Responsible Data Science

Transparency \& Interpretability

Auditing black-box models
March 5 and 7, 2024

Professor Umang Bhatt

Center for Data Science \& Computer Science and Engineering New York University

Terminology \& vision

transparency, interpretability, explainability, intelligibility

agency, responsibility

Interpretability for different stakeholders

What are we explaining?
To Whom are we explaining?
Why are we explaining?

Staples discounts

THE WALL STREET JOURNAL.

December 2012

Websites Vary Prices, Deals Based on Users'

Information

By Jennifer Valentino-DeVries, Jeremy SingerVine and Ashkan Soltani
December 24, 2012

WHAT PRICE WOULD YOU SEE?

It was the same Swingline stapler, on the same Staples.com website. But for Kim Wamble, the price was $\$ 15.79$, while the price on Trude Frizzell's screen, just a few miles away, was \$14.29.

A key difference: where Staples seemed to think they were located.

A Wall Street Journal investigation found that the Staples Inc. website displays different prices to people after estimating their locations. More than that, Staples appeared to consider the person's distance from a rival brick-and-mortar store, either OfficeMax Inc. or Office Depot Inc. If rival stores were within 20 miles or so, Staples.com usually showed a discounted price.
https://www.wsj.com/articles/SB10001424127887323777204578189391813881534

Staples discounts

THE WALL STREET JOLRNAL.

December 2012

Websites Vary Prices, Deals Based on Users'

Information

By Jennifer Valentino-DeVries, Jeremy SingerVine and Ashkan Soltani
December 24, 2012
WHAT PRICE WOULD YOU SEE?

It was the same S same Staples.com was \$15.79, while a few miles away,

A key difference: located.

What are we explaining?
To Whom are we explaining?
Why are we explaining?
https://www.wsj.com/articles/SB10001424127887323777204578189391813881534
A Wall Street Journal investigation rount intana Inc. website displays different prices to people after estimating their locations. More than that, Staples appeared to consider the person's distance from a rival brick-and-mortar store, either OfficeMax Inc. or Office Depot Inc. If rival stores were within 20 miles or so, Staples.com usually showed a discounted price.

Online job ads

theguardian

Samuel Gibbs

Wednesday 8 July 2015 11.29 BST
Automated testing and analysis of company's advertising system reveals male job seekers are shown far more adverts for high-paying executive jobs

(3) One experiment showed that Google displayed adverts for a career coaching service for executive jobs 1,852 times to the male group and only 318 times to the female group. Photograph: Alamy

July 2015

Women less likely to be shown ads for high-paid jobs on Google, study shows

The AdFisher tool simulated job seekers that did not differ in browsing behavior, preferences or demographic characteristics, except in gender.

One experiment showed that Google displayed ads for a career coaching service for "\$200k+" executive jobs 1,852 times to the male group and only 318 times to the female group.
Another experiment, in July 2014, showed a similar trend but was not statistically significant.

Online job ads

theguardian

Samuel Gibbs

Wednesday 8 July 2015 11.29 BST
Automated testing and analysis of company's advertising system reveals male job seekers are shown far more adverts for high-paying executive jobs

(1) One experiment showed that Google displayed adverts for a career coaching service for executive jobs 1,852 times to the male group and only 318 times to the female group. Photograph: Alamy

July 2015

Women less likely to be shown ads for high-paid jobs on Google, study shows

The AdFisher tool simulated job seekers that did not differ in bro

One experim What are we explaining? ads for a car executive job and only 31 Another exp similar trend

To Whom are we explaining?
Why are we explaining?
https://www.theguardian.com/technology/2015/jul/08/women-less-likely-ads-high-paid-jobs-google-study

Instant Checkmate

Google AdSense

https://www.technologyreview.com/s/510646/racism-is-poisoning-online-ad-delivery-says-harvard-professor/

DASHEONRD	EDT ACCOUNT NFO	LOCOUT

February 2013

What are we explaining?
To Whom are we explaining?
Why are we explaining?

AnIm
 G:EBi|lifina

Criminal History

This section contains possible citation, arrest, and crimin
While our database does contain hundreds of millions of While our database does contain hundreds of millions of
what information they will and will not release.
We share with you as much information as we possibly
that Latanya Sweeney has never been arrested; that Latanya Sweeney has never been arrested; it simp
in the data that is available to us.

Possible Matching Arrest Records
Name County and State No matching arrest records were found.

LATANYA SWEENEY

Google searches involving black-sounding names are more likely to serve up ads suggestive of a criminal record than white-sounding names, says computer scientist

Nutritional labels

SIDE-BY-SIDE COMPARISON

Original Label

New Label

Note: The images above are meant for illustrative purposes to show how the new Nutrition Facts label might look compared to the old label. Both labels represent fictional products. When the original hypothetical label was developed in 2014 (the image on the left-hand side), added sugars was not yet proposed so the "original" label shows 1 g of sugar as an
example. The image created for the "new" label (shown on the right-hand side) lists 12 g example. The image created for the "new" label (shown on the right-hand side) lists 12 g out with a \% Daily Value.
An example of the old nutrition labels, left, and the new one. The new nutrition labels will display alories and serving size more prominently, and include added sugars for the first time. PHOTO: FOOD AND DRUG ADMINISTRATION/ASSOCIATED PRESS
https://www.wsj.com/articles/why-the-labels-on-your-food-are-changing-or-

What are we explaining?
To Whom are we explaining?
Why are we explaining?

ACCOUNTANT
 Acme Partners

Qualifications:	BS in accounting, GPA >3.0, Knowledge of financial and accounting systems and applications
Personal data to be analyzed:	An AI program could be used to review and analyze the applicant's personal data online, including Linkedln profile, social media accounts and credit score.
Additional assessment:	Al-assisted personality scoring

https://www.wsj.com/articles/hiring-job-candidates-ai-11632244313

[^0]https://www.wsj.com/articles/ imagine-a-nutrition-labelfor-

Security \& Privacy Overview Smart Device Co.

$$
\begin{aligned}
& \text { Smart Video Doorbell NS200 } \\
& \text { Fimwareversion: } 2.51 \text { - updat }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Firmware verion: } 2.1 \text { - - pdated on: } 11 \\
& \text { The device was manufactured in: China }
\end{aligned}
$$

Detailed Security \& Pivacy Labe:
Detailed Secunty \& Pivacy Label:
mwiolsecuritypivacy.org/abels

More
information

CMU Iot Security and Privocy Label CISPL 1.0 iotsecuritypiviocyory
(ㅌ) Eviman

explaining black box models

This week's reading

scolithere

LIME

"Why Should I Trust You?" Explaining the Predictions of Any Classifier

$$
\begin{aligned}
& \text { Marco Tulio Ribeiro }
\end{aligned}
$$

ABSTRACT Despite widespread adoption, machine learning models re- main mostly black boxes. Understanding the reasons behind main mostly black boxes. Understanding the reasons behind which is fundamental if one plans to take action based on a prediction, or when choosing whether to deploy a new model Such understanding also provides insights into the model which can be used to transform an untrustworthy model or prediction into a trustworthy one \qquad terpretable and faithful manner, by learning an interpretable model locally around the prediction. We also propose vidual predictions and their explanations in a non-redundant way, framing the task as a submodular optimization prob- lem. We demonstrate the flexibility of these methods by explaining different models for text (e.g. random forests) and image classification (e.g. neural networks). We show the utility of explanations via novel experiments, both simulated trust: deciding if one should trust a prediction, choosing identifying why a classifier should not be trusted. 1. INTRODUCTION Machine learning is at the core of many recent advances in science and technology. Unfortunately, the important role of humans is an oft-overlooked aspect in the field. Whether humans are directly using machine learning classifiers as tools, or are deploying models within other products, a vital concern remains: if the users do not trust a model or a prediction they will not use it. It is important to differentiate between two different (but related) definitions of trust: (1) trusting a \qquad reasonable ways if deployed. Both are directly impacted by \qquad \qquad KDD 2016 San Francisco, CA, USA ISBN $978-1-4503-4232-21600$. 51500

[^1]
This week's reading

SHAP
A Unified Approach to Interpreting Model Predictions

$$
\begin{aligned}
& \text { Scot M. Lundberg } \\
& \text { Paul G. Allen School of Computer Science } \\
& \text { University of Washington } \\
& \text { Seatle, WA 98ilos } \\
& \text { slund10cs. washington. edu }
\end{aligned}
$$

Paul G. Allen School of Computer Science
Department of Genome Sciences
University of Washington
Seattle, WA 98105 suinleeबcs. washington.edu

Abstract
Understanding why a model makes a certain prediction can be as crucial as the
Nediction's accuracy in many applications. However, the highest accuracy for large prediction s accuracy in many applisations. However, the highest accuracy for large arpret, such as ensemble or deep learning models, creating a tension between proposed to help users interpret the predictions of complex models, but it is often unclear how these methods are related and when one method is preferable over
nother. To address this problem, we present a unified framework for interpeting another. To address this problem, we present a unified framework for interpereting
predictions, SHAP (SHapley Additive exPlanations). SHAP assigns each feature In importance value for a paptricular predicition. IIs onvel components include: (1) the identification of a new class of additive feature importance measures, and (2)
theoretical results showing there is a unique solution in this class with a set of esirable properties. The new class unifies six existing methods, notable because everal recent methods in the class lack the proposed desirable properties. Based compuational performance and/or better consistency with human intuition than
per previous approaches.

1 Introduction

The ability to correctly interpret a prediction model's output is extremely important. It engender appropriate user trust, provides insight into how a model may be improved, and supports understandin of the process being modeled. In some applications, simple models (e.g. . Ininear models) are oftei
preferred for their ease of interpreation, even if they may be less accurat the preferred for their ease of interpretation, even if they may be less accurate than complex ones
However, he growing availability of big data has increased the benefitis of using complex models, so bringing to the forefront the trade-off between accuracy and interpretability of a model's output. A
wide variety of different methods have been recently proposed to address this issue $[5,8,9,3,4,1$. wide variety of different methods have been recently proposed to address this issue $[5,8,9,3,4,1$
But an understanding of how these methods relate and when one method is preferable to another is But an undern.
still lacking.
Here, we present a novel unified approach to interpreting model predictions.' Our approach leads to
three potentially surprising results that bring clarity to the growing space of methods:

1. We introduce the perspective of viewing any explanation of a model's prediction as a model itself. methods (Section 2), which unifies six current methods.
'https://github.com/slundberg/shap
31s Confernec on Neural Unformation Processing Systems (NIPS 2017).Long Beach, CA US

ShaRP
ShaRP: Explaining Rankings with Shapley Values

Venetia Pliatsika ${ }^{1}$, Joao Fonseca ${ }^{-2}$, Tilun Wang ${ }^{1}$ and Julia Stoyanovich New York University, NY, USA NOVA University, Lisbon, Portugal
${ }^{1}\left\{\right.$ venetia, tw2221, stoyanovich\} @ nyu.edu, ${ }^{2}$ jpfonseca@novaims.unl.pt

1 Introduction
Algorithmic rankers are broadly used to support decision-
making in critical domains, including critical domains such as hiring and employment, school and college admissions credit and lending, and college ranking, Because of the im

 and Preferences), a framework that explains ste contribution
of fercurces to

 the top-4 coincides with that of p d, s., sigififying that essay has
highest imporance for f, despite carrying the lowest weight. There are two types of rankers: score-based and learn In score-based ranking, a given set of candidates is sorted nula, suche, which a s sum typically computed using a simpute values with non-negatic

 To motivate our work, let us start with score-based rankers
that are offen preferered in critacal domins bsaded on the
 than complex learning-t-rank models Berger et all [2019]
In fact, score-based rankers are a prominent example of the

 in a college edadissions scenario, is based on a (normative)
prioriu nonestanding ow what makes for a good candidate. And yet, despite being syntactically "interpretable", scoredesigner of the ranker or the decision- -maker who uses it may be unate to accurately predict and understand their output
(inler
simple exampl) Molmar [2020). We now illustrate this with a simple example.
Example 1. Consider a dataset Dof college applicants in
Fizure 1, wilh scoring features Dopa sat and
 essay and $g=1.0 \times$ essay induce very simiar rankings
$r_{0, j}$ and r D.,., with the same top 4 items appearing in the

What are we explaining?

How does a system work?
How well does a system work?
What does a system do?
Why was I__ (mis-diagnosed / not offered a discount/denied credit) ?

Are a system's decisions discriminatory?
Are a system's decisions illegal?

But isn't accuracy sufficient?

How is accuracy measured? FPR / FNR / ...
Accuracy for whom: over-all or in subpopulations?

Accuracy over which data?
There is never 100\% accuracy. Mistakes for what reason?

Facebook's real-name policy

Shane Creepingbear is a member of the Kiowa Tribe of Oklahoma

Shane Creepingbear @Creepingbear • Oct 13, 2014
October 13, 2014
Hey yall today I was kicked off of Facebook for having a fake name.
Happy Columbus Day great job \#facebook \#goodtiming \#racist
\#ColumbusDay
\equiv TIME $\quad \uparrow\urcorner \downarrow \quad$ Facebook Thinks Some Native American Names Are Inauthentic
BY JOSH SANBURN FEBRUARY 14, 2015
February 14, 2015
If you're Native American, Facebook might think your name is fake.

The social network has a history of telling its users that the names they're attempting to use aren't real. Drag queens and overseas human rights activists, for example, have experienced error messages and problems logging in in the past.

The latest flap involves Native Americans, including Dana Lone Hill, who is Lakota. Lone Hill recently wrote in a blog post that Facebook told her her name was not "authentic" when she attempted to log in.

QII: Auditing black-box models

[Datta, Sen \& Zick, 2016]

Transparency report: Mr. X

How much influence do individual features have a given classifier's decision about an individual?

[Datta, Sen \& Zick, 2016]

Transparency report: Mr. Y

Explanations for superficially similar individuals can be different

income
images by Anupam Datta
[Datta, Sen \& Zick, 2016]

QII: Quantitative Input Influence

Goal: determine how much influence an input, or a set of inputs, has on a classification outcome for an individual or a group

Transparency queries / quantities of interest

Individual: Which inputs have the most influence in my credit denial?
Group: Which inputs have the most influence on credit decisions for women?
Disparity: Which inputs influence men getting more positive outcomes than women?

QII: Quantitative Input Influence

For a quantity of influence Q and an input feature i, the Qll of i on Q is the difference in Q when i is changed via an intervention.

Key ideas
intervene on an input feature, measure its importance
aggregate feature importance using its Shapley value

images by Anupam Datta
[Datta, Sen \& Zick, 2016]

Running example

Consider lending decisions by a bank, based on gender, age, education, and income. Does gender influence lending decisions?

- Observe that 20% of women receive the positive classification.
- To check whether gender impacts decisions, take the input dataset and replace the value of gender in each input profile by drawing it from the uniform distribution: set gender in 50% of the inputs to female and 50% to male.
- If we still observe that 20% of female profiles are positively classified after the intervention - we conclude that gender does not influence lending decisions.
- Do a similar test for other features, one at a time. This is known as Unary QII

Unary QII

images by Anupam Datta
For a quantity of influence Q and an input feature i, the Qll of i on Q is the difference in Q when i is changed via an intervention.

replace features with random values from the population, examine the distribution over outcomes

Unary QII

For a quantity of influence Q and an input feature i, the QII of i on Q is the difference in Q when i is changed via an intervention.

intervening on one feature at a time will not have any effect
images by Anupam Datta
[Datta, Sen \& Zick, 2016]

Marginal QII

- Not all features are equally important within a set.
- Marginal QII: Influence of age and income over only income.

$$
\iota(\{\text { age, income }\})-\iota(\text { income }\})
$$

Need to aggregate Marginal Qll across all sets

- But age is a part of many sets!

$$
\begin{array}{cc}
\bullet \text { But age is a part ot many sets! } & \iota(\{\text { age, gender, job }\})-\iota(\{\text { gender, job }\}) \\
\iota(\{\text { age }\})-\iota(\{ \}) & \iota(\{\text { age, gender }\})-\iota(\{\text { gender }\})
\end{array}
$$

Aggregating influence across sets

Idea: Use game theory methods: voting systems, revenue division
"In voting systems with multiple agents with differing weights, voting power often does not directly correspond to the weights of the agents. For example, the US presidential election can roughly be modeled as a cooperative game where each state is an agent. The weight of a state is the number of electors in that state (i.e., the number of votes it brings to the presidential candidate who wins that state). Although states like California and Texas have higher weight, swing states like Pennsylvania and Ohio tend to have higher power in determining the outcome of elections."

This paper uses the Shapley value as the aggregation mechanism

$$
\varphi_{i}(N, v)=\mathbb{E}_{\sigma}\left[m_{i}(\sigma)\right]=\frac{1}{n!} \sum_{\sigma \in \Pi(N)} m_{i}(\sigma)
$$

[Datta, Sen \& Zick, 2016]

Aggregating influence across sets

Idea: Use game theory methods: voting systems, revenue division

This paper uses the Shapley value as the aggregation mechanism

$$
\varphi_{i}(N, v)=\mathbb{E}_{\sigma}\left[m_{i}(\sigma)\right]=\frac{1}{n!} \sum_{\sigma \in \Pi(N)} m_{i}(\sigma)
$$

$v: 2^{N} \rightarrow \mathbb{R}$ influence of a set of features \boldsymbol{S} on the outcome
$\varphi_{i}(N, v) \quad$ influence of feature \boldsymbol{i}, given the set of features $\boldsymbol{N}=\{\mathbf{1}, \ldots, \boldsymbol{n}\}$
$\sigma \in \Pi(N) \quad$ a permutation over the features in set \boldsymbol{N}
$m_{i}(\sigma) \quad$ payoff corresponding to this permutation

Qll summary

- A principled (and beautiful!) framework for determining the influence of a feature, or a set of features, on a decision
- Works for black-box models, with the assumption that the full set of inputs is available
- Accounts for correlations between features
- "Parametrizes" on what quantity we want to set (QII), how we intervene, how we aggregate the influence of a feature across sets
- Experiments in the paper: interesting results
- Also in the paper: a discussion of transparency under differential privacy

ShaRP: Shapley Values for Rankings \& Preferences

name	gpa	sat	essay	f	g
Bob	4	5	5	4.6	5
Cal	4	5	5	4.6	5
Dia	5	4	4	4.4	4
Eli	4	5	3	4.2	3
Fay	5	4	3	4.2	3
Kat	5	4	2	4.0	2
Leo	4	4	3	3.8	3
Osi	3	3	3	3.0	3

(a)

$r_{\mathcal{D}, \boldsymbol{f}}$
Bob
Cal
Dia
Eli
Fay
Kat
Leo
Osi

(b)

(c)

Figure 1: (a) Dataset \mathcal{D} of college applicants, scored on gpa, sat, and essay. (b) Ranking $r_{\mathcal{D}, f}$ of \mathcal{D} on $f=0.4 \times g p a+0.4 \times s a t+$ $0.2 \times$ essay; the highlighted top- 4 candidates will be interviewed and potentially admitted. (c) Ranking $r_{\mathcal{D}, g}$ on $g=1.0 \times$ essay; the top- 4 coincides with that of $r_{\mathcal{D}, f}$, signifying that essay has the highest importance for f, despite carrying the lowest weight.
[Pliatsika, Fonseca, Wang, Stoyanovich, 2024]

Computation of feature importance

```
Algorithm 1 Feature importance for per-item outcomes
Input: Dataset \(\mathcal{D}\), item \(\mathbf{v}\), number of samples \(m, \iota()\)
Output: Shapley values \(\phi(\mathbf{v})\) of \(\mathbf{v}\) 's features
    1: \(\phi(\mathbf{v})=\langle 0, \ldots, 0\rangle\)
    2: for \(i \in \mathcal{A}\) do
    3: \(\quad\) for \(\mathcal{S} \subseteq \mathcal{A} \backslash\{i\}\) do
    4: \(\quad \mathbf{U} \sim \mathcal{D} \backslash \mathbf{v}, m\)
    5: \(\quad \mathbf{U}_{1}=\mathbf{v}_{\mathcal{A} \backslash \mathcal{S}} \mathbf{U}_{\mathcal{S}}\)
    6: \(\quad \mathbf{U}_{2}=\mathbf{v}_{\mathcal{A} \backslash\{\mathcal{S} \cup i\}} \mathbf{U}_{\mathcal{S} \cup i}\)
    7: \(\quad \phi_{i_{S}}(\mathbf{v})=\iota\left(\mathbf{U}_{1}, \mathbf{U}_{2}\right)\)
    8: \(\quad \phi_{i}(\mathbf{v})=\phi_{i}(\mathbf{v})+\frac{1}{d} \frac{1}{\binom{d-1}{|S|}} \phi_{i_{S}}(\mathbf{v})\)
    9: end for
10: end for
11: return \(\phi(\mathbf{v})\)
```


Computing a specific Qol (the iota function)

```
Algorithm \(2 \iota_{\text {Rank }}\)
Input: Dataset \(\mathcal{D}\), scoring function \(f\), item \(\mathbf{v}, \mathbf{U}_{1}, \mathbf{U}_{2}\), number
of samples \(m\)
Output: \(\phi\)
    1: \(\phi=0\)
    2: for \(i \in\{1, \ldots, m\}\) do
    3: \(\quad \mathbf{u}_{1}=\mathbf{U}_{1}(i)\)
    4: \(\quad \mathbf{u}_{2}=\mathbf{U}_{2}(i)\)
    5: \(\quad \mathcal{D}_{1}=\mathcal{D} \backslash\{\mathbf{v}\} \cup\left\{\mathbf{u}_{1}\right\}\)
    6: \(\quad \mathcal{D}_{2}=\mathcal{D} \backslash\{\mathbf{v}\} \cup\left\{\mathbf{u}_{2}\right\}\)
    7: \(\quad \phi=\phi+r_{\mathcal{D}_{2}, f}^{-1}\left(\mathbf{u}_{2}\right)-r_{\mathcal{D}_{1}, f}^{-1}\left(\mathbf{u}_{1}\right)\)
    8: end for
    9: return \(\phi /\left|\mathbf{U}_{1}\right|\)
```


Example dataset：CS Ranking

CSRankings：Computer Science Rankings

CSRankings is a metrics－based ranking of top computer science institutions around the world．Click on a triangle（ $\boldsymbol{\wedge}$ ）to expand areas or institutions．Click on a name to go to a laculty member＇s home page．Click on a chart icon（the ild atter a name or institution）to see the distribution of their publication areas as a bar chart $~$ ．Click on a Google CSStipendRankings．org．Do you find CSrankings useful？Sponsor CSrankings on GitHub．
Rank institutions in USA \checkmark by publications from $2014 \backsim$ to $2024 \sim$
All Areas［off I on］
［ofion］
－Artificial intelligence
Machine learning
Natural language processing
The Web \＆information retrieval

Systems［off｜on］

－Computer architecture \square
Computer networks
Computer security
Databases
Design automation
High－performance computing
Mobile computing
Measurement \＆perf．analysis
Operating systems
Programming languages
Software engineering
Theory［off｜on］
Algorithms \＆complexity
Cryptography
－Logic \＆verification
interdisciplinary Areas［off｜on］
－Comp．bio \＆bioinformatics
Computer graphics
Computer science education
Economics \＆computation
Human－computer interaction
Human－com
Robotics
－Visualization∇

\＃	Institution	Count Faculy	
1	－Carnegie Mellon University 国 lid	19.2	173
2	－Univ．of Illinois at Urbana－Champaign 国 lill	13.9	2
3	－Univ．of California－San Diego 国 lit	12.3	128
4	－Georgia Institute of Technology 国 lut	11.0	143
5	－Massachusetts Institute of Technology 国 ild	10.2	92
5	－Univ．of California－Berkeley 国 Lut	10.2	95
7	－University of Michigan 国 ill	10.1	100
7	－University of Washington 国 lit	10.1	81
9	－Stanford University	9.6	68
10	－Cornell University	9.3	83
11	－University of Maryland－College Park	8.6	88
12	－Northeastern University 国 ill	7.7	87
13	－Purdue University	7.1	74
14	－University of Wisconsin－Madison 国 ill	7.0	70
15	－University of Texas at Austin	6.9	50
16	－University of Pennsylvania	6.7	74
17	－Columbia University	6.6	59
18	－Princeton University	6.4	59
19	－New York University 国 ill	6.2	72
20	－Univ．of California－Los Angeles 国 ill	5.5	43
20	－University of Massachusetts Amherst －$_{\text {dil }}$	5.5	60
20	－University of Southern California	5.5	61

Different reasons for similar ranked outcomes

(a) South Carolina, ranked 101

(b) Wayne State, ranked 102

Figure 4: Feature contributions to rank QoI for two departments.

Comparing Georgia Tech, Stanford \& UMich

Institution	AI	Systems	Theory	Inter.	Rank
Georgia Tech	28.5	7.8	6.9	10.2	5
Stanford	36.7	5.4	13.3	11.5	6
UMich	30.4	9.0	9.3	5.9	7

(b) Feature values and rank of three highly ranked departments: Georgia Tech, Stanford, and UMich.

(c) Pairwise QoI explaining that Georgia Tech ranks higher than Stanford because of its relative strength in Systems.

(d) Pairwise QoI explaining that Stanford ranks higher than UMich despite Stanford's relative weakness in Systems.

Figure 3: Feature importance for the top- k QoI for CS Rankings, with further analysis of 3 departments using Pairwise QoI.
[Pliatsika, Fonseca, Wang, Stoyanovich, 2024]

Aggregates feature importance by rank stratum

(a) Feature contribution to the top- k QoI, for $k=10 \%$. Systems is the most important feature, followed by Interdisciplinary and AI, while Theory is least important.

Figure 3: Feature importance for the top- k QoI for CS Rankings, with further analysis of 3 departments using Pairwise QoI.
[Pliatsika, Fonseca, Wang, Stoyanovich, 2024]

SHAP: Shapley Additive Explanations

A unifying framework for interpreting predictions with "additive feature attribution methods", including LIME and QII, for local explanations

A Unified Approach to Interpreting Model Predictions

Scott Lundberg, Su-In Lee
University of Washington

NIPS 2017

```
>>(D)0:04/2:29
```


https://www.youtube.com/watch?v=wjd1G5bu_TY

SHAP: Shapley Additive Explanations

A unifying framework for interpreting predictions with "additive feature attribution methods", including LIME and QII, for local explanations

- The best explanation of a simple model is the model itself: the explanation is both accurate and interpretable. For complex models we must use a simpler explanation model - an interpretable approximation of the original model.

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

model being explained

$$
g \in G, \operatorname{dom}(g)=\{0,1\}^{d^{\prime}}
$$

explanation model from a class
of interpretable models, over a set of simplified features

- Additive feature attribution methods have an explanation model that is a linear function of binary variables

Additive feature attribution methods

Additive feature attribution methods have an explanation model that is a linear function of binary variables (simplified features)

$$
g\left(x^{\prime}\right)=\phi_{0}+\sum_{i=1}^{d^{\prime}} \phi_{i} x_{i}^{\prime} \quad \text { where } x^{\prime} \in\{0,1\}^{d^{\prime}}, \text { and } \phi_{i} \in \mathbb{R}
$$

Three properties guarantee a single unique solution - a unique allocation of Shapley values to each feature

1. Local accuracy: $\boldsymbol{g}\left(\boldsymbol{x}^{\prime}\right)$ matches the original model $\boldsymbol{f}(\boldsymbol{x})$ when \boldsymbol{x}^{\prime} is the simplified input corresponding to x.
2. Missingness: if $\boldsymbol{x}_{\boldsymbol{i}}$ — the ith feature of simplified input \mathbf{x}^{\prime} - is missing, then it has no attributable impact for \boldsymbol{x}
3. Consistency (monotonicity): if toggling off feature imakes a bigger (or the same) difference in model $\boldsymbol{f}^{\prime}(\boldsymbol{x})$ than in model $\boldsymbol{f}(\boldsymbol{x})$, then the weight (attribution) of \boldsymbol{i} should be no lower in $\boldsymbol{f}^{\prime}(\boldsymbol{x})$ than in $\boldsymbol{f}(\boldsymbol{x})$

Additive feature attribution methods

SHAP

https://github.com/slundberg/shap

LIME: Local Interpretable Model-Agnostic Explanations

Why should I trust you?

Explaining the predictions of any classifier

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin
Check out our paper, and open source project at https://github.com/marcotcr/lime
https://www.youtube.com/watch?v=hUnRCxnydCc

LIME: Explanations based on features

- LIME (Local Interpretable Model-Agnostic Explanations): to help users trust a prediction, explain individual predictions
- SP-LIME: to help users trust a model, select a set of representative instances for which to generate explanations

features in green ("sneeze", "headache") support the prediction ("Flu"), while features in red ("no fatigue") are evidence against the prediction what if patient id appears in green in the list? - an example of "data leakage"

LIME: Local explanations of classifiers

Three must-haves for a good explanation

Interpretable

- Humans can easily interpret reasoning

Definitely not interpretable

Potentially interpretable

Explanations based on features

Three must-haves for a good explanation

Interpretable

Faithful

- Humans can easily interpret reasoning
- Describes how this model actually behaves

Explanations based on features

Three must-haves for a good explanation

Interpretable

Faithful

Model agnostic

- Humans can easily interpret reasoning
- Describes how this model actually behaves
- Can be used for any ML model

Can explain this mess :

slide by Marco Tulio Ribeiro, KDD 2016

Key idea: Interpretable representation

"The overall goal of LIME is to identify an interpretable model over the interpretable representation that is locally faithful to the classier."

- LIME relies on a distinction between features and interpretable data representations; examples:
- In text classification features are word embeddings; an interpretable representation is a vector indicating the presence of absence of a word
- In image classification features encoded in a tensor with three color channels per pixel; an interpretable representation is a binary vector indicating the presence or absence of a contiguous patch of similar pixels
- To summarize: we may have some \boldsymbol{d} features and \boldsymbol{d}^{\prime} 'interpretable components; interpretable models will act over domain $\{\mathbf{0}, \mathbf{1}\}^{\mathrm{d}^{\prime}}$ - denoting the presence of absence of each of d' interpretable components

Fidelity-interpretability trade-off

"The overall goal of LIME is to identify an interpretable model over the interpretable representation that is locally faithful to the classier."
$f: \mathbb{R}^{d} \rightarrow \mathbb{R}$
classifier model being explained
 interpretable models
$\Omega(g)$

measure of complexity of explanation \boldsymbol{g}
$f(x)$ denotes the probability that \boldsymbol{x} belongs to some class
π_{x} is a proximity measure relative to \boldsymbol{x}
we make no assumptions about \boldsymbol{f} to remain modelagnostic: draw samples weighted by π_{x}
$\begin{aligned} & \text { explanation } \begin{array}{c}\text { measures how unf } \\ \text { to } f \text { in the locality }\end{array} \\ & \xi(x)=\operatorname{argmin}_{g \in G} L\left(f, g, \pi_{x}\right)+\Omega(g)\end{aligned}$

Fidelity-interpretability trade-off

"The overall goal of LIME is to identify an interpretable model over the interpretable representation that is locally faithful to the classier."

1. sample points around +

based on a slide by Marco Tulio Ribeiro, KDD 2016

Fidelity-interpretability trade-off

"The overall goal of LIME is to identify an interpretable model over the interpretable representation that is locally faithful to the classier."

1. sample points around +
2. use complex model \boldsymbol{f} to assign class labels

based on a slide by Marco Tulio Ribeiro, KDD 2016

Fidelity-interpretability trade-off

"The overall goal of LIME is to identify an interpretable model over the interpretable representation that is locally faithful to the classier."

1. sample points around +
2. use complex model \boldsymbol{f} to assign class labels
3. weigh samples according to π_{x}
4. learn simple model \boldsymbol{g} according to samples

Example: text classification with SVMs

94\% accuracy, yet we shouldn't trust this classifier!
[Ribeiro, Singh \& Guestrin, 2016]

When accuracy is not enough

Explaining Google's Inception NN

probabilities of the top-3 classes and the super-pixels predicting each

Electric guitar - incorrect but reasonable, similar fretboard

Acoustic guitar

[Ribeiro, Singh \& Guestrin, 2016]
r/ai

When accuracy is not enough

Only 1 mistake!!!
Do you trust this model?
How does it distinguish between huskies and wolves?
slide by Marco Tulio Ribeiro, KDD 2016
[Ribeiro, Singh \& Guestrin, 2016]

When accuracy is not enough

Explanations for neural network prediction

We've built a great snow detector... :
slide by Marco Tulio Ribeiro, KDD 2016
[Ribeiro, Singh \& Guestrin, 2016]

LIME: Recap

Why should I trust you?

Explaining the predictions of any classifier

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin
Check out our paper, and open source project at https://github.com/marcotcr/lime
https://www.youtube.com/watch?v=hUnRCxnydCc

[^0]: ## ALERT: Applicants for this position DO NOT have the option to
 ALERT: Applicants for this position DO NOT have the option to selectively decline use of Al analysis for any of their personal

 data or to review and challenge the results of such analysis.[^1]: how much the human understand
 opposed to seexing it as a black bo
 Spposed to seecing it as a black box.
 Deetrmining trust in individual predictions is san inportant

 Our main contributions are summarized as follows
 ${ }^{\text {it locally }}$
 - model" problem, via submodular optimization.

 2. THE CASE FOR EXPLANATIONS

