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Interpretability for different stakeholders

What are we explaining”
To Whom are we explaining?

Why are we explaining?




Staples discounts

THE WALL STREET JOURNAL.

December 2012
WHAT THEY KNOW
Websites Vary Prices, Deals Based on Users’
Information It was the same Swingline stapler, on the
By Jennifer Valentino-DeVries, Jeremy Singer- same Staples.com website. But for Kim Wamble, the price
Vine and Ashkan Soltani was $15.79, while the price on Trude Frizzell's screen, just

December 24,2012 a few miles away, was $14.29.

WHAT PRICE WOULD YOU SEE? A key difference: where Staples seemed to think they were

located.

1.1,1
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>
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- A Wall Street Journal investigation found that the Staples

( Inc. website displays different prices to people after

Q 1 estimating their locations. More than that, Staples

appeared to consider the person's distance from a rival
/- brick-and-mortar store, either OfficeMax Inc. or Office

* Depot Inc. If rival stores were within 20 miles or so,

Staples.com usually showed a discounted price.

https://www.wsj.com/articles/SB10001424127887323777204578189391813881534



https://www.wsj.com/articles/SB10001424127887323777204578189391813881534
https://www.wsj.com/market-data/quotes/SPLS
https://www.wsj.com/market-data/quotes/OMX
https://www.wsj.com/market-data/quotes/ODP
https://www.wsj.com/market-data/quotes/ODP
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What are we explaining?

To Whom are we explaining?

WHAT PRICE WOULD YOU SEE? A key difference:

located.

Why are we explaining?

A Wall Street Journal investigation
Inc. website displays different prices to people after
estimating their locations. More than that, Staples
appeared to consider the person's distance from a rival
brick-and-mortar store, either OfficeMax Inc. or Office
Depot Inc. If rival stores were within 20 miles or so,
Staples.com usually showed a discounted price.
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Online job ads

theguardian

Samuel Gibbs

Wednesday 8 July 2015 11.29 BST

Automated testing and analysis of company’s advertising system reveals male
job seekers are shown far more adverts for high-paying executive jobs

One experiment showed that Google displayed adverts for a career coaching service for executive jobs 1,852
times to the male group and only 318 times to the female group. Photograph: Alamy

July 2015

Women less likely to be shown ads for
high-paid jobs on Google, study shows

The AdFisher tool simulated job seekers that did
not differ in browsing behavior, preferences or
demographic characteristics, except in gender.

One experiment showed that Google displayed
ads for a career coaching service for “$200k+"
executive jobs 1,852 times to the male group
and only 318 times to the female group.
Another experiment, in July 2014, showed a
similar trend but was not statistically significant.

https://www.theguardian.com/technology/2015/jul/08/women-less-likely-ads-high-paid-jobs-google-study



http://fusion.kinja.com/google-showed-women-ads-for-lower-paying-jobs-1793848970
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What are we explaining?

executive jof To Whom are we explaining?
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Why are we explaining?
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Instant Checkmate

Go /8[(’— LATANYA SWEENEY B February 2013

DOB: Oct 27, 1959 (53 years old)

Personal
l Name, aliases, birthdate, phone Criminal History

numbers, etc

This section contains possible citation, arrest, and crimi
While our database does contain hundreds of millions of
what information they will and will not release.

Location
Detailed address history and
related data, maps, etc.

What are we explaining?

We share with you as much information as we possibly d
eee pDolated Persons that Latanya Sweeney has never been arrested; it simp
"’ Known family members, business in the data that is available to us.

elc,

associates, roommates,

To Whom are we explaining”?

Marriage / Divorce
Marriage and divorce records on
fil

Name County and State

pe Criminal History No matching arrest records were found.
Arrest records, speeding tickets,
mugshots, etc.

Why are we explaining?

Licenses

Sex Offenders
Sex offenders living near Latanya
Sweeney’s primary location.

Racism s Poisoning Online Ad Delivery,
Says Harvard Professor

Google searches involving black-sounding names are
more likely to serve up ads suggestive of a criminal record

https://www.technologyreview.com/s/510646/racism-is- than whits-sounding names, says computer scientist

poisoning-online-ad-delivery-says-harvard-professor/




Nutritional labels

SIDE-BY-SIDE COMPARISON

- = P
Nutrition Facts| [Nutrition Facts
Serving Size 2/3 cup (559) - .
Servings Per Container About 8 8 servings per container
Serving size 2/3 cup (559)
Amount Por Sorving = —]
Calories 230 Calories from Fat 72 Amount per serving
~om v | | Calories 230
Total Fat 8g 12%
Saturated Fat 1g 5% % Daily Value
Trans Fat 0g Total Fat 89 10%
Cholesterol Omg 0% Saturated Fat 19 5%
Sodium 160mg 7% Trans Fat Og
Total Carbohydrate 37g 12% Cholesterol Omg 0%
Dietary Fiber 4g 16% Sodium 160mg 7%
Sugars 1g Total Carbohydrate 37g 13%
Protein 3g Dietary Fiber 4g 14%
=S
Vitamin A 10% Total Sugars 129
Vitamin C 8% Ir;:::udes 10g Added Sugars 20%
Caleium | | —
Iron 40% Vitamin D 2mcg 10%
* Porcont Dally Values are based on a 2,000 calorie diet
Your daily value may be higher or lower depending on Calclum 260mg 20%
your calonie needS.  Cjories: 2,000 2,500 Iron 8mg 45%
Total Fat U tha 6! " "
L poadven 2095" ;‘;g Potassium 235mg 6%
Cholesterol Lessthan 300mg 300mg
Sodium Lessthan 2400mg  2400mg * The % Daily Valuo (DV) tolis you how much a nutrient in
Total Carbohydrate 3009 3759 a serving of food contributes 10 a dally diet. 2,000 calories
Dietary Fiber 259 309 @ day Is used for general nutrition advice.

Note: The images above are meant for illustrative purposes to show how the new Nutrition
Facts label might look compared to the old label. Both labels represent fictional products.
When the original hypothetical label was developed in 2014 (the image on the left-hand
side), added sugars was not yet proposed so the “original” label shows 1g of sugar as an
example. The image created for the “new” label (shown on the right-hand side) lists 12g
total sugar and 10g added sugar to give an example of how added sugars would be broken
out with a % Daily Value.

An example of the old nutrition labels, left, and the new one. The new nutrition labels will display
calories and serving size more prominently, and include added sugars for the first time
PHOTO: FOOD AND DRUG ADMINISTRATION/ASSOCIATED PRESS

https://www.wsj.com/articles/why-the-
labels-on-your-food-are-changing-or-

Security & Privacy Overview o
Smart Device Co.

Smart Video Doorbell NS200

Firmware version: 2.5.1 - updated on: 11/12/2020
The device was manufactured in: China

=

E ity updk Automatic - Available until at least 1/1/2022 e

Security Accesscontrol  Password - Factory default - User changeable, Multi-factor

Mechanisms. authentication, Multiple user accounts are allowed
p
Visual Audio Physiological || Location
Sensortype = Camera Microphone
Providingdevice || Providing device
Purpose | fncions functions, Research
Data  Datastored ondevice | Identfied No device storage
Practicés  pata stored on cloud | Idenified idanifiad-Opicn 1o
Sharedwith | M | e
Soldto | Notdisclosed Not sold

Other collected data Motion, Account info, Payment info, Contact info, Device setup info, Device tech
info, Device usage info

Privacy policy www.NS200.smartdeviceco.comy/policy

Detailed Security & Privacy Label:

wwwi.iotsecurityprivacy.org/labels

[EpL2N]

More
Information

PUBLIC
DOMAIN

CMU lot Security and Privacy Label CISPL1.0 iotsecurityprivacy.org

https://www.wsj.com/articles/
imagine-a-nutrition-labelfor-

What are we explaining?
To Whom are we explaining?
Why are we explaining?

ACCOUNTANT

Acme Partners

Qualifications:  BSinaccounting, GPA >3.0, Knowledge of financial and
accounting systems and applications

An Al program could be used to review and analyze the

Personal data i S R

% be Biishizad: applicant’s personal data online, including LinkedIn
y " profile, social media accounts and credit score.

Additional Al-assisted personality scoring

assessment:

ALERT: Applicants for this position DO NOT have the option to

selectively decline use of Al analysis for any of their personal
data or to review and challenge the results of such analysis.

https://www.wsj.com/articles/hiring-job-
candidates-ai-11632244313



https://www.wsj.com/articles/hiring-job-candidates-ai-11632244313
https://www.wsj.com/articles/hiring-job-candidates-ai-11632244313

explaining black box
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This week’s reading

2016 IEEE

Symposium on Security and Privacy

Algorithmic Transparency via
Quantitative Input Influence:

Theory and Experiments with Learning Systems

Anupam Datta Shayak Sen Yair Zick
Camegie Mellon University, Pittsburgh, USA
{danupam, shayaks, yairzick} @cmu.edu

Abstract—Algorithmic systems that employ machine learning
1 an increasing role in making substantive decisions in modern
wckl\. ranging from online personalizatio urance and
credit decisions to predictive policing. But their de; n-making
processes are often opaque—it is difficult to explain why a certain
decision was made. We develop a formal foundation to improve
Il\e transparency of such decision-making systems. Specifically,

a family of ( itative Input Influence (QII)
measures that capture the degree of influence ul inputs on outputs
of systems. These measures provide a foundation for the design
of transparency reports that accompany system decisions (e.g.,
explaining a specific credit decision) and for testing tools useful
for internal and external oversight (e.g., to detect algorithmic
discrimination).

Distinctively, our causal QI measures carefully account for
corrclated inputs while measuring influence. They support a
general class of transparency queries and can, in particular,
cxplain decisions about individuals (e.g., a loan decision) and
groups (e.g., disparate impact based on gender). Finally, since
single inputs may not always have high influence, the QII
measures also quantify the joint influence of a set of inputs
(e.g., age and income) on outcomes (e.g. loan decisions) and the
marginal influence of individual inputs within such a set (e.g.,
income). Since a single input may be part of multiple influential
sets, lh\- average nmrgmul influence of the input is computed
using p such as the Shapley value,
previously uppllrd lu lm-murl- influence in voting. Further, since
reports could ise privacy, we explore the
transparency-privacy tradeofl and prove that a number of useful
transparency reports can be made differentially private with very
little addition of noise.

Our empirical validation with standard machine learning algo-
rithms demonstrates that QII measures are a useful transparency
mechanism when black box access to the learning system is
available. In particular, they provide better explanations than
standard associative measures for a host of scenarios that we
consider. Further, we show that in the situations we consider,
QII is efficiently approximable and can be made differentially
private while preserving accuracy.

I. INTRODUCTION

Algorithmic decision-making systems that employ machine

ming and related statistical methods are ubiquitous. They
drive decisions in sectors as diverse as Web services, health-
care, education, insurance, law enforcement and defense [1],
121, [3), [4]. [5]. Yet their decision-making processes are often
opaque. Algorithmic transparency is an emerging research arca
aimed at explaining decisions made by algorithmic systems.

© 2016, Anupam Datta, Under license to IEEE
DOI 10.1109/SP.2016.42

598

The call for a
tensity as public and private sector organizations increas-
ingly use large volumes of personal information and complex
data analytics systems for decision-making [6]. Algorithmic
transparency provides several benefits. First, it is essential
to enable identification of harms, such as discrimination,
orithmic decision-making (e.g., high interest
credit cards targeted to protected groups) and to hold entities
in the decision-making chain accountable for such practices.
This form of accountability can incentivize entities to adopt
appropriate corrective measures. Second, transparency can
help detect errors in input data which resulted in an adverse
decision ( incorrect information in a user’s profile because
of which insurance or credit was denied). Such errors can then
be corrected. Third, by explaining why adverse decision
was made, it can provide guidance on how to reverse it (e.g.,
by identifying a specific factor in the credit profile that needs
to be improved).

gorithmic transparency has grown in in-

introduced by a

Our Goal. While the importance of algorithmic transparency
is recognized, work on computational foundations for this
research area has been limited. This paper initiates progress
in that direction by focusing on a concrete algorithmic trans-
parency question:

How can we measure the influence of inputs (or features) on
decisions made by an algorithmic system about individuals or
groups of individuals?

Our goal is to inform the design of transparency reports,
which include answers to transparency queries of this form.
To be concrete, let us consider a predictive policing system
that forecasts future criminal activity based on historical data
individuals high on the list receive visits from the police.
An individual who receives a visit from the police may seek
transparency report that provides answers to personalized
transparency queries about the influence of various inputs
(or features), such as race or recent criminal history, on the
system's decision. An oversight agency or the public may
desire a transparency report that provides answers to aggregare
transparency queries, such as the influence of sensitive inputs
(e.g.. gender, race) on the system’s decisions concerning the
entire population or about systematic differences in decisions

@ computer
Pocrety

LIME

“Why Should I Trust You?”
Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro Sameer Singh Carlos Guestrin
University of Washington University of Washington University of Washington
Seattle, WA 98105, USA Seattle, WA 98105, USA Seattle, WA 98105, USA
marcotcr@cs.uw.edu sameer@cs.uw.edu guestrin@cs.uw.edu
ABSTRACT how much the human understands a model’s behaviour, as

Despite widespread adoption, machine learning models re-
main mostly black boxes. Understanding the reasons behind
predictions is, however, quite important in assessing trust,
which is fundamental if one plans to take action based on a
prediction, or when choosing whether to deploy a new model

Such understanding also provides insights into the model,

which can be used to transform an untrustworthy model or

prediction into a trustworthy one.

In this work, we propose LIME, a novel explanation tech-
nique that explains the predictions of any classifier in an in-
terpretable and faithful manner, by learning an interpretable
model locally around the prediction. We also propose a
method to explain models by presenting representative indi-
vidual predictions and their explanations in a no
way, framing

«dundant

the task as a submodular optimization prob-
lem. We demonstrate the flexibility of these methods by

explaining different models for text (e.g. random forests)
and image classification (e.g. neural networks). We show the
utility of explanations via novel experiments, both simulated
and with human sut
trust: deciding if one should trust a prediction, choosing
between models, improving an untrustworthy classifier, and

jects, on various scenarios that require

identifying why a classifier should not be trusted

1. INTRODUCTION

Machine learning is at the core of many recent advances in
»gy. Unfortunately, the important role
rlooked aspect in the field. Whether
humans are directly using machine learning classifiers as tools,
or are deploving models within other products, a vital concern
remains: if the users do not trust a model or a prediction,

science and techne
of humans is an oft-ov

they will not use it, It is important to differentiate between
two different (but related) definitions of trust: (1) trusting a
prediction,

whether a user trusts an individual prediction
sufficiently to take some action based on it. and (2) trusting
a model, i.e. whether the user trusts a model to behave in
reasonable ways if deploved. Both are directly impacted by

Permission 1o make digital or hard copies of all or p

of this work for persomal o
e provided that copies are mot made or distributed
4 that copées bear this notice and the full citation
his for composents of this work owned by others than the
authoe(s) must be honored. Abstraxcting with credit is permitied. To copy otherwise. oe
republish, to post on servers of to redistribene Lo lists, reguires prior specific permission

permissions @ ac

on the first page, Copyr

andlor a fee. Request permissions fron
KDD 2016 San Francisco, CA, USA

(® 2016 Copyright held by the ownerfauthor(s). Publication
BN 978-1-4503.4232- V1608, SIS00

DOL: http:/ /dx.doi.org/10.1145 /2039672.203

1O

ghis licensed to ACM.

opposed to seeing it as a black box.
Determining trust in individual predictions is an important
problem when the model is used for decision making. When

using machine learning for medical diagnosis [6] or terrorism

detection, for example, predictions cannot be acted upon on

blind faith, as the consequences may be catastrophic

Apart from trusting individual predictions, ther
need to evaluate the model as a whole before deploying it “in
the wild
that the model will perform well on real-world data, according

is also a

To make this decision, users need to be confident

to the metrics of interest. Currently, models are evaluated

using accuracy metrics on an available validation dataset.
However, real-world data is often significantly different, and
further, the

product’s goal. Inspecting individual predictions and their

valuation metric may not be indicative of the

explanations is a worthwhile solution, in addition to such

metries, In this case, it is important to aid users by suggesting

which instances to inspect, especially for large datasets

In this paper, we propose providing
vidual predictions as a solution to the “trusting a prediction”
problem, and selectin

xplanations for indi-

nultiple such predictions (and expla-

nations) as a solution to the “trusting the model” problem.
Our main contributions are summarized as follows

o LIME. an algorithm that can ¢
classifier or regressor in a faithful way, by approximating

xplain the predictions of any

it locally with an interpretable model

SP-LIME

instances with explanations to address the “trusting the

a method that selects a set of representative

model” problem, via submodular optimization

Comprehensive evaluation with simulated and human sub-
jects, wh

we measure the impact of explanations on
trust and associated tasks. In our experiments, non-experts
using LIME are able to pick which classifier from a pair
gene:
to greatly improve an untrustworthy classifier trained on

wlizes better in the real world. Further, they are able

20 newsgroups, by doing feature engineering using LIME.
We also show how understanding the predictions of a neu-

ral network on images helps practitioners know when and

why they should not trust a model

2. THE CASE FOR EXPLANATIONS
By “expla:
visual u:!lll.u ts that provide qualitative understanding of the

ng a prediction”, we mean presenting textual or

relationship between the instance’s components (e.g. words

in text, patches in an image) and the model’s prediction, !




SHAP

This week’s reading

A Unified Approach to Interpreting Model

Predictions
Scott M. Lundberg Su-In Lee
Paul G. Allen School of Computer Science Paul G. Allen School of Computer Science
University of Washington Department of Genome Sciences
Seattle, WA 98105 University of Washington
slund1@cs.washington.edu Seattle, WA 98105

suinlee@cs.washington.edu

Abstract

Understanding why a model makes a certain prediction can be as crucial as the
prediction’s accuracy in many applications. However, the highest accuracy for large
modern datasets is often achieved by complex models that even experts struggle to
interpret, such as ensemble or deep learning models, creating a tension between
accuracy and interpretability. In response, various methods have recently been
proposed to help users interpret the predictions of complex models, but it is often
unclear how these methods are related and when one method is preferable over
another. To address this problem, we present a unified framework for interpreting
predictions, SHAP (SHapley Additive exPlanations). SHAP assigns each feature
an importance value for a particular prediction. Its novel components include: (1)
the identification of a new class of additive feature importance measures, and (2)
theoretical results showing there is a unique solution in this class with a set of
desirable properties. The new class unifies six existing methods, notable because
several recent methods in the class lack the proposed desirable properties. Based
on insights from this unification, we present new methods that show improved
computational performance and/or better consistency with human intuition than
previous approaches.

1 Introduction

The ability to correctly interpret a prediction model’s output is extremely important. It engenders
appropriate user trust, provides insight into how a model may be improved, and supports understanding
of the process being modeled. In some applications, simple models (e.g., linear models) are often

preferred for their ease of interpretation, even if they may be less accurate than complex ones.

However, the growing availability of big data has increased the benefits of using complex models, so
bringing to the forefront the trade-off between accuracy and interpretability of a model’s output. A

wide variety of different methods have been recently proposed to address this issue [5, 8,9, 3,4, 1].

But an understanding of how these methods relate and when one method is preferable to another is
still lacking.

Here, we present a novel unified approach to interpreting model predictions.' Our approach leads to
three potentially surprising results that bring clarity to the growing space of methods:

1. We introduce the perspective of viewing any explanation of a model’s prediction as a model itself,

which we term the explanation model. This lets us define the class of additive feature attribution
methods (Section 2), which unifies six current methods.

'https://github.com/slundberg/shap

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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ShaRP: Explaining Rankings with Shapley Values

Venetia Pliatsika' , Joao Fonseca*?, Tilun Wang' and Julia Stoyanovich'
!New York University, NY, USA ?NOVA University, Lisbon, Portugal
'{venetia, tw2221, stoyanovich} @nyu.edu, ?jpfonseca@novaims.unl.pt

Abstract

Algorithmic decisions in critical domains such as
hiring, college admissions, and lending are often
based on rankings. Because of the impact these de-
cisions have on individuals, organizations, and pop-
ulation groups, there is a need to understand them:
to know whether the decisions are abiding by the
law, to help individuals improve their rankings, and
to design better ranking procedures.

In this paper, we present ShaRP (Shapley for Rank-
ings and Preferences), a framework that explains
the contributions of features to different aspects of
a ranked outcome, and is based on Shapley values.
Using ShaRP. we show that even when the scoring
function used by an algorithmic ranker is known
and linear, the weight of each feature does not cor-
respond to its Shapley value contribution. The con-
tributions instead depend on the feature distribu-
tions, and on the subtle local interactions between
the scoring features. ShaRP builds on the Quanti-
tative Input Influence framework, and can compute
the contributions of features for multiple Quantities
of Interest, including score, rank, pair-wise prefer-
ence, and top-k. Because it relies on black-box ac-
cess to the ranker, ShaRP can be used to explain
both score-based and learned ranking models. We
Its of an extensive experimental va
tion of ShaRP using real and synthetic datasets,
showcasing its usefulness for qualitative analysis.

1 Introduction

Algorithmic rankers are broadly used to support decision-
making in critical domains, including critical domains such
as hiring and employment, school and college admissions,
credit and lending, and college ranking. Because of the im-
pact rankers have on individuals, organizations, and popu-
lation groups, there is a need to understand them: to know
whether the decisions are abiding by the law, to help individu-
als improve their rankings, and to design better ranking proce-
dures. In this paper, we present ShaRP (Shapley for Rankings
and Preferences), a framework that explains the contributions
of features to different aspects of a ranked outcome.

~
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Figure 1: (a) Dataset D of college applicants, scored on gpa, sat,
and essay. (b) Ranking rp s of Don f = 0.4 x gpa + 0.4 x sat +
0.2 x essay: the highlighted top-4 candidates will be interviewed
and potentiall; mitted. (¢) Ranking rp g on g = 1.0 x essay:
the top-4 coincides with that of rp ¢
highest importance for f, despite carry

ignifying that essay has the
2 the lowest weight.

There are two types of rankers: score-based and learned.
In score-based ranking, a given set of candidates
on a score, which is typically computed using a simple for-
mula, such as a sum of attribute values with non-negative
weights Zehlike er al. [2022a]. In supervised learning-to-
rank, a preference-enriched set of candidates is used to train a
model that predicts rankings of unseen candidates Li [2014].
To motivate our work, let us start with score-based rankers
that are often preferred in critical domains, based on the
premise that they are easier to design, understand, and justify
than complex learning-to-rank models Berger er al. [2019].
In fact, score-based rankers are a prominent example of the
so-called “interpretable models™ Rudin [2019]: the scoring
function, such as ¥; = 0.4 x gpa + 0.4 x sat + 0.2 x essay
in a college admiss io, is based on a (normative) a
priori understanding of what makes for a good candidate.

And yet, d being syntactically “interpretable”, score-

as not be “explainable,” in the sense that the
ner of the ranker or the decision-maker who uses it, may
be unable to accurately predict and understand their output
(Miller [2019]; Molnar [2020]). We now illustrate this with a
simple example.

Example 1. Consider a dataset D of college applicants in
Figure I, with scoring features gpa, sat, and essay. Very
different scoring functions f = 0.4 x gpa+ 0.4 x sat 4 0.2 x
essay and g = 1.0 x essay induce very similar rankings
rp.s and rp g, with the same top-4 items appearing in the




What are we explaining?

How does a system work??
How well does a system work?
What does a system do?

Why was | __ (mis-diagnosed / not offered
a discount / denied credit) ?

Are a system'’s decisions discriminatory?

Are a system’s decisions illegal?




But isn’t accuracy sufficient?

How is accuracy measured? FPR/FNR/ ...

' Accuracy for whom: over-all or in sub-
populations?

Accuracy over which data”

There is never 100% accuracy. Mistakes for
what reason?

S
e

CONCLUSION
A\

EXPERIMENT




Facebook’s real-name policy

&~  Tweet Shane Creepingbear is a member of the Kiowa Tribe of Oklahoma

3 Shane Creepingbear @Creepingbear - Oct 13, 2014 v October 13, 2014

' Hey yall today | was kicked off of Facebook for having a fake name.
Happy Columbus Day great job #facebook #goodtiming #racist
#ColumbusDay

= TIME L7 Facebook Thinks Some Native American Names
Are Inauthentic

BY JOSH SANBURN FEBRUARY 14, 2015

February 14, 2015

If you’re Native American, Facebook might think your name is fake.

The social network has a history of telling its users that the names they’re
attempting to use aren’t real. Drag queens and overseas human rights activists,

for example, have experienced error messages and problems logging in in the
past.

The latest flap involves Native Americans, including Dana Lone Hill, who is
Lakota. Lone Hill recently wrote in a blog post that Facebook told her her name
was not “authentic” when she attempted to log in.




QII: Auditing black-box models
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User data Credit Decisions
Classifier

Credit
Classifier

[Datta, Sen & Zick, 2016]




Transparency report: Mr. X

How much influence do individual features have a
given classifier's decision about an individual?

0.5
: . | : . ‘ . ; . . . : : Age
~ O4EBRT jpemms lemoosaosns sl aono s pn sne Fmomo e :
q>f : : : : : : : : : : : : Workclass Private
— : 5 : : : ! : : : ; : : Education 11t
Q 0.3 S R (T R RS e s AR e R
.(CU : : ; : : : : : : : ; ; Marital Status Never married
@ 0.2} ------ ------ ----- ------ ------ Occupation Craft repair
$ ' l | ' ' . l Relationship to household income Child
g RS N i A St S St e e Ak MR R Race Asian-Pac
) : : . : : : : : : ! : : Island
] | ' ' ' ! ' ' ' ' ' '
3 O-O Z ' --'u T ' T :7-- : e : i : T B . ; R : o : B Gender Male
O 1 : : ; : ; ;
C ; Capital gain $14344
O 0.1 feioecobeen e
—_ : Capital loss $0
O -2 ----- ------ ------ ----- ------ ------ & Work hours per week 40
Country Vietnam
—-0.3 - ‘ ' ?
Q& & 2 102 - & S A & ‘00 Q R
\(50 Q}\b \l_bfo L Q\‘?’e N & vO » & & & :
@ ¢ & LK & income
\2\0 Q/b @

iImages by Anupam Datta

[Datta, Sen & Zick, 2016]




Transparency report: Mr. Y

Explanations for superficially similar
individuals can be different

0.4

: : : . : : : : ' : Age 27
. 0.3 R e Workolass privato
> ' ‘ : : : ' : ' : : : :
9 (.2 [Em——— IS S IS Lo (O N L Lo Education Preschool
© ; : : : : ; ; ; : : ; : Marital Status Married
C 01| b o e b
5 e e
QE) 0.0 s g - Relationship to household income  Other Relative
O 0.1 [ e A S A S Race e
= : : : : : : : : : : : : Gender Male
AR A A B R | (Captalgan  sa30
c - - - - D
LU NN SN N SIS SO SUNG HONS S  S Capital loss 50
O Work hours per week 24
—0.4 i i e s e e S L R
: : : : Country Mexico
-0.5 i 1 i i
A c,,®+ QOQ \,0(96 (’}-\\Q @ 6&\ & P vO}e @e)“ & &\00
Y < ¢ & O ¥ x&P ) N 3
W & Lo &S .
R ¥ & X & o & income
@ 0\5 Q/b

iImages by Anupam Datta

[Datta, Sen & Zick, 2016]




QIl: Quantitative Input Influence

Goal: determine how much influence an input, or a set of inputs,
has on a classification outcome for an individual or a group

Transparency queries / quantities of interest
Individual: Which inputs have the most influence in my credit denial?
Group: Which inputs have the most influence on credit decisions for women?

Disparity: Which inputs influence men getting more positive outcomes than
women?

[Datta, Sen & Zick, 2016]




QIl: Quantitative Input Influence

For a quantity of influence Q and an input feature i, the Qll of ion Q
s the difference in Q when jis changed via an intervention.

Key ideas 1?2
intervene on an input feature, 0o,
measure its importance User data Credit Decisions

Classifier

aggregate feature importance
using its Shapley value

images by Anupam Datta

[Datta, Sen & Zick, 2016]




Running example

Consider lending decisions by a bank, based on gender, age,
education, and income. Does gender influence lending decisions?

e Observe that 20% of women receive the positive classification.

® [0 check whether gender impacts decisions, take the input dataset and
replace the value of gender in each input profile by drawing it from the unitorm
distribution: set gender in 50% of the inputs to female and 50% to male.

o [f we still observe that 20% of female profiles are positively classified after the
intervention - we conclude that gender does not influence lending decisions.

e Do a similar test for other features, one at a time. This is known as Unary Qll

[Datta, Sen & Zick, 2016]




Unary QI

iImages by Anupam Datta

For a quantity of influence Q and an input feature i, the Qll of fon Q
is the difference in Q when iis changed via an intervention.

Classifier —
(uses On|y DeC|S|On

income)

replace features with random values from the population, examine
the distribution over outcomes

[Datta, Sen & Zick, 2016]




Unary QI

For a quantity of influence Q and an input feature i, the Qll of fon Q
is the difference in Q when iis changed via an intervention.
high-income

Individuals

Classifier Decision

Only accept old,

Low

Income

intervening on one feature at a time will not have any effect

iImages by Anupam Datta

[Datta, Sen & Zick, 2016]




Marginal Qll

* Not all features are equally important within a set.

» Marginal QII: Influence of age and income over only income.
t({age, income}) — t({income

Need to aggregate Marginal Qll across all sets
 But age Is a part of many sets! ( _ )
B t({age, gender, job}) — «({gender, job}
_ _ ({age}) — () (({age, gender}) — (({gender})
t({age, job}) — «({job}) t({age, gender, job}) — «({gender, job})

t({age, gender, income}) — t({gender, income}

(({age, gender, income, ]og}) — t({gender, income, job}!

[Datta, Sen & Zick, 2016]




Aggregating influence across sets

Idea: Use game theory methods: voting systems, revenue division

“In voting systems with multiple agents with differing weights, voting power often
does not directly correspond to the weights of the agents. For example, the US
presidential election can roughly be modeled as a cooperative game where
each state is an agent. The weight of a state is the number of electors in that
state (i.e., the number of votes it brings to the presidential candidate who wins
that state). Although states like California and Texas have higher weight, swing
states like Pennsylvania and Ohio tend to have higher power in determining the
outcome of elections.”

This paper uses the Shapley value as the aggregation mechanism

0 (N,v)=E_[m(0)]= Z m (o)

GEH(N)

[Datta, Sen & Zick, 2016]




Aggregating influence across sets

Idea: Use game theory methods: voting systems, revenue division

This paper uses the Shapley value as the aggregation mechanism

0 (N,v)=E_[m(0)]= Z m (o)

O'EH(N)

V. ZN — R influence of a set of features S on the outcome

qDl.(N,v) influence of feature I, given the set of features N = {1,..., n/
o ell(N) a permutation over the features in set N
m.(O) payoff corresponding to this permutation

[Datta, Sen & Zick, 2016]




Qll summary

e A principled (and beautiful!) framework for determining the influence
of a feature, or a set of features, on a decision

e \Norks for black-box models, with the assumption that the full set of
inputs is available

e Accounts for correlations between features

e “‘Parametrizes” on what quantity we want to set (Qll), how we
iIntervene, how we aggregate the intluence of a feature across sets

e Experiments in the paper: interesting results

¢ Also in the paper: a discussion of transparency under differential
privacy

[Datta, Sen & Zick, 2016]




ShaRP: Shapley Values for Rankings & Preferences

name || gpa |sat [essay || f |g TD,f TD,g
Bob || 4 | 5 5 4.6 |5 Bob Bob
Cal 4 |5 5 465 Cal Cal
Dia 5 | 4 4 4.4 | 4 Dia Dia
Eli 4 |5 3 4213 Eli Eli
Fay || 5 | 4 3 4213 Fay Fay
Kat 5 | 4 2 4.0 (2 Kat Leo
Leo 4 | 4 3 383 Leo Osi
Osi 3 13 3 30(3 081 Kat

(a) (b) (c)

Figure 1: (a) Dataset D of college applicants, scored on gpa, sat,
and essay. (b) Ranking 7p s of Don f = 0.4 X gpa + 0.4 X sat +
0.2 X essay; the highlighted top-4 candidates will be interviewed
and potentially admitted. (c) Ranking rp 4 on g = 1.0 X essay;
the top-4 coincides with that of rp_ r, signifying that essay has the
highest importance for f, despite carrying the lowest weight.

[Pliatsika, Fonseca, Wang, Stoyanovich, 2024]




Computation of feature importance

Algorithm 1 Feature importance for per-item outcomes

Input: Dataset D, item v, number of samples m, ¢()
Output: Shapley values ¢(v) of v’s features
1: ¢(v) =(0,...,0)
2: for: € Ado
for S C A\ {i} do
U~ D\v,m
Ui =vasUs
Uz = va\{suiyUsui
¢is (V) — L(U17U2)
¢i(v) = ¢i(v) + é@@s (V)
9: end for
10: end for
11: return ¢(v)

ol S e e

[Pliatsika, Fonseca, Wang, Stoyanovich, 2024]




Computing a specific Qol (the iota function)

Algorithm 2 1p,,.x

Input: Dataset D, scoring function f, item v, Uy, Uy, number
of samples m
Output: ¢
Iz oy =i
2: fori e {1,...,m} do
: U] = U1 (Z)
Uy = U2 (Z)
=D\ {v}U{u}

3
4
5
6: =D\ {v} U {w}
7
8
9

Cb ¢+7“Dz f(u2) Tpll,f(ul)
. end for

. return ¢/|Uq|

[Pliatsika, Fonseca, Wang, Stoyanovich, 2024]




Example dataset: CS Ranking

CSRankings: Computer Science Rankings

CSRankings is a metrics-based ranking of top computer science institutions around the world. Click on a triangle (») to expand areas or institutions. Click on a name togoto a
faculty member's home page. Click on a chart icon (the yly after a name or institution) to see the distribution of their publication areas as a | bar chart v|. Click on a Google
Scholar icon (53) to see publications, and click on the DBLP logo (») to go to a DBLP entry. Applying to grad school? Read this first. For info on grad stipends, check out
CSStipendRankings.org. Do you find CSrankings useful? Sponsor CSrankings on GitHub.

Rank institutions in [ USA v| by publications from [ 2014 | to 2024 v |
All Areas [offl on] # Institution Count Faculty
1 » Carnegie Mellon University & iy 19.2 173
Al [off | on]
PP : 2 » Univ. of lllinois at Urbana-Champaign = 43  13.9 112
P Artificial intelligence
» Computer vision 3 P Univ. of California - San Diego % i 12.3 128
» Machine learning 4 » Georgia Institute of Technology m i 1.0 143
> Natural language processing - <
e T et 5 P Massachusetts Institute of Technology =i yu  10.2 92
5 Univ. of California - Berkeley & i, 10.2 95
VR LOVT:S: 0] 7 > University of Michigan = i 101 100
» Computer archite v
= & 7  » University of Washington & jlu 10.1 81
» Computer netw
» Computer security 9 » Stanford University =1 9.6 68
»D 10 » Cornell University =5 i, 9.3 83
»D ‘ v
> Er : 4 11 » University of Maryland - College Park &3 il 8.6 88
» Hi f puting 12 » Northeastern University &1 i 7.7 87
>\ 13 » Purdue University g i 71 74
>\ me erf. ana ST e
- £
>0 : 14 » University of Wisconsin - Madison = i 7.0 70
» P n ] 15 » University of Texas at Austin & jlu 6.9 50
> S asbil 16 » University of Pennsylvania =1 i, 6.7 74
Theory [off | on] 17 » Columbia University =5 y, 6.6 59
» Algorithms & complexity 18 P Princeton University & iy 6.4 59
» Cryptography 19 » New York University 3 il 6.2 72
» Logic & verification . . .
20 P Univ. of California - Los Angeles =1 i 55 43
Interdisciplinary Areas [off | on] 20 » University of Massachusetts Amherst ®5 iy 5.5 60
» Comp. bio & bicinformatics 20 » University of Southern California mg i 5.5 61
» Computer graphics
» Computer science education
» Economics & computation
» Human-computer interaction
» Robotics
» Visualization

https://csrankings.org/




Different reasons for similar ranked outcomes

Systems (N SN  Theory
Al Al

Inter. +1.99 Inter.
Theory <1.81 Systems —0.58
4 —2 0 2 4 6 =5 —4 -3 —2 —1 0

(a) South Carolina, ranked 101 (b) Wayne State, ranked 102

Figure 4: Feature contributions to rank Qol for two departments.

[Pliatsika, Fonseca, Wang, Stoyanovich, 2024]



Comparing Georgia Tech, Stanford & UMich

Institution Al | Systems | Theory | Inter. || Rank
Georgia Tech |[28.5 7.8 6.9 10.2 5
Stanford 36.7| 5.4 13.3 | 11.5 6
UMich 304 9.0 9.3 59 7

(b) Feature values and rank of three highly ranked depart-
ments: Georgia Tech, Stanford, and UMich.

v
g 5 g S
S S
Q Q
p &y KeMppe0t ypiet- i SY K0ty et

(c) Pairwise Qol explaining that  (d) Pairwise Qol explaining
Georgia Tech ranks higher than  that Stanford ranks higher than
Stanford because of its relative =~ UMich despite Stanford’s rela-
strength in Systems. tive weakness in Systems.

Figure 3: Feature importance for the top-k£ Qol for CS Rankings,
with further analysis of 3 departments using Pairwise Qol.

[Pliatsika, Fonseca, Wang, Stoyanovich, 2024]




Aggregates feature importance by rank stratum

Al ] Systems 0 Theory 1 Inter.

o
n
| -
——

k

&
=)

+ -
L+ e g wre e e e e e

<10% 10- 20- 30- 40- 50- 60- 70- 80- 90-
20% 30% 40% 50% 60% 70% 80% 90% 100%
rank stratum

contribution to top-k
-
[\

(a) Feature contribution to the top-k Qol, for k¥ = 10%. Sys-
tems 1s the most important feature, followed by Interdisci-
plinary and Al, while Theory is least important.

Figure 3: Feature importance for the top-k£ Qol for CS Rankings,
with further analysis of 3 departments using Pairwise Qol.

[Pliatsika, Fonseca, Wang, Stoyanovich, 2024]




SHAP: Shapley Additive Explanations

A unifying framework for interpreting predictions with “additive feature
attribution methods”, including LIME and Qll, for local explanations

A Unified Approach to

Interpreting Model Predictions

Scott Lundberg, Su-In Lee
J' Vel “. X ’f ..‘v/ 15T if‘,'f )

NIPS 2017

https://www.youtube.com/watch?v=wjd1G5bu_TY

[Lundberg & Lee, 2017] r al


https://www.youtube.com/watch?v=wjd1G5bu_TY

SHAP: Shapley Additive Explanations

A unifying framework for interpreting predictions with “additive feature
attribution methods”, including LIME and Qll, for local explanations

e The best explanation of a simple model is the model itself: the explanation
IS both accurate and interpretable. For complex models we must use a
simpler explanation model — an interpretable approximation of the original
model.

= ={0,1}¢
f:Rd%R g C_},dom(g) 10,1}
explanation model from a class
of interpretable models, over a

set of simplified features

model being explained

e Additive feature attribution methods have an explanation model that is
a linear function of binary variables

[Lundberg & Lee, 2017]




Additive feature attribution methods

Additive feature attribution methods have an explanation model that is
a linear function of binary variables (simplified features)

"
g(x)=¢,+ EQ)Z.x'Z. where x'€{0,1}, and ¢.€R
i=1

Three properties guarantee a single unigue solution — a unique allocation of
Shapley values to each feature

1. Local accuracy: g(x’) matches the original model f(x) when x’is the simplified
input corresponding to x.

2. Missingness: if X’ — the ith feature of simplified input X>— is missing, then it
has no attributable impact for x

3. Consistency (monotonicity): if toggling off feature i makes a bigger (or the
same) difference in model F(x) than in model f(x), then the weight (attribution) of
i should be no lower in F(x) than in f(x)

[Lundberg & Lee, 2017]




Additive feature attribution methods

README.md

Output =04 Output=0.4
1
Age = 65 —» Age = 65
= Explanation m Sex=F
BP = 180 BP =180
BMI = 40 BMI = 40
Base rate = 0.1 Base rate = 0.1

https://github.com/slundberg/shap

[Lundberg & Lee, 2017]



https://github.com/slundberg/shap

LIME: Local Interpretable Model-Agnostic Explanations

Why should [ trust you £

Explaining the predictions of any classifier

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin

Check out our paper, and open source project at

https://github.com/marcoter/lime

https://www.youtube.com/watch?v=hUnRCxnydCc

[Ribeiro, Singh & Guestrin, 2016]



https://www.youtube.com/watch?v=hUnRCxnydCc

LIME: Explanations based on features

e LIME (Local Interpretable Model-Agnostic Explanations): to help users trust a
prediction, explain individual predictions

e SP-LIME: to help users trust a model, select a set of representative instances for
which to generate explanations

% . @
/ -l / sneeze | FU | Explainer STEREE
T W s ; (LIME)
\{d \r:lg;%':che > headache —
\ | no fatigue no fatigue
- age 7 Yy
Model Data and Prediction Explanation Human makes decision

features in green (“sneeze”, “headache”) support the prediction (“Flu”),
while features in red (“no fatigue”) are evidence against the prediction

what if patient id appears in green in the list? - an example of “data leakage”

[Ribeiro, Singh & Guestrin, 2016]



LIME: Local explanations of classifiers

Three must-haves for a good explanation

e Humans can easily interpret reasoning

"y l'  . | ) ' sexma? (3
Definitely Potentially
not interpretable interpretable

slide by Marco Tulio Ribeiro, KDD 2016

[Ribeiro, Singh & Guestrin, 2016]




Explanations based on features

Three must-haves for a good explanation

e Humans can easily interpret reasoning

e Describes how this model actually behaves

Y v Learned
model

\ Not faithful
to model

X slide by Marco Tulio Ribeiro, KDD 2016

[Ribeiro, Singh & Guestrin, 2016]




Explanations based on features

Three must-haves for a good explanation

e Humans can easily interpret reasoning
e Describes how this model actually behaves

e Can be used for any ML model
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[Ribeiro, Singh & Guestrin, 2016]




Key idea: Interpretable representation

“The overall goal of LIME is to identity an interpretable model over the
interpretable representation that is locally faithful to the classier.”

e |IME relies on a distinction between features and interpretable
data representations; examples:

e |n text classification features are word embeddings; an interpretable
representation is a vector indicating the presence of absence of a word

e |nimage classification features encoded in a tensor with three color
channels per pixel; an interpretable representation is a binary vector
indicating the presence or absence of a contiguous patch of similar
pixels

e To summarize: we may have some dfeatures and d’ interpretable
components; interpretable models will act over domain {0, 1}4" - denoting
the presence of absence of each of d’ interpretable components

[Ribeiro, Singh & Guestrin, 2016]




Fidelity-interpretability trade-off

“The overall goal of LIME is to identity an interpretable model over the
interpretable representation that is locally faithful to the classier.”

f:R">R f e G, dom(g)=1{0,11" €(g)
classifijr model explanation model measure of

some class of
Interpretable
models

f(x) denotes the probability that x belongs to some class

JC IS a proximity measure relative to x
X

being explained complexity of

explanation g

we make no assumptions explanation measures how unfaithful is g
about fto remain model- to fin the locality around x
agnostic: draw samples .

weighted by 7T E(x)= argmin__.L(f,gm )+£Ag)

[Ribeiro, Singh & Guestrin, 2016]




Fidelity-interpretability trade-off

“The overall goal of LIME is to identity an interpretable model over the
interpretable representation that is locally faithful to the classier.”

1. sample points around + 8@83 8%@ >
g %
835&_ 2333
xl ¥ %
%y

based on a slide by Marco Tulio Ribeiro, KDD 2016

[Ribeiro, Singh & Guestrin, 2016]




Fidelity-interpretability trade-off

“The overall goal of LIME is to identity an interpretable model over the
interpretable representation that is locally faithful to the classier.”

1. sample points around +

2. use complex model fto assign class labels

based on a slide by Marco Tulio Ribeiro, KDD 2016

[Ribeiro, Singh & Guestrin, 2016]




Fidelity-interpretability trade-off

“The overall goal of LIME is to identity an interpretable model over the
interpretable representation that is locally faithful to the classier.”

1. sample points around + . + 4
. + +
2. use complex model fto assign class labels + O
| | 4+, @
3. weigh samples according to 7Z'X ® . n
. . ®e® .
4. learn simple model g according to samples

based on a slide by Marco Tulio Ribeiro, KDD 2016

[Ribeiro, Singh & Guestrin, 2016]



Example: text classification with SVMs

Example #3 of 6

True Class: ‘ Atheism

Algorithm 1
Words that Al considers important:

GOD

mcan

anyone
this

Koresh

through

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp

Lines: 8

[Ribeiro, Singh & Guestrin, 2016]

Prediction correct:

Words that A2 considers important:

Posting
Host
Re

by

in

Document
From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp
Lines: 8

Predicted:

. Atheism

Prediction correct:

v




When accuracy Is not enough

Explaining Google’s Inception NN

probabilities of the top-3 classes
and the super-pixels predicting each

P(&) =0.21

Electric guitar - incorrect but Acoustic guitar Labrador
reasonable, similar fretboard

[Ribeiro, Singh & Guestrin, 2016]




When accuracy Is not enough

Train a neural network to predict V. husky

Predicted: Predicted: husky Predicted: Predicted: Predicted: husky Predicted:
True: True: husky True: True: husky True: husky True:

Only 1 mistake!!!

slide by Marco Tulio Ribeiro, KDD 2016

[Ribeiro, Singh & Guestrin, 2016]




When accuracy Is not enough

Explanations for neural network prediction

“
.,.", . p
"« :
: . . -
> B 3l -

Predicted: wo Predicted: husky Predicted: wo
lrue. True: husky Irue. ©

Predicted: wo Predicted: husky Predicted: wo
True. True: husky

slide by Marco Tulio Ribeiro, KDD 2016

[Ribeiro, Singh & Guestrin, 2016]




LIME: Recap

Why should [ trust you £

Explaining the predictions of any classifier

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin

Check out our paper, and open source project at

https://github.com/marcoter/lime

https://www.youtube.com/watch?v=hUnRCxnydCc

[Ribeiro, Singh & Guestrin, 2016]



https://www.youtube.com/watch?v=hUnRCxnydCc

