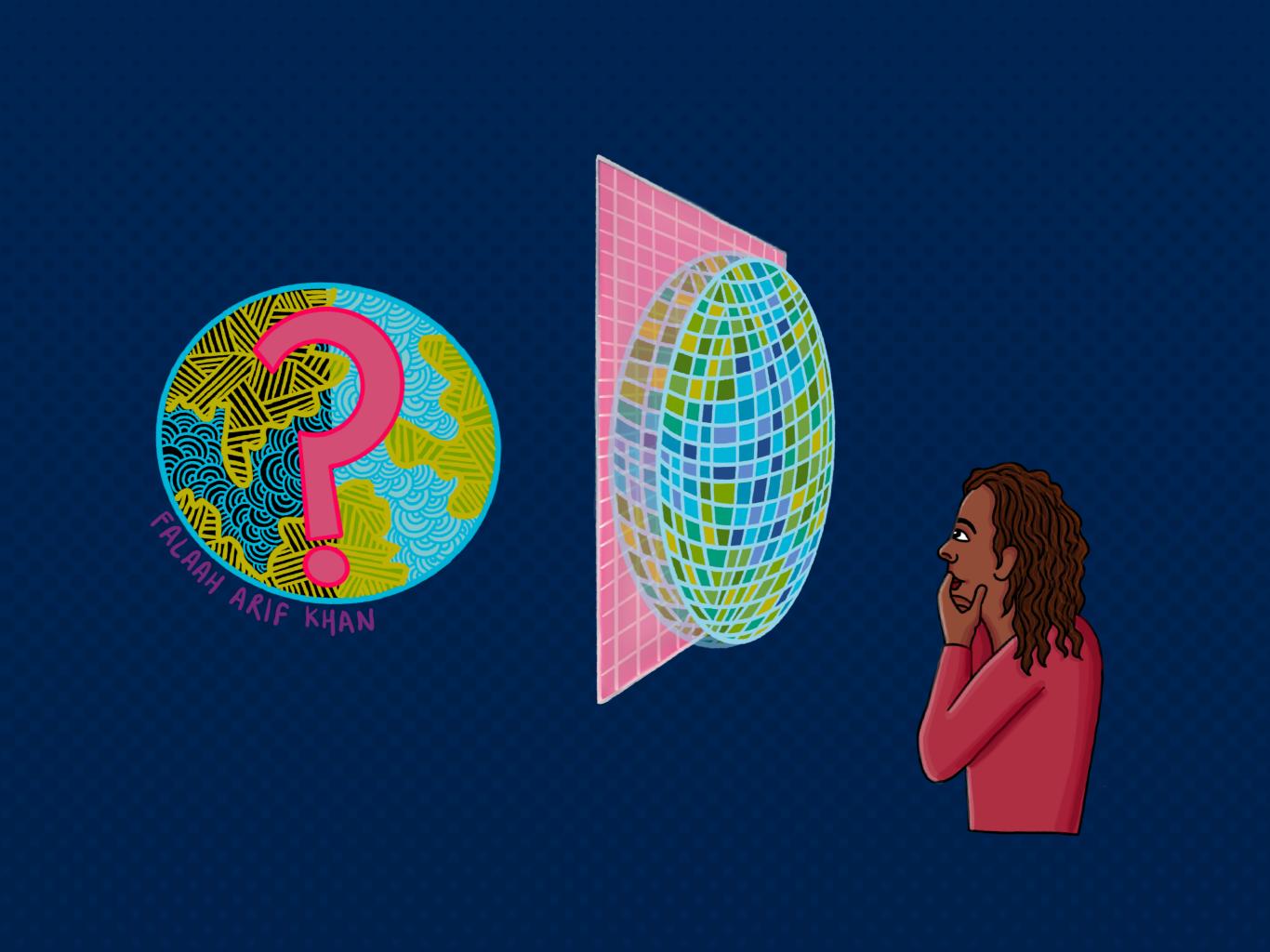
Bias in computer systems

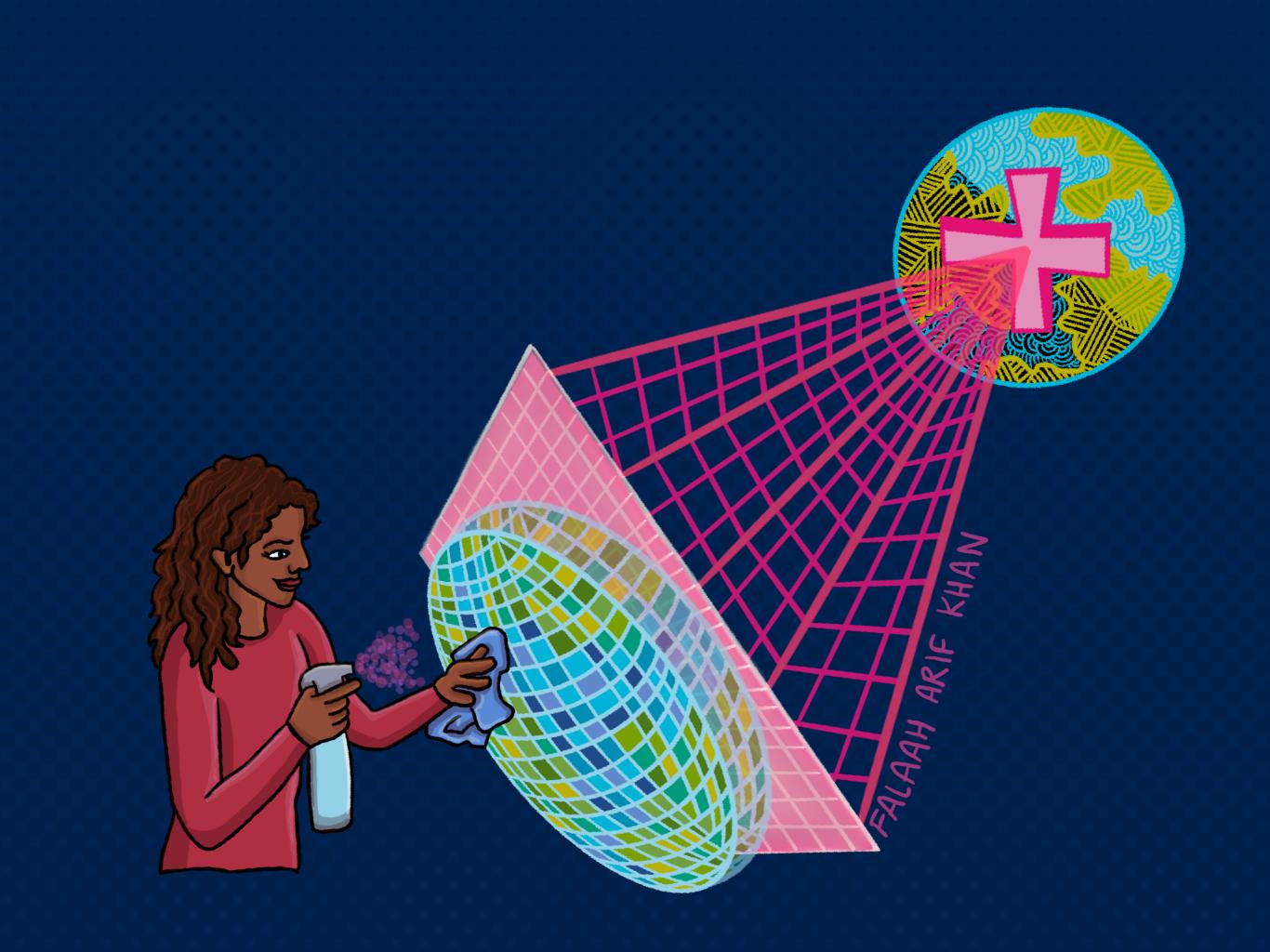
Pre-existing: exists independently of algorithm, has origins in society

Technical: introduced or exacerbated by the technical properties of an ADS

Emergent: arises due to context of use

[Friedman & Nissenbaum (1996)]





Bias in computer systems

Pre-existing: exists independently of algorithm, has origins in society

Technical: introduced or exacerbated by the technical properties of an ADS

Emergent: arises due to context of use

to fight bias, state beliefs and assumptions explicitly

[Friedman & Nissenbaum (1996)]

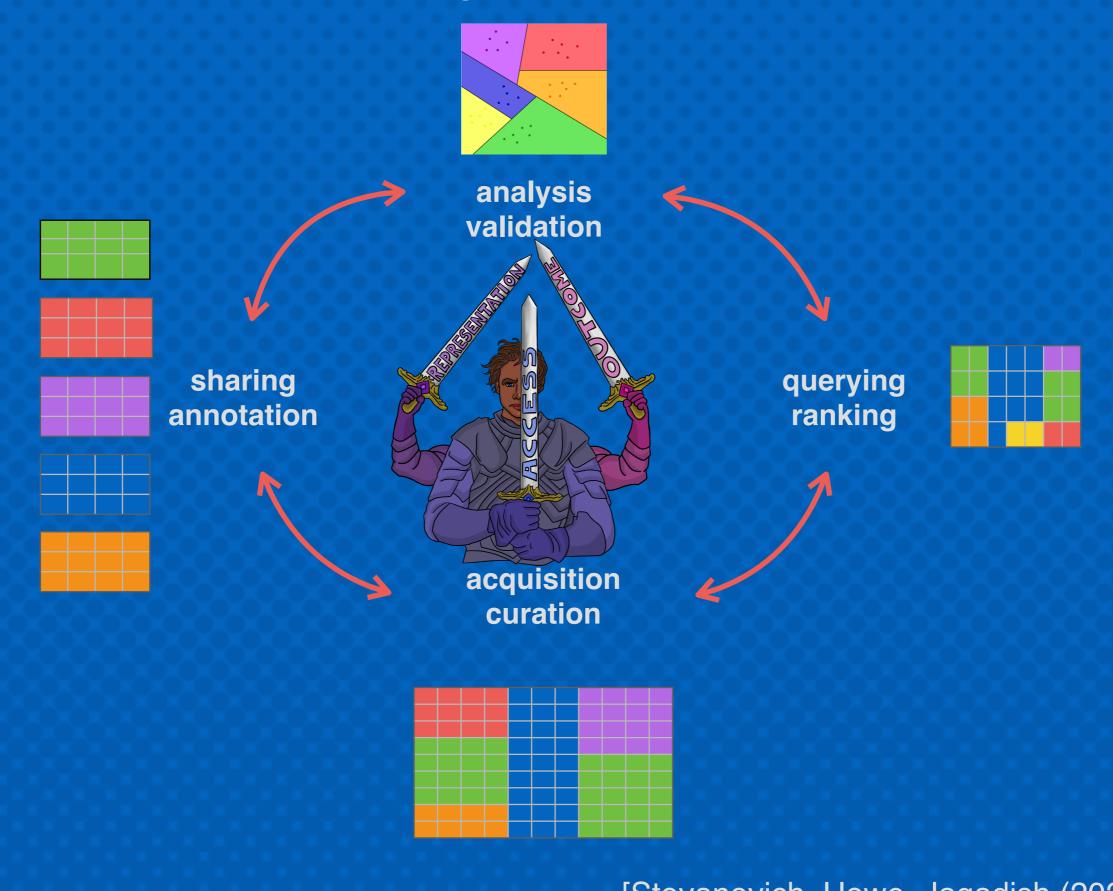
Fair-ML view

where did the data come from?

4/18/47 1/22/82 5/14/91 1/21/93 1/22/73 8/22/71 7/23/74 2/25/73 6/10/94 6/14/68 8/22/78 8/22/78 8/22/78 8/22/78 8/22/78 6/14/68 8/22/78 8/22/90 12/24/84 8/6/88 8/22/95 1/23/92 1/10/73 8/24/83 2/8/8/9 9/3/79 what happens inside the box?

how are results used?

Lifecycle view



[Stoyanovich, Howe, Jagadish (2020)]

Models and assumptions

[Stoyanovich, Howe, Jagadish (2020)]

module 2: transparency & interpretability

The evils of discrimination

Disparate treatment

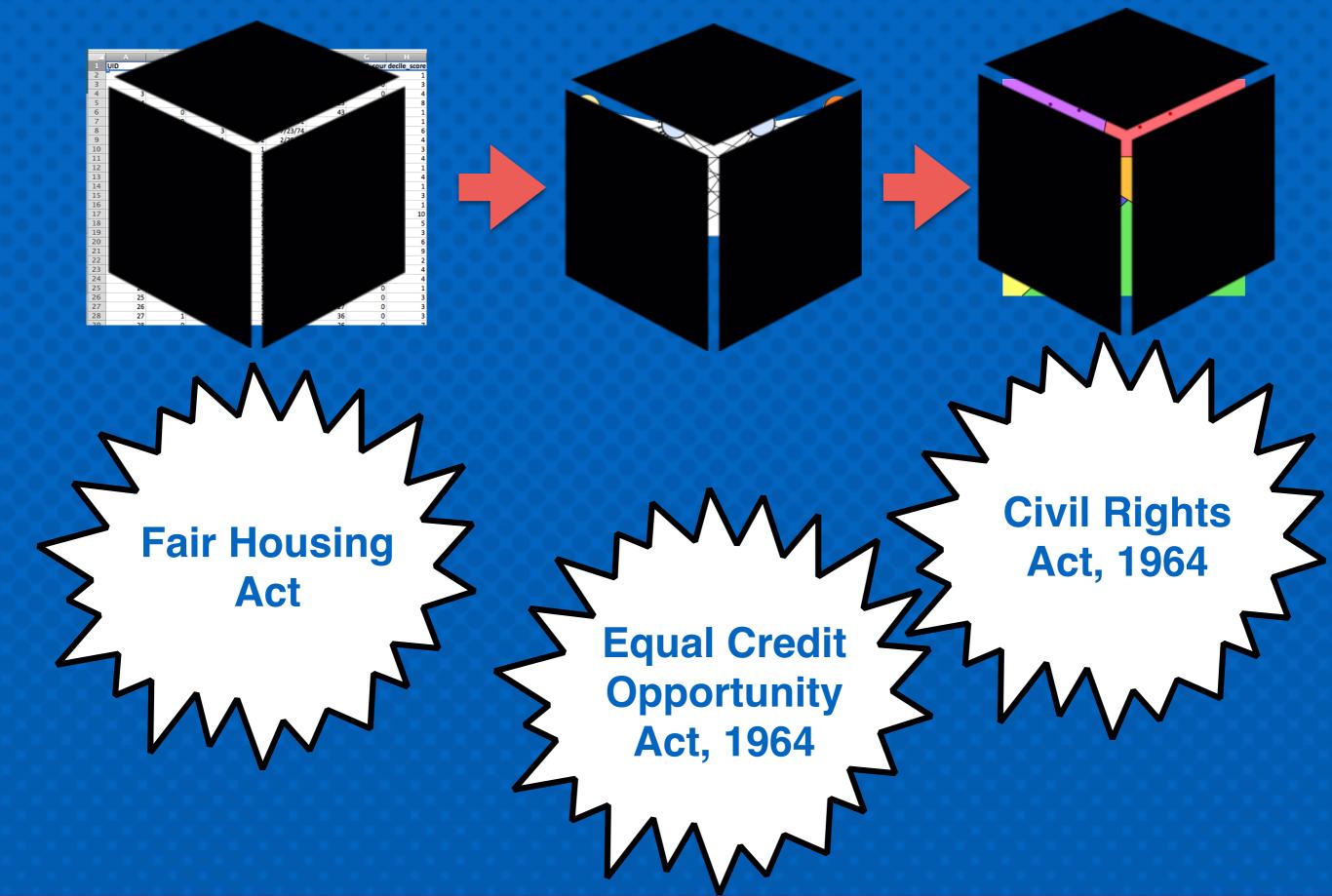
is the illegal practice of treating an entity, such as a job applicant or an employee, differently based on a **protected characteristic** such as race, gender, age, religion, sexual orientation, or

national origin.

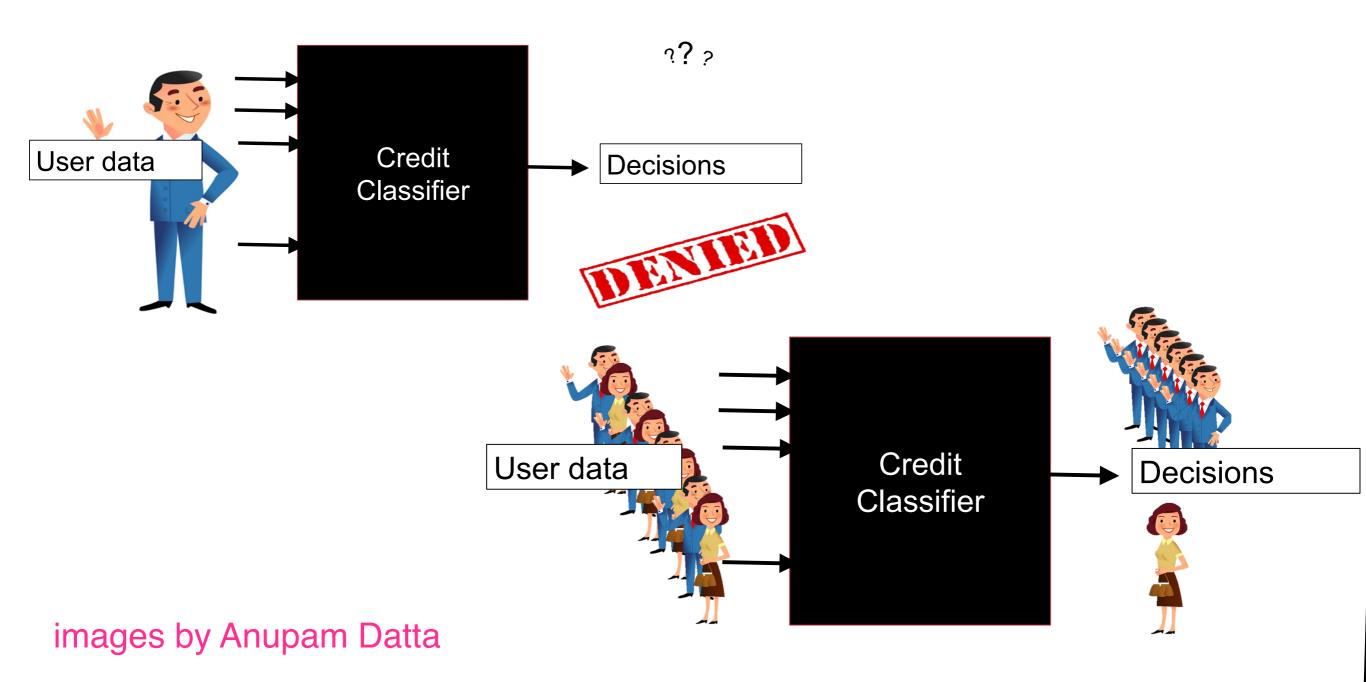
Disparate impact

is the result of systematic disparate treatment, where disproportionate **adverse impact** is observed on members of a **protected class**.

Regulating automated decisions



Auditing black-box models



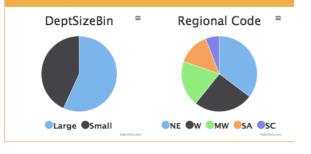
Nutritional labels

Ranking Facts

Ingredients		÷
Attribute	Importance	
PubCount	1.0	0
CSRankingAllArea	0.24	
Faculty	0.12	

Importance of an attribute in a ranking is quantified by the correlation coefficient between attribute values and items scores, computed by a linear regression model. Importance is high if the absolute value of the correlation coefficient is over 0.75, medium if this value falls between 0.25 and 0.75, and low otherwise.

Diversity overall 😮



Fairness	0			÷
DeptSizeBin	FA*IR	Pairwi	se Proport	ion
Large	Fair	🕑 Fair		\odot
Small	Unfair	😢 Unfair	😢 Unfair	8

A ranking is considered unfair when the p-value of the corresponding statistical test falls below 0.05.

Stability

Тор-К	Stability
Top-10	Stable
Overall	Stable

comprehensible: short, simple, clear

consultative: provide actionable info

comparable: implying a standard

module 3: data protection & privacy

Privacy: two sides of the same coin

Did you go out drinking over the weekend?

protecting an individual

plausible deniability

learning about the population

noisy estimates

Truth or dare

Did you go out drinking over the weekend?

let's call this property **P** (Truth=Yes) and estimate **p**, the fraction of the group for whom **P** holds

thus, we estimate **p** as:

$$\tilde{p} = 2A - \frac{1}{2}$$

1.flip a coin C1
1.if C1 is tails, then respond truthfully
2.if C1 is heads, then flip another coin C2
1.if C2 is heads then Yes
2.else C2 is tails then respond No

randomization - adding noise - is what gives plausible deniability a process privacy method

the expected number of Yes answers is:

$$A = \frac{3}{4}p + \frac{1}{4}(1-p) = \frac{1}{4} + \frac{p}{2}$$

privacy comes from plausible deniability

Differential privacy

review articles

DOI:10.1145/1866739.1866758

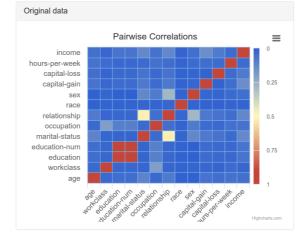
What does it mean to preserve privacy?

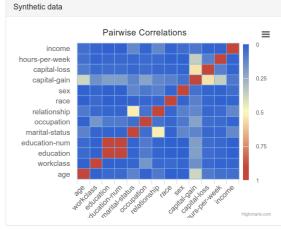
BY CYNTHIA DWORK

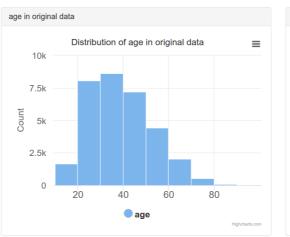
A Firm Foundation for Private Data Analysis

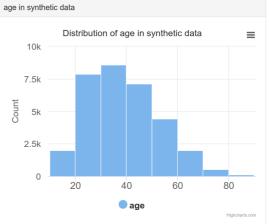
Communications of the ACM CACM Homepage archive

Volume 54 Issue 1, January 2011 Pages 86-95

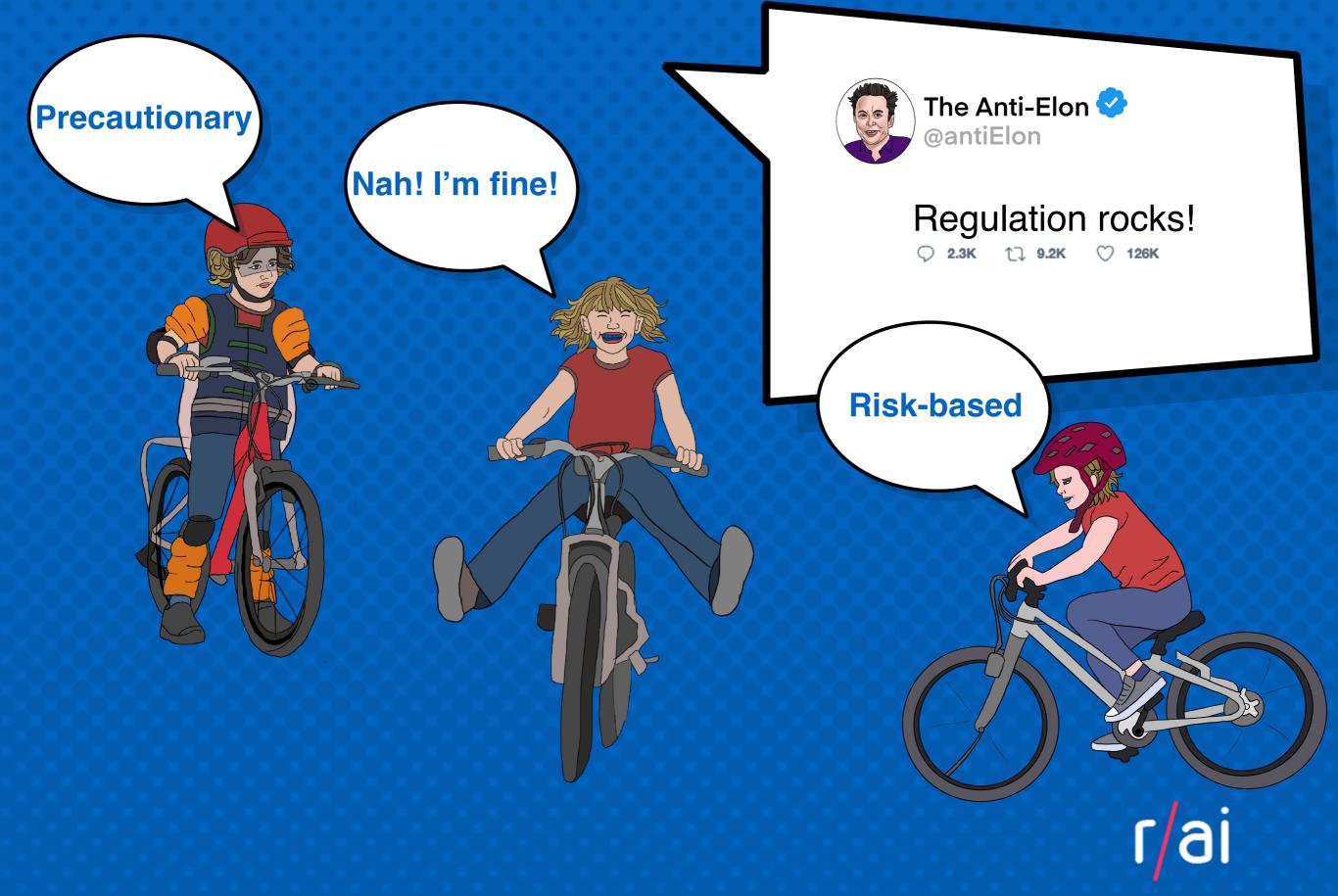








Regulating ADS?



Legal frameworks

GENERAL DATA PROTECTION REGULATION (GDPR)	RECITALS	KEY ISSUES		💻 Deuts	sch
GDPR					1
Chapter 1 (Art. 1 – 4)		General Data Pr	otection Regulation		
Chapter 2 (Art. 5 – 11) ~ Principles			DPR		
Chapter 3 (Art. 12 – 23) ~ Rights of the data subject		Welcome to gdpr-info.eu. Here you can find t	he official PDF of the Regulation (EU) 2016/679		
Chapter 4 (Art. 24 – 43) Controller and processor		(General Data Protection Regulation) in the cu	urrent version of the OJ L 119, 04.05.2016; cor. OJ e. All Articles of the GDPR are linked with suitable		
Chapter 5 (Art. 44 – 50) Transfers of personal data to third countries or international organisations		recitals. The European Data Protection Regulation member states to harmonize data privacy law	ation is applicable as of May 25th, 2018 in all vs across Europe. If you find the page useful, feel		
Chapter 6 (Art. 51 – 59)		free to support us by sharing the project.			
Chapter 7 (Art. 60 – 76)		Quick Access			
Chapter 8 (Art. 77 – 84)		~ Chapter 1 – 1 2 3 4			
Chapter 9 (Art. 85 – 91)		Chapter 2 - 5 6 7 8 9 10 11 Chapter 3 - 12 13 1			
Provisions relating to specific processing situations		Chapter 3 - 12 13 1 Chapter 4 - 24 25 2			
Chapter 10 (Art. 92 – 93) Delegated acts and implementing acts		Chapter 5 - 44 45 4 Chapter 6 - 51 52 5	🖕 📕 Goverr		
Chapter 11 (Art. 94 – 99) Final provisions		Chapter 7 - 60 61 6	T 📕 of Cana	ada	
		Chapter 8 - 77 78 7 Chapter 9 - 85 86 8			
		Hom	ne + How government	t woi	r <u>ks</u> →

Directive on Automated Decision-Making

The Government of Canada is increasingly looking to utilize artificial intelligence to make, or assist in making, administrative decisions to improve service delivery. The Government is committed to doing so in a manner that is compatible with core administrative law principles such as transparency, accountability, legality, and procedural fairness. Understanding that this technology is changing rapidly, this Directive will continue to evolve to ensure that it remains relevant.

Date modified: 2019-02-05

in summary

So what is RDS?

As advertised: ethics, legal compliance, personal responsibility. But also: data quality!

A technical course, with content drawn from:

- 1. fairness, accountability and transparency
- 2. data engineering
- 3. privacy & data protection

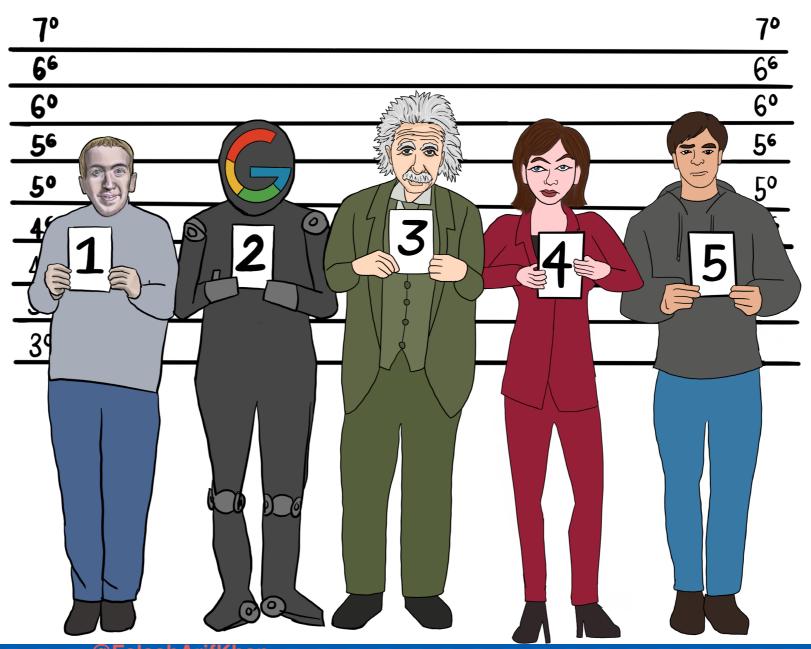
We will learn **algorithmic techniques** for data analysis. We will also learn about recent **laws** / **regulatory frameworks**.

Bottom line: we will learn that many of the problems are **socio-technical**, and so cannot be "solved" with technology alone.

My perspective: a pragmatic engineer, **not** a technology skeptic.

Nuance, please!

We all are responsible



@FalaahArifKhan

Responsible Data Science

Introduction and Overview

Thank you!

Center for Data Science r/ai