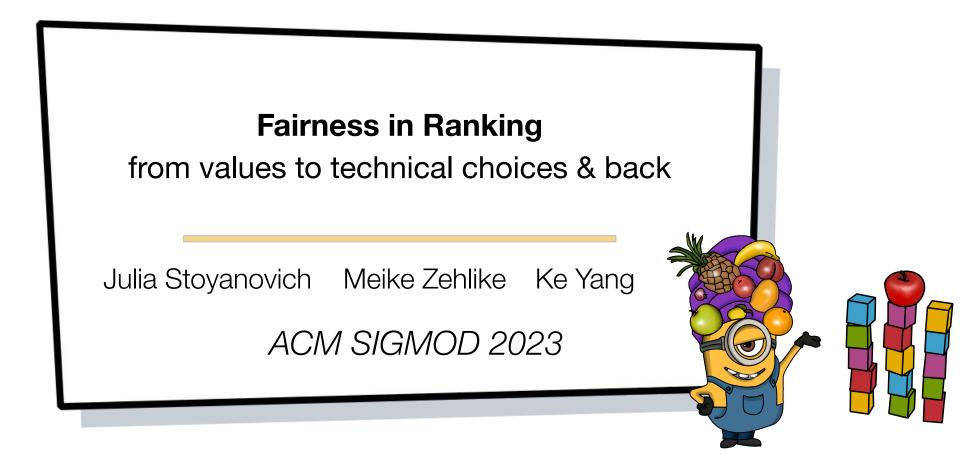
classification

score-based ranking

learning-to-rank

datasets conclusions



classification

score-based ranking

118

learning-to-rank

datasets conclusions

117

Fairness in Ranking, Part I: Score-Based Ranking

MEIKE ZEHLIKE, Humboldt University of Berlin, Max Planck Institute for Software Systems, and Zalando Research, Germany

KE YANG, New York University, NY, and University of Massachusetts, Amherst, MA, USA JULIA STOYANOVICH, New York University, NY, USA

In the past few years, there has been much work on incorporating fairness requirements into algorithmic rankers, with contributions coming from the data management, algorithmic, information retrieval, and recommender systems communities. In this survey, we give a systematic overview of this work, offering a broad perspective that connects formalizations and algorithmic approaches across sub-fields. An important contribution of our works is in developing a common narrative around the value frameworks that motivate specific fairness-enhancing interventions in ranking. This allows us to unify the presentation of mitigation objectives and of algorithmic techniques to the puet those objectives or identify trade-offs.

In this first part of this survey, we describe four classification frameworks for fairness-enhancing interventions, along which we relate the technical methods surveyed in this article, discuss evaluation datasets, and present technical work on fairness in soure-based ranking. In the second part of this survey, we present methods that incorporate fairness in supervised learning, and also give representative examples of recent work on fairness in recommendation and matchmaking systems. We also discuss evaluation frameworks for fair acore-based ranking and fair learning-to-rank, and draw a set of recommendations for the evaluation of fair ranking methods.

 $\label{eq:ccs} CCS \ Concepts: \bullet \ Information \ systems \to Data \ management \ systems; \bullet \ Social \ and \ professional \ topics \to Computing/technology \ policy;$

Additional Key Words and Phrases: Fairness, ranking, set selection, responsible data science, survey

ACM Reference format:

Meike Zehlike, Ke Yang, and Julia Stoyanovich. 2022. Fairness in Ranking, Part I: Score-Based Ranking. ACM Comput. Surv. 55, 6, Article 118 (December 2022), 36 pages. https://doi.org/10.1145/353370

1 INTRODUCTION

The research community recognizes several important normative dimensions of information technology including privacy, transparency, and fairness. In this survey, we focus on fairness—a broad and inherently interdisciplinary topic of which the social and philosophical foundations are still unresolved [17].

This research was supported in part by NSF Awardh No. 193464, 1916056, and 1922638. Authon'a didresse: M. Zehlike, Humbeld University of Berlin, Max Planck Institute for Software Systems, and Zalando Research, Germany, email: melcsethike@mpi-awaro, rg, K Yang, Nee Yerk University, NY, and University of Massachusetts. Amherst, MU, USA: email keys08@myu.edu.j. J Skynavorich, Wer Yerk University, NV, USA; email supporting year of this work for personal or classroom use is granted without fee provided that coepies are not made or distributed for profit to commercial advantage and that coepies ber this notice and the full classion on the first page. Copyrights for components of this work owned by other than ACM must be honored. Abstracting with receils a permitted: to copy otherwise, or republiclus, to post on severs or to redistribute to lists, requires 0.2022. Association for Computing Machinery.

https://doi.org/10.1145/3533379

ACM Computing Surveys, Vol. 55, No. 6, Article 118. Publication date: December 2022.

Fairness in Ranking, Part II: Learning-to-Rank and Recommender Systems

MEIKE ZEHLIKE, Humboldt University of Berlin, Max Planck Institute for Software Systems, and Zalando Research, Germany

KE YANG, New York University, NY, and University of Massachusetts, Amherst, MA, USA JULIA STOYANOVICH, New York University, NY, USA

In the past few years, there has been much work on incorporating fairness requirements into algorithmic rankers, with contributions coming from the data management, algorithmics, information retrieval, and reommender systems communities. In this survey, we give a systematic overview of this work, offering a broad perspective that connects formalizations and algorithmic approaches across subfields. An important contribution of our work is in developing a common narrative around the value frameworks that motivate specific fairness-enhancing interventions in ranking. This allows us to unify the presentation of mitigation objectives and of algorithmic techniques to the pneet those objectives or identify trade-offs.

In the first part of this survey, we describe four classification frameworks for fairness-enhancing interventions, along which we relate the technical methods surveyed in this article, discuss evaluation datasets, and present technical work on fairness in score-based ranking. In the second part of this survey, we present methods that incorporate fairness in supervised learning, and also give representative examples of recent work on fairness in recommendation and matchmaking systems. We also discuss evaluation frameworks for fair score-based ranking and fair learning-to-rank, and draw a set of recommendations for the evaluation of fair ranking methods.

 $\label{eq:ccs} CCS \ Concepts; \bullet \ \textbf{Information systems} \rightarrow \textbf{Data management systems}; \bullet \ \textbf{Social and professional topics} \rightarrow \textbf{Computing/technology policy};$

Additional Key Words and Phrases: Fairness, ranking, set selection, responsible data science, survey

ACM Reference format:

Meike Zehlike, Ke Yang, and Julia Stoyanovich. 2022. Fairness in Ranking, Part II: Learning-to-Rank and Recommender Systems. ACM Comput. Surv. 55, 6, Article 117 (December 2022), 41 pages. https://doi.org/10.1145/3533300

1 INTRODUCTION

This is the second part of a survey on fairness in ranking. In the first part, we argued for the importance of a systematic overview of work on incorporating fairness requirements into algorithmic rankers. Which specific fairness requirements a decision maker will assert depends on the

This research was supported in part by NSF Awards No. 1934464, 1916505, and 1922658.

Authors' addresses: M. Zehlike, Humboldt University of Berlin, Mare Planck Institute for Software Systems, and Zalando Research, Germany, meail: meikerchiker, Genjenis-wor, gt.; Kung, New Yech, University, N. and University of Massachusetts, Amherst, MA, USA, email: kyst030@nyu.edu; J. Styvanovich, New York University, NY, USA, email: stoyanovich/spyu.edu. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than A.C.M. must be homored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permistion and/or a face. Request permissions from permissions@acm.org. 9 2022. Association for Computing Machinery.

https://doi.org/10.1145/3533380

ACM Computing Surveys, Vol. 55, No. 6, Article 117. Publication date: December 2022.

https://dl.acm.org/doi/abs/10.1145/3533380

https://dl.acm.org/doi/10.1145/3533379

datasets conclusions

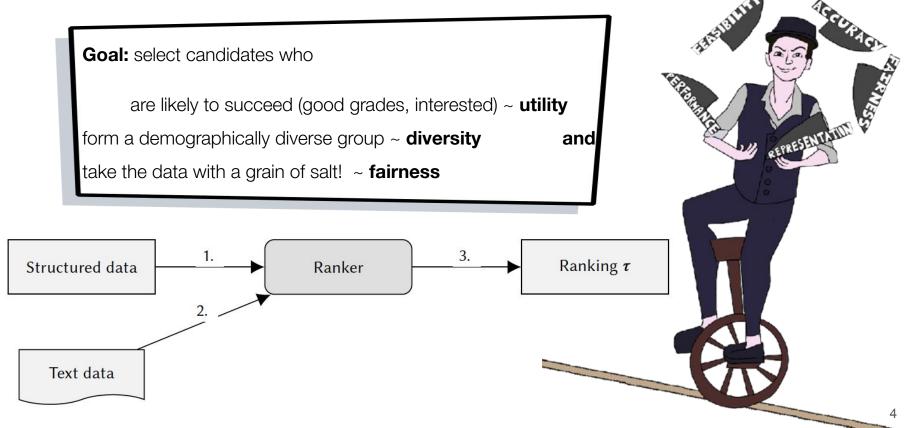
Example: college admissions

sensitive attributes				qualification attributes			scores						
	gender	race	X ₁	X ₂	X ₃	X4	Y ₁	Y ₂	Y ₃	τ,		τ2	$ au_3$
b	m	W	4	5	5	cs:0.9, art:0.2	14	9	1	b		С	k
С	m	а	5	3	4	math:0.9, cs:0.5	12	9	1	С		b	Ο
d	f	w	5	4	2	lit:0.8, math:0.8	11	4	6	d		е	f
е	m	w	3	3	4	math:0.8, econ:0.4	10	7	6	е	Ļ	0	 d
f	f	а	3	2	3	econ:0.9, math:0.8	8	5	8	f		1	е
k	f	b	2	2	3	lit:0.9, art:0.8	7	1	9	k	L	f	I
I.	m	b	1	1	4	lit:0.5, math:0.7	6	6	2	1		d	С
ο	f	w	1	1	2	econ:0.9, cs:0.8	4	7	8	0		k	b

3

datasets conclusions

Example: college admissions



learning-to-rank datasets

Ranking ranking everywhere

THE NEW YORKER

THE ORDER OF THINGS

What college rankings really tell us.

By Malcolm Gladwell

Rankings are not benign. They enshrine very particular **ideologies**, and, at a time when American higher education is facing a crisis of accessibility and affordability, we have adopted a **de-facto standard** of college quality that is uninterested in both of those factors. And why? Because a group of magazine analysts in an office building in Washington, D.C., decided twenty years ago to **value selectivity over efficacy**, to **use proxies** that scarcely relate to what they're meant to be proxies for, and to **pretend that they can compare** a large, diverse, low-cost land-grant university in rural Pennsylvania with a small, expensive, private Jewish university on two campuses in Manhattan.

datasets conclusions

Ranking ranking everywhere

theguardian July 2015

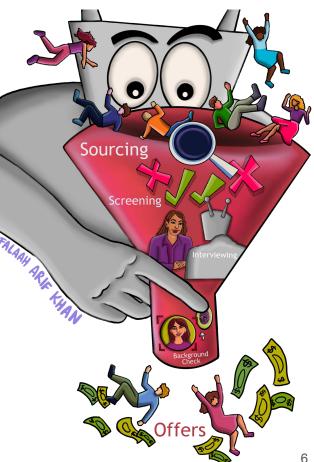
Women less likely to be shown ads for high-paid jobs on Google, study shows

Amazon scraps secret AI recruiting tool that showed bias against women

THE WALL STREET JOURNAL. September 2014

Are Workplace Personality Tests Fair?

Growing Use of Tests Sparks Scrutiny Amid Questions of Effectiveness and Workplace Discrimination



introduction classification score-based ranking learning-to-rank datasets conclusions Ranking as part of a pipeline ... FALAAH ARIF KHAN HH 00

H ARIF

KHAN

datasets conclusions

Roadmap

- We present a **classification framework**, unifying fair ranking methods in terms of group structure, type of bias, and mitigation objectives
- We map representative **score-based fair ranking** methods to this framework
- We map representative fair **learning-to-rank methods** to this framework
- We discuss existing **datasets & benchmarks** that have have been used in fair ranking research
- We **conclude** with concrete guidance for practitioners wishing to incorporate fairness objectives into algorithmic rankers

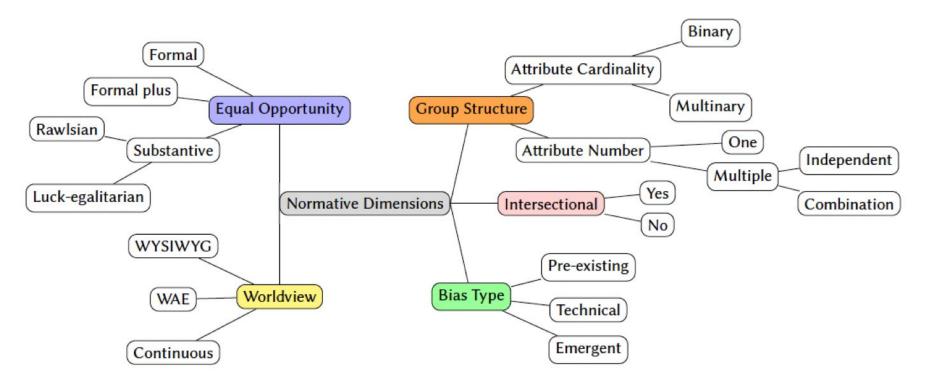
datasets conclusions

Roadmap

- We present a **classification framework**, unifying fair ranking methods in terms of group structure, type of bias, and mitigation objectives
- We map representative **score-based fair ranking** methods to this framework
- We map representative fair **learning-to-rank methods** to this framework
- We discuss existing **datasets & benchmarks** that have have been used in fair ranking research
- We **conclude** with concrete guidance for practitioners wishing to incorporate fairness objectives into algorithmic rankers

datasets conclusions

Classification of fair ranking methods



datasets conclusions

Group structure

Cardinality of sensitive attributes

- <u>binary</u> (e.g., binary gender, majority / minority ethnicity) vs. <u>multinary</u>
- if multinary, is only one group protected?

Number of attributes

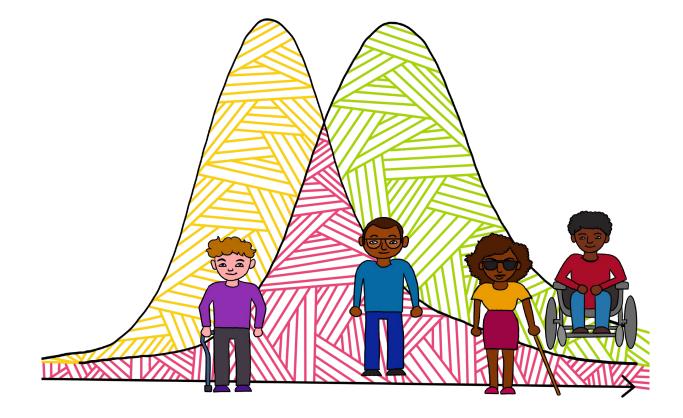
- <u>one</u> sensitive attribute at a time or <u>multiple</u> sensitive attributes simultaneously
- if multiple sensitive attributes, then <u>independently</u> (e.g., fairness for both women and Blacks) vs. in <u>combination</u> (e.g., fairness for Black women)

score-based ranking

learning-to-rank

datasets conclusions

Intersectional discrimination



classification

score-based ranking

learning-to-rank

datasets conclusions

Bias type

Pre-existing: independent of the technical system, has origins in society

Technical: introduced or exacerbated by the properties of the technical system

Emergent: arises due to the context of use

[Friedman & Nissenbaum, 1996]

classification

score-based ranking

learning-to-rank

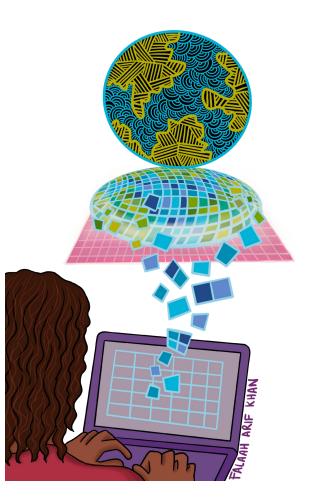
datasets conclusions

Bias type: Pre-existing

Pre-existing: independent of the technical system, has origins in society

Technical: introduced or exacerbated by the properties of the technical system

Emergent: arises due to the context of use



learning-to-rank

datasets conclusions

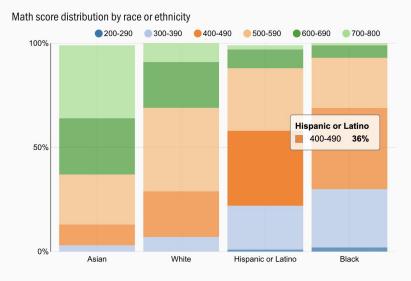
Bias type: Pre-existing

Pre-existing: independent of the technical system, has origins in society

Technical: introduced or exacerbated by the properties of the technical system

Emergent: arises due to the context of use

Wide race gaps in SAT math scores



College Board, "SAT Suite of Assessments Annual Report," 2020.

BROOKINGS

learning-to-rank

datasets con

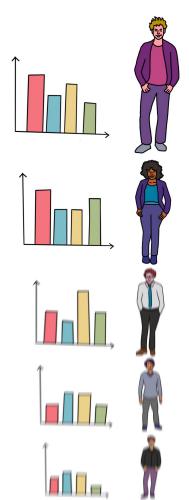
conclusions

Bias type: Technical

Pre-existing: independent of the technical system, has origins in society

Technical: introduced or exacerbated by the properties of the technical system

Emergent: arises due to the context of use



learning-to-rank

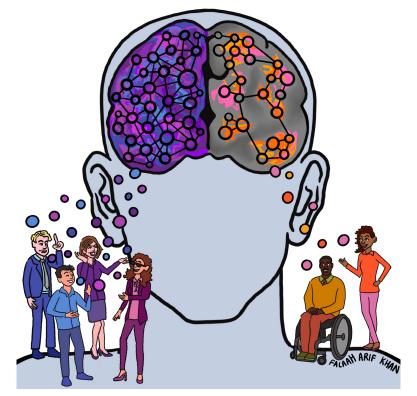
datasets conclusions

Bias type: Emergent

Pre-existing: independent of the technical system, has origins in society

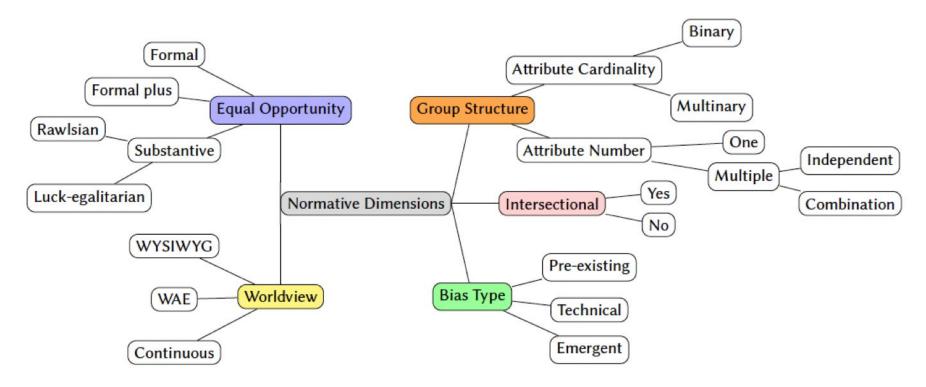
Technical: introduced or exacerbated by the properties of the technical system

Emergent: arises due to the context of use



datasets conclusions

Classification of fair ranking methods



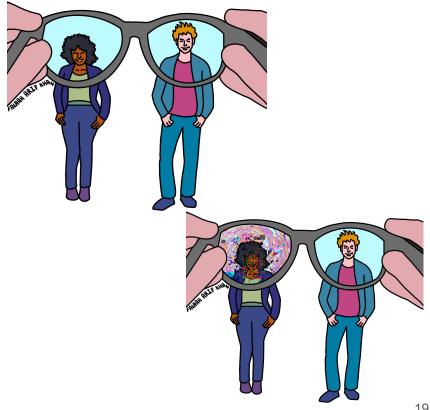
datasets conclusions

Worldview

WYSIWYG: "What you see is what you get"

WAE: "We are all equal"

Continuous: interpolating between the two

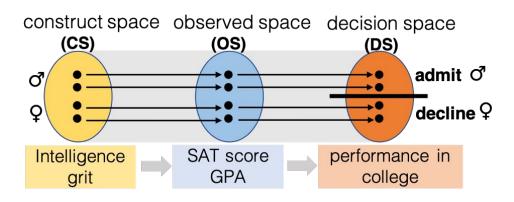


[Friedler, Scheidegger & Venkatasubramanian, 2016]

learning-to-rank

datasets conclusions

Worldview: WYSIWYG



[Friedler, Scheidegger & Venkatasubramanian, 2016]

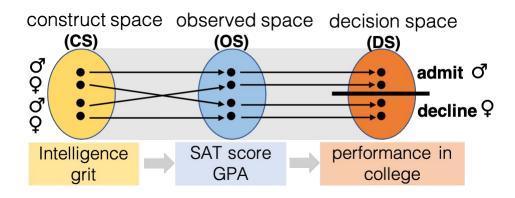
classification

score-based ranking

learning-to-rank

datasets conclusions

Worldview: WAE



[Friedler, Scheidegger & Venkatasubramanian, 2016]

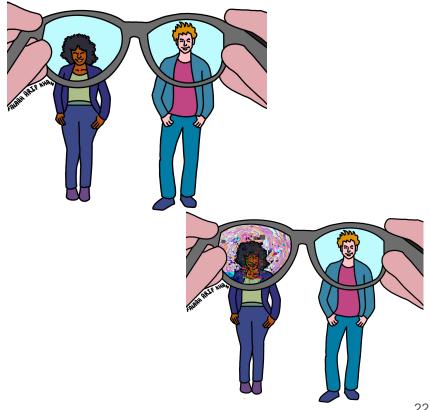
datasets conclusions

Worldview

WYSIWYG: "What you see is what you get"

WAE: "We are all equal"

Continuous: interpolating between the two

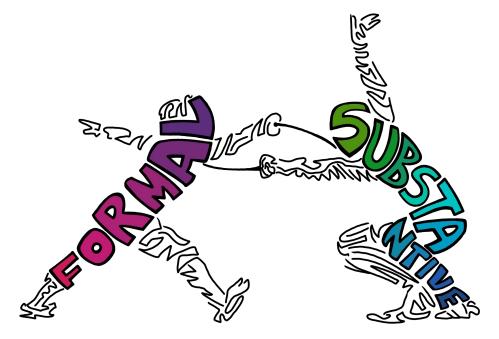


score-based ranking

learning-to-rank

datasets conclusions

Equality of Opportunity (EO) doctrine



[Arif Khan, Manis & Stoyanovich, 2022]

classification

score-based ranking

learning-to-rank

datasets conclusions

Principles of EO

Fair contests / non-discrimination

[Arif Khan, Manis & Stoyanovich, 2022]

classification

score-based ranking

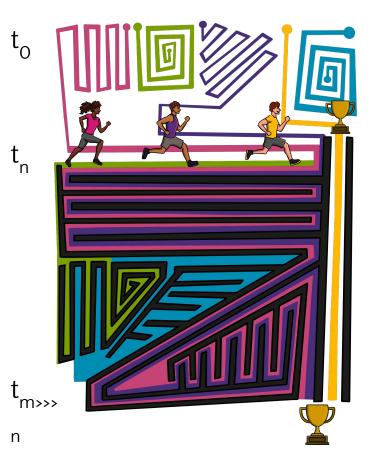
learning-to-rank

datasets conclusions

Domains of EO

1. <u>Fairness at a specific</u> <u>decision point</u>

3. Opportunities over the course of a lifetime



2. Equality in developmental opportunities

25

[Arif Khan, Manis & Stoyanovich, 2022] n

score-based ranking

learning-to-rank

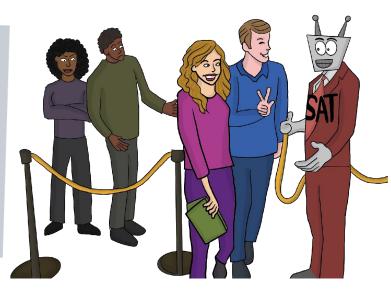
datasets conclusions

Formal Equality of Opportunity

"Careers open to talents": applicants should only be judged by relevant qualifications

Fairness through blindness is the most common codification of formal EO

Formal Plus: test performance / validity should not track morally irrelevant disadvantage



score-based ranking

learning-to-rank

datasets conclusions

Substantive Equality of Opportunity: Rawls

Equally talented people have equal prospects of success.

Distribute outcomes to improve people's future prospects of success.

[Arif Khan, Manis & Stoyanovich, 2022]

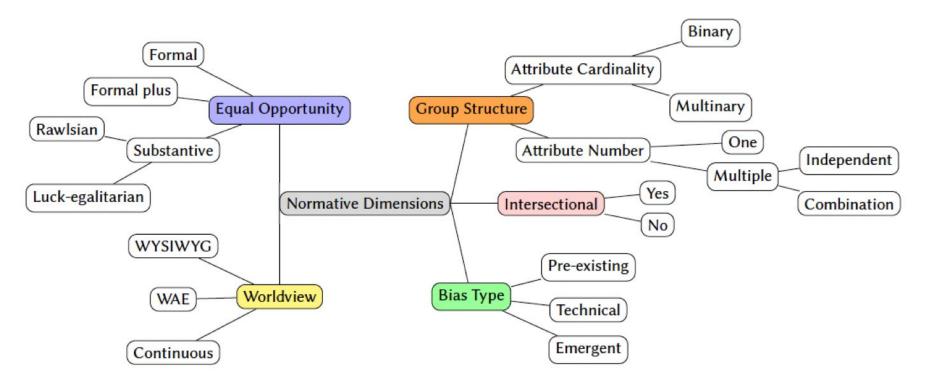
Substantive Equality of Opportunity: luck-egalitarian

Outcomes should only be affected by choice luck (one's responsible choices), not brute-luck (irrelevant circumstance).

But do we make that split?

datasets conclusions

Classification of fair ranking methods



classification

score-based ranking

learning-to-rank

datasets conclusions

datasets conclusions

Roadmap

- We present a **classification framework**, unifying fair ranking methods in terms of group structure, type of bias, and mitigation objectives
- We map representative **score-based fair ranking** methods to this framework
- We map representative fair **learning-to-rank methods** to this framework
- We discuss existing **datasets & benchmarks** that have have been used in fair ranking research
- We **conclude** with concrete guidance for practitioners wishing to incorporate fairness objectives into algorithmic rankers

introduction classification

score-based ranking

learning-to-rank

datasets conclusions

Method	Group structure	Bias	Worldview	EO	Intersectional
Rank-aware proportional representation [80]	one binary sensitive attr.	pre-existing	WAE	luck- egalitarian	no
Constrained ranking maximization [16]	multiple sensitive attrs.; multinary; handled independently	pre-existing	WAE	luck- egalitarian (1 sensitive attr. only)	no
Balanced diverse ranking [78]	multiple sensitive attrs.; multinary; handled independently	pre-existing; technical	WAE	luck- egalitarian	yes
Diverse <i>k</i> -choice secretary [68]	one multinary sensitive attr.	pre-existing	WAE	luck- egalitarian	no
Utility of selection with implicit bias [41]	one binary sensitive attr.	pre-existing; implicit	WAE	N/A	no
Utility of ranking with implicit bias [15]	multiple sensitive attrs.; multinary; handled independently	pre-existing; implicit	WAE	N/A	yes
Causal intersectionally fair ranking [79]	multiple sensitive attrs.; multinary; handled independently	pre-existing	WAE	Rawlsian	yes
Designing fair ranking functions [4]	any	pre-existing	any	any	yes

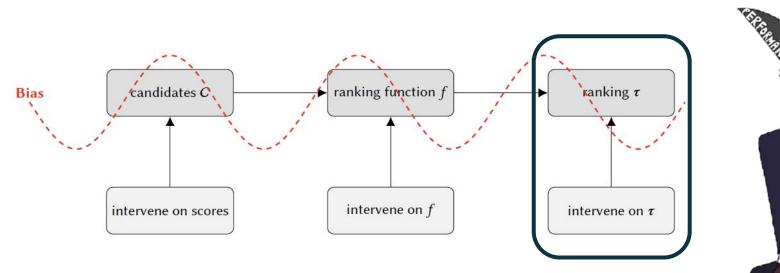
score-based ranking

learning-to-rank

datasets conclusions

(ANALALANA

Bias mitigation methods



33

Servesenthing 65%

Υ

9

8

7

5

6

3

4

2

learning-to-rank

datasets conclusions

Rank-aware proportional representation

τ,	Y	τ2	Y	τ3	
b	9	b	9	b	
с	8	d	7	С	
d	7	С	8	d	
е	6	f	5	f	
f	5	е	6	е	
k	4	k	4	Т	
Т	3	1	3	k	
0	2	0	2	0	

Goal: check if candidates' visibility in a ranking depends on their sensitive attributes

Idea:

compute set-wise proportional representation at each prefix of $\boldsymbol{\tau}$

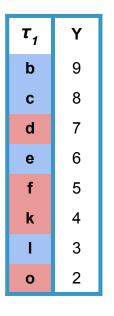
compound values with **position-based discounts**

$$U^{k}(\tau) = \sum_{i=1}^{k} Y_{\tau(i)} \qquad U^{k}(\tau) = \sum_{i=1}^{k} \frac{Y_{\tau(i)}}{\log_{2}(i+1)}$$

[Yang & Stoyanovich, 2017]

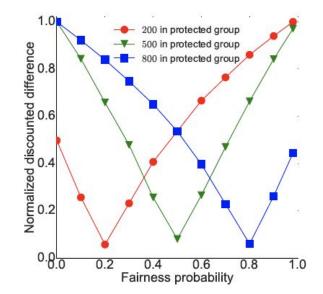
datasets conclusions

Rank-aware proportional representation



compute set-wise proportional representation at each prefix of **t**

compound values with **position-based discounts**



$$\operatorname{rRD}(\tau) = \frac{1}{Z} \sum_{k=10,20,\dots}^{n} \frac{1}{\log_2 k} \left(\frac{|\tau_{1\dots k} \cap \mathcal{G}_1|}{|\tau_{1\dots k} \cap \mathcal{G}_2|} - \frac{|\mathcal{G}_1|}{|\mathcal{G}_2|} \right)$$

[Yang & Stoyanovich, 2017]

datasets conclusions

200 in protected group

Rank-aware proportional representation

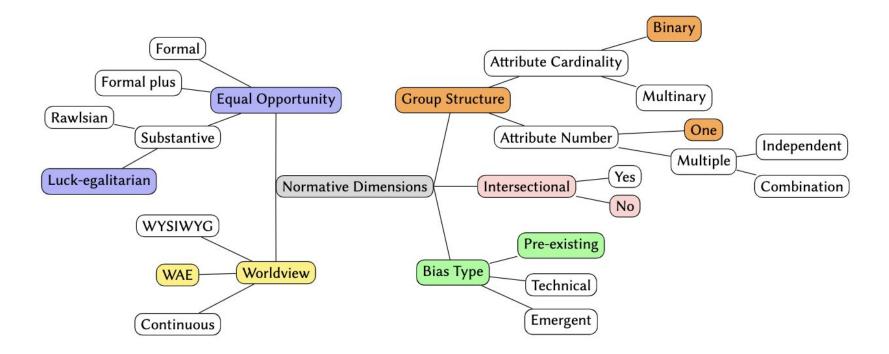


[Yang & Stoyanovich, 2017]

1.0

conclusions datasets

Rank-aware proportional representation



[Yang & Stoyanovich, 2017]

datasets conclusions

Constrained ranking maximization

	gender	race	Y
а	m	w	19
b	m	w	18
с	f	w	16
d	f	w	15
е	m	b	11
f	m	b	11
g	f	b	10
h	f	b	9
i	m	а	7
j	m	а	7
k	f	а	6
I	f	а	3

Goals

diversity: pick k=4 candidates, with two of each gender and at least one of each race

utility: maximize the sum of scores of the selected candidates

Insights

A hard problem when candidates have two or more sensitive attributes

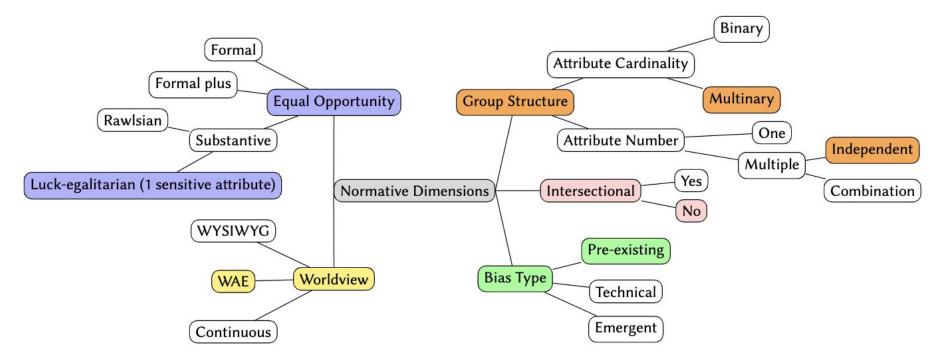
[Celis, Straszak & Vishnoi, 2018]

score-based ranking

learning-to-rank

datasets conclusions

Constrained ranking maximization



[Celis, Straszak & Vishnoi, 2018]

datasets conclusions

Balanced diverse ranking

	gender	race	Y	
а	m	w	19	~
b	m	w	18	~
с	f	w	16	
d	f	w	15	
е	m	b	11	
f	m	b	11	
g	f	b	10	~
h	f	b	9	
i	m	а	7	
j	m	а	7	
k	f	а	6	~
I	f	а	3	

[Yang, Gkatzelis & Stoyanovich, 2019]

Goals

diversity: pick k=4 candidates, with two of each gender and at least one of each race

utility: maximize the sum of scores of the selected candidates

Problem

Picked the highest scoring male and White candidates (**a** and **b**), but not the highest scoring female (**c** and **d**), Black (**e** and **f**) or Asian (**i** and **j**) candidates. introduction

score-based ranking

learning-to-rank

datasets conclusions

Balanced diverse ranking

	gender	race	Y		
а	m	w	19	~	V
b	m	w	18	~	
С	f	w	16		~
d	f	w	15		
е	m	b	11		~
f	m	b	11		
g	f	b	10	~	
h	f	b	9		
i	m	а	7		
j	m	а	7		
k	f	а	6	~	~
Ι	f	а	3		

Goals

diversity: pick k=4 candidates, with two of each gender and at least one of each race

fairness: admit the most qualified candidates of each gender and race

utility: maximize the sum of scores of the selected candidates

Beliefs

effort is relative: scores are more informative within a group than across groups

it is important to **reward effort**

score-based ranking

learning-to-rank

datasets conclusions

Balancing utility loss: IGF-Ratio, IGF-Agg

d f 15 g f 10 h f 9 k f 6	с	f	16	
h f 9 k f 6	d	f	15	
k f 6	g	f	10	
	h	f	9	
	k	f	6	
I T 3	Т	f	3	

highest-scoring skipped IGF-Ratio(f)=10/16

lowest-scoring selected

IGF-Ratio(w)=1

IGF-Ratio(a)=6/7

IGF-Ratio(b)=10/11

а	m	19	
b	m	18	
е	m	11	
f	m	11	
i	m	7	
j	m	7	

lowest-scoring selected

highest-scoring skipped

Beliefs

effort is relative: scores are more informative within a group than across groups

it is important to **reward effort**

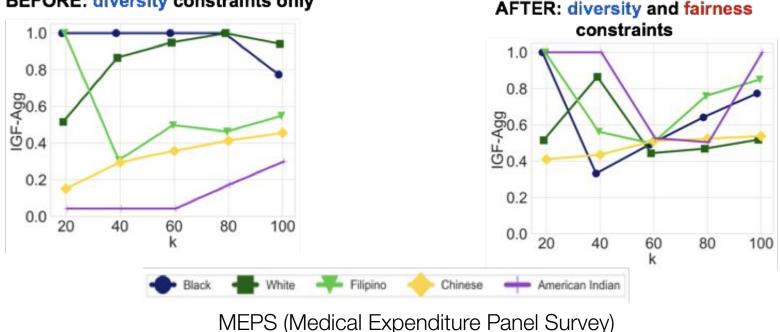
introduction classific

classification

score-based ranking

datasets conclusions

Balancing utility loss: IGF-Ratio, IGF-Agg, ILP magic

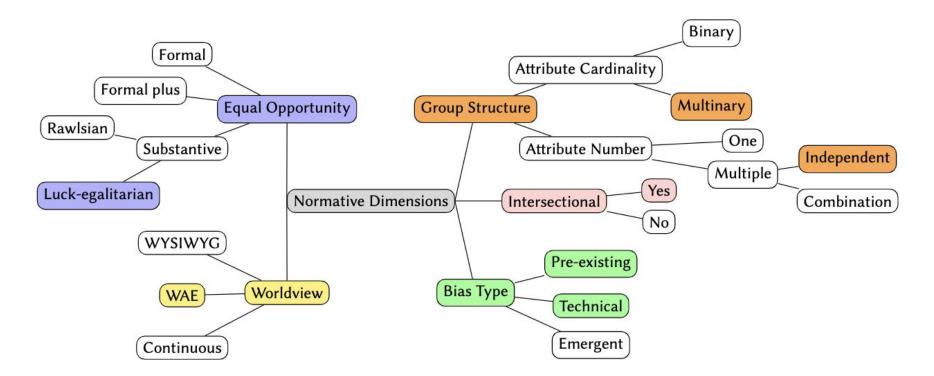


BEFORE: diversity constraints only

[Yang, Gkatzelis & Stoyanovich, 2019]

datasets conclusions

Balanced diverse ranking



[Yang, Gkatzelis & Stoyanovich, 2019]

score-based ranking

learning-to-rank

datasets

conclusions

Constrained ranking maximization vs. Balanced diverse ranking

Main difference: assumptions about whether score ("effort") should be measured in absolute terms or per group (relative to "circumstance")

An example where a **small technical difference** encodes a major difference in values: substantive EO vs. no EO at all!

> Failing to balance utility loss across groups leads to intersectional discrimination

Hiring a job candidate

Goal: hire a candidate with a high score

Online setting:

candidates arrive one-by-one, score is revealed when the candidate arrives

candidates arrive in score-independent order

decision to hire or reject must be made before considering the next candidate

learning-to-rank datasets

conclusions

The secretary problem

3

3

5

Goal: pick one element of a randomly ordered sequence to maximize the probability of picking the maximum element of the entire sequence

Online setting:

candidates arrive one-by-one, score is revealed when the candidate arrives

candidates arrive in score-independent order

decision to hire or reject must be made before considering the next candidate

 $S = \left\lfloor \frac{N}{e} \right\rfloor = 2$ T = 4

N = 6

4

73

learning-to-rank

datasets conclusions

Diverse *k*-choice secretary

Goals

diversity: pick **k=3** candidates, with at least one of each gender

utility: maximize the sum of scores of the selected candidates

Beliefs

Offer

effort is relative: scores are more informative within a group than across groups

it is important to **reward effort**

[Stoyanovich, Yang & Jagadish 2018]

datasets conclusions

Diverse *k*-choice secretary

Goals

diversity: pick **k=3** candidates, with at least one of each gender

utility: maximize the sum of scores of the selected candidates

Idea: learn what a good candidate looks like separately for each category!

Beliefs

effort is relative: scores are more informative within a group than across groups

it is important to **reward effort**

1.0

0.0

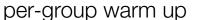
2

A

В

100

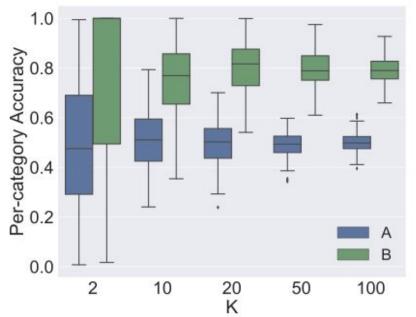
Diverse *k*-choice secretary



20

K

50



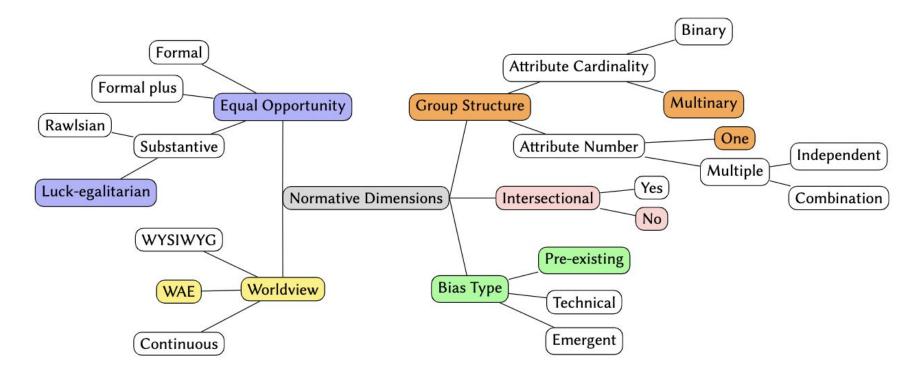
common warm up

[Stoyanovich, Yang & Jagadish 2018]

10

conclusions datasets

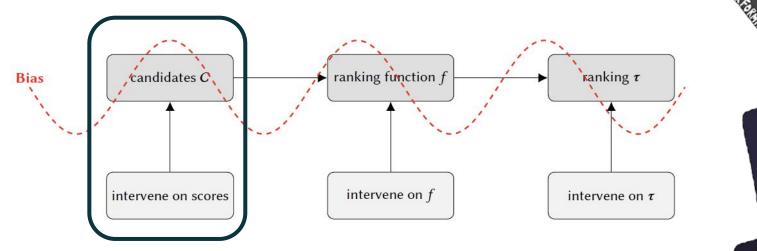
Diverse *k*-choice secretary



[Stoyanovich, Yang & Jagadish 2018]

datasets conclusions

TELEIN.



(add)

datasets conclusions

Set selection with implicit bias

	gender	Y'	Y
b	m	12	12
с	m	9	9
d	f	12	> 8
е	m	7	7
f	f	9	> 6
k	m	5	5
1	m	3	3
o	m	2	2

Goal: pick **k** = **2** best-qualified candidates for **an open job position**

Problem: hiring committee uses perceived score **Y** rather than true qualification score **Y**'

Implicit bias: $Y' \rightarrow Y$ differently depending on gender

Population factor α : $\alpha = |\mathbf{f}| / |\mathbf{m}|, \alpha < 0$

Bias factor $\boldsymbol{\beta}$: $\mathbf{Y} = \mathbf{Y'}/\boldsymbol{\beta}, \boldsymbol{\beta} > 1$ for female

apply Rooney rule

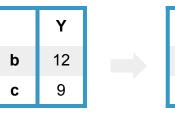
Υ

12

853

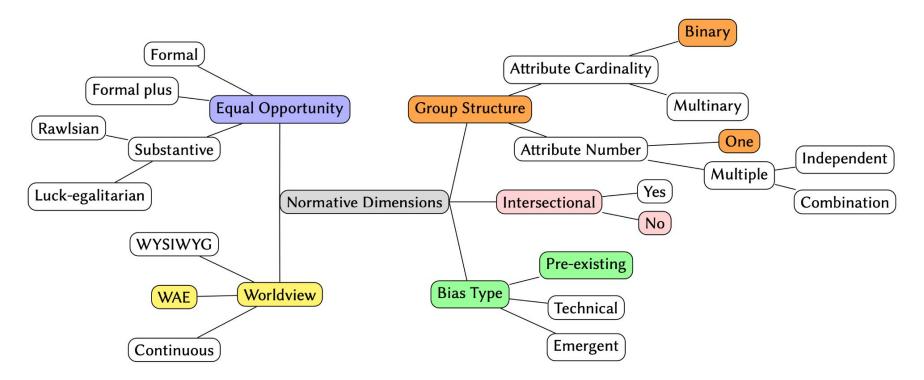
b

d



datasets conclusions

Set selection with implicit bias



[Kleinberg & Raghavan 2018]

conclusions datasets

Ranking with implicit bias

	gender	Y	Y'
b	m	12	12
с	m	9	9
d	f	12	> 8
е	m	7	7
f	f	9	> 6
k	f	8	> 5
1	m	3	3
ο	f	2	> 1

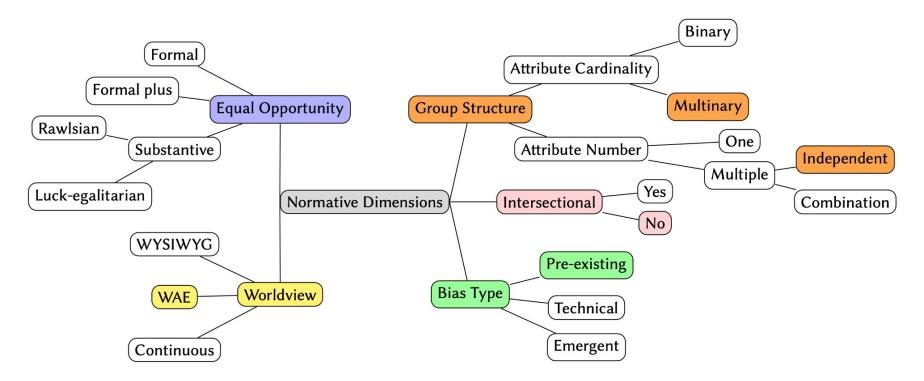
τ,	Y'		τ2	Υ
b	12	representation	b	12
с	9	constraints	d	12
d	8		с	9
е	7		f	9
f	6		k	8
k	5		е	7
1	3		1	3
o	1		ο	2

Insight: representation constraints lead to optimal utility on true qualification score Y

[Celis, Mehrotra & Vishnoi 2020]

datasets conclusions

Ranking with implicit bias



[Celis, Mehrotra & Vishnoi 2020]

b

С

d

е

k

0

gender race

w

а

W

w

а

b

b

W

m

m

f

m

f

f

m

f

classification

Х

6

5

6

4

3

5

1

1

score-based ranking

learning-to-rank datasets conclusions

Intersectional causal fairness

Υ

12

9

8

7

6

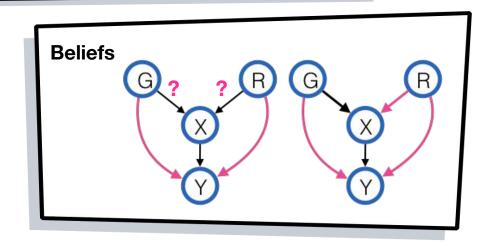
5

3

1

Goal: pick **k** = **4** best-qualified candidates to work **at a moving company**

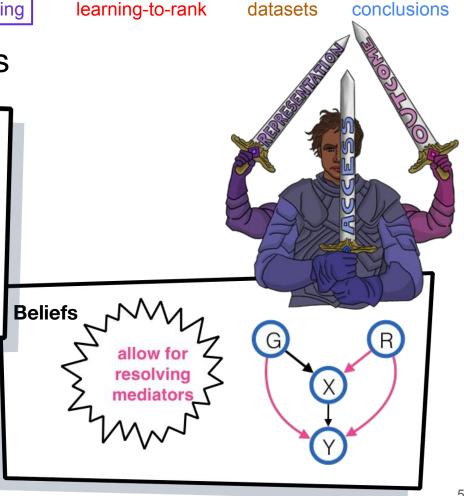
Problem: weight lifting ability **X** maps to qualification score **Y** differently depending on gender



Intersectional causal fairness

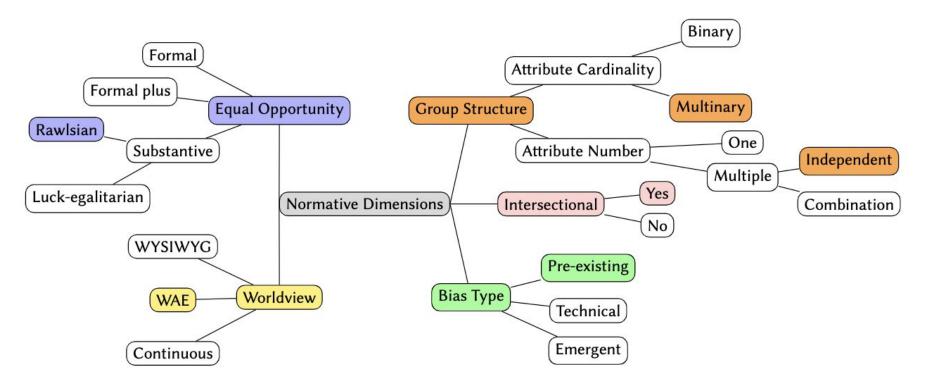
Idea: Compute counterfactual scores, treating each individual as though they had belonged to one intersectional group (e.g., Black women).

Rank on those scores. This will produce a counterfactually fair ranking



datasets conclusions

Intersectional causal fairness



[Yang, Loftus & Stoyanovich 2020]

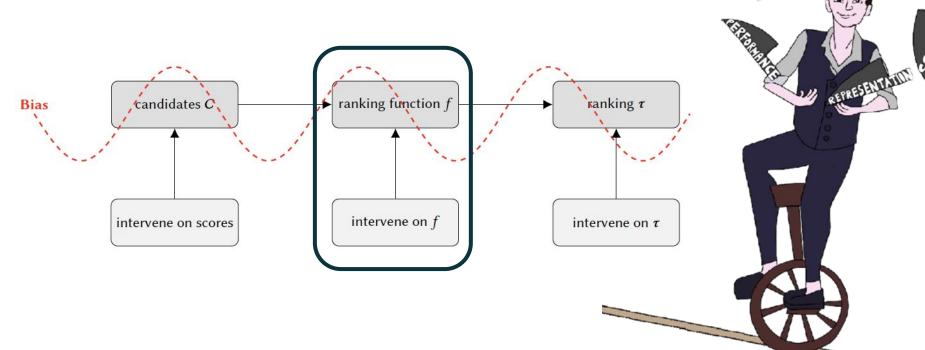
score-based ranking

learning-to-rank

datasets conclusions

Get.

SSAN 24



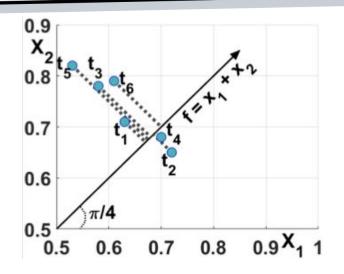
Designing fair rankers

	\mathcal{D}	f	
id	x_1	x_2	$x_1 + x_2$
t_1	0.63	0.71	1.34
t_2	0.72	0.65	1.37
t_3	0.58	0.78	1.36
t_4	0.7	0.68	1.38
t_5	0.53	0.82	1.35
t_{6}	0.61	0.79	1.4

Goals find a ranking function **f**'

utility: with similar weights as *f* - the function that the human decision-maker had in mind (minimize angular distance)

fairness: f' should be fair according to an oracle O



61

conclusions

Designing fair rankers

	\mathcal{D}	f	
id	x_1	x_2	$x_1 + x_2$
t_1	0.63	0.71	1.34
t_2	0.72	0.65	1.37
t_3	0.58	0.78	1.36
t_4	0.7	0.68	1.38
t_5	0.53	0.82	1.35
t_{6}	0.61	0.79	1.4

Goals find a ranking function

utility: with similar weights as what the human decision-maker had in mind

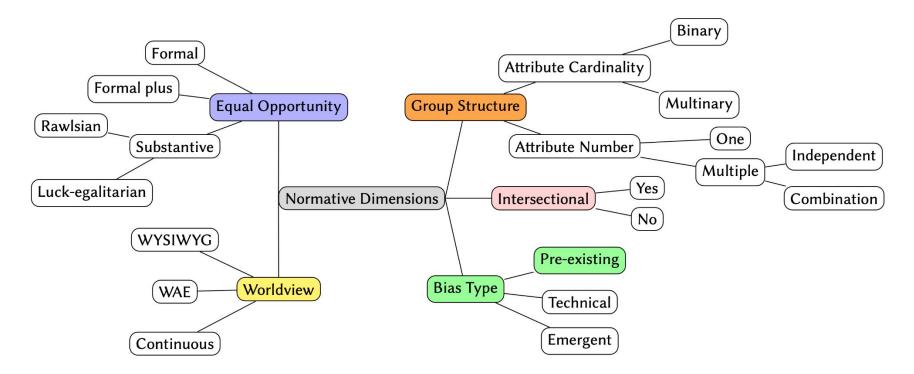
fairness: so that the ranking is fair according to an oracle **O**

Idea: ordering exchange

Only look at the ranking functions **f**' that change the relative order between some pair of points. These are the functions where the oracle may change its mind.

datasets conclusions

Designing fair rankers



[Asudeh, Jagadish, Stoyanovich & Das, 2019]

introduction

classification

score-based ranking

learning-to-rank

datasets conclusions

Roadmap

- We present a **classification framework**, unifying fair ranking methods in terms of group structure, type of bias, and mitigation objectives
- We map representative **score-based fair ranking** methods to this framework
- We map representative fair **learning-to-rank methods** to this framework
- We discuss existing **datasets & benchmarks** that have have been used in fair ranking research
- We **conclude** with concrete guidance for practitioners wishing to incorporate fairness objectives into algorithmic rankers

Method	Mitigation Point	Group structure	Bias	Worldview	EO Framework
iFair [26]	pre-proc.	multiple multinary attr.; independent	technical	WYSWYG	formal
DELTR [58]	in-proc.	one binary attr.	pre-existing	WAE	luck-egalitarian
Fair-PG-Rank [43]	in-proc	one binary attr.	technical	WYSIWYG	formal
Pairwise Ranking Fairness [4]	in-proc.	one binary attr.	?	WYSIWYG	formal-plus
FA*IR [57] & [60]	post-proc.	one multinary attr.; combination	pre-existing	continuous	formal / luck-egalitarian
Fair Ranking at LinkedIn [19]	post-proc.	one multinary attr.; combination	pre-existing; technical	continuous	none / luck-egalitarian (1 sensitive attr.)
$CFA\theta$ [59]	post-proc.	multiple binary attr.; combination	pre-existing	continuous	formal / substantive
Fairness of Exposure [42]	post-proc.	one binary attr.	pre-existing/ technical	WYSIWYG / WAE	formal / luck-egalitarian
Equity of Attention [6]	post-proc.	one multinary attr.; independent	technical / emergent	WYSIWYG	formal

Roadmap

Taxonomy of fair ranking methods

Map representative fair ranking methods: score-based ranker

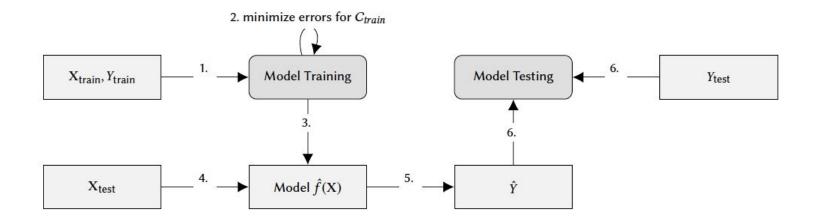
Map representative fair ranking methods: learning to rank

Datasets, benchmark, and framework

Concrete recommendations

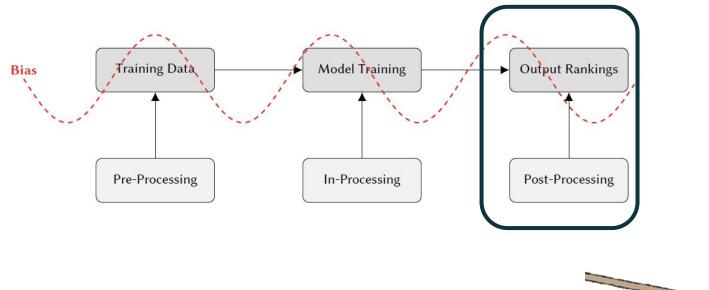
datasets conclusions

Mitigation methods: learning-to-rank



datasets conclusions

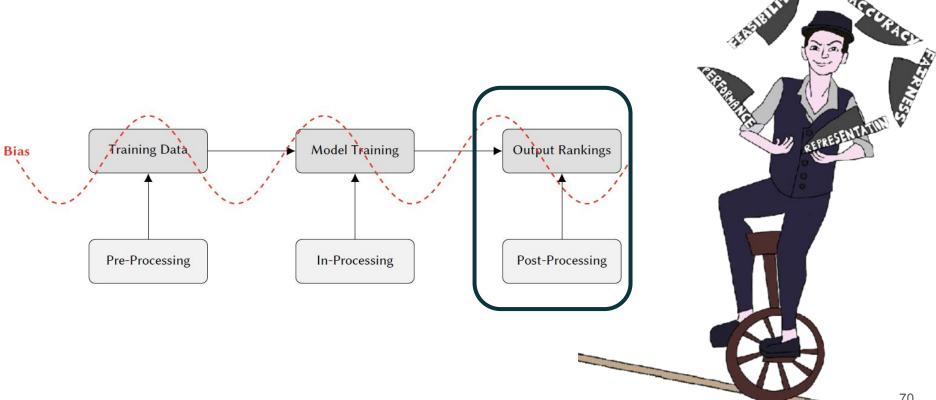
Bias mitigation methods



learning-to-rank post-processing

datasets conclusions

Bias mitigation methods

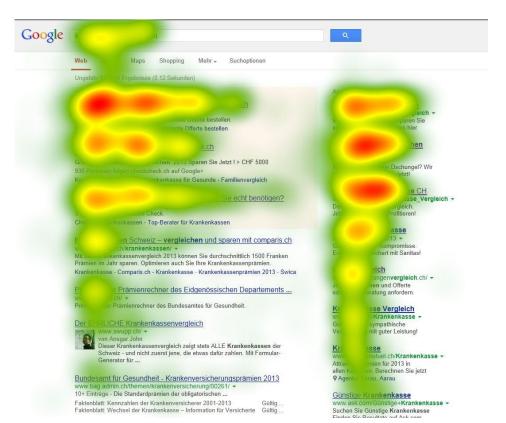


learning-to-rank post-processing exposure-based

datasets

conclusions

Exposure-based methods



score-based ranking

learning-to-rank post-processing exposure-based

datasets

conclusions

Exposure: Each position *j* in a ranking has a

Disparate exposure

certain probability v_i of being examined.

This is independent of an item *i*'s utility.

A group's exposure E(G) is commonly defined as the average v an item i ϵ G receives

Fairness goal: equalize exposure

```
A ranking is fair, if
                 E(G_0) \approx E(G_1)
```

[Singh & Joachims, 2018]

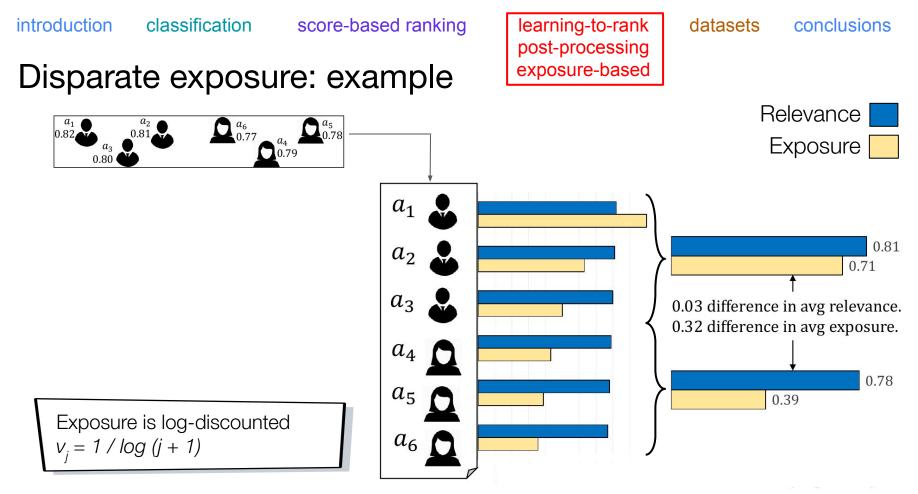
learning-to-rank post-processing exposure-based

datasets conclus

conclusions

Disparate exposure: example

Candidates (and their relevance scores)



introduction classification

score-based ranking

learning-to-rank post-processing exposure-based

datasets conclusions

N T

Fairness of exposure

Probabilistic ranking $P_{i,j}$: probability to place document *i* at position *j*

```
v_i is the position bias of position j
```

Group exposure $E(G_{k} | \mathbf{P})$

Exposure(
$$G_k | \mathbf{P}$$
) = $\frac{1}{|G_k|} \sum_{d_i \in G_k} \sum_{j=1}^N \mathbf{P}_{i,j} \mathbf{v}_j$

Fairness as demographic parity

```
A ranking is fair, if E(G_0 | \mathbf{P}) \approx E(G_1 | \mathbf{P})
```

introduction classification

n score-based ranking

learning-to-rank post-processing exposure-based

datasets conclusions

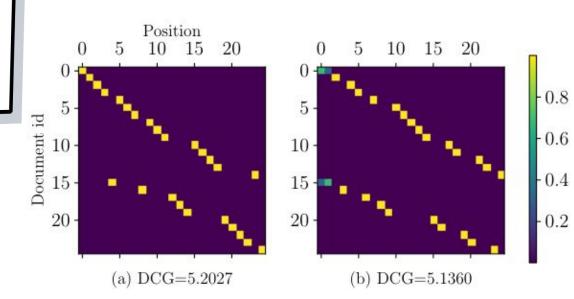
Fairness of exposure

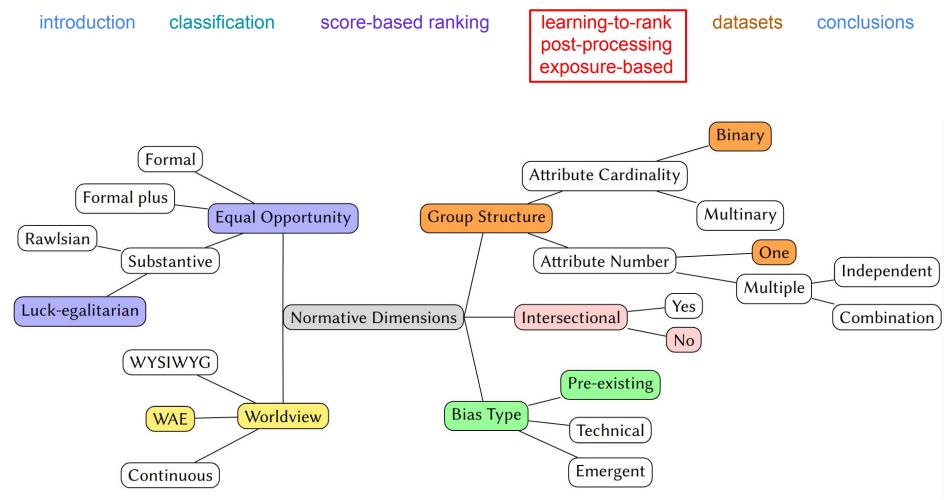
Experimental results, two groups

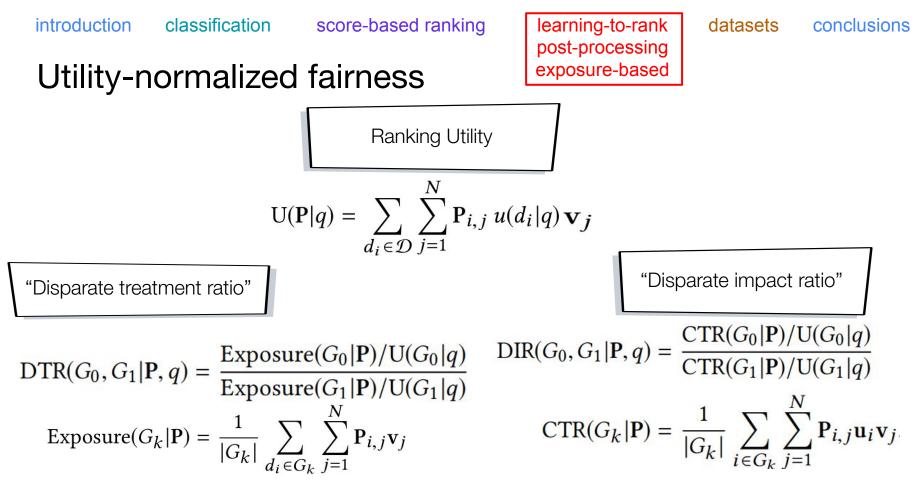
Doc id 0-14 is unprotected Doc id 15-24 is protected

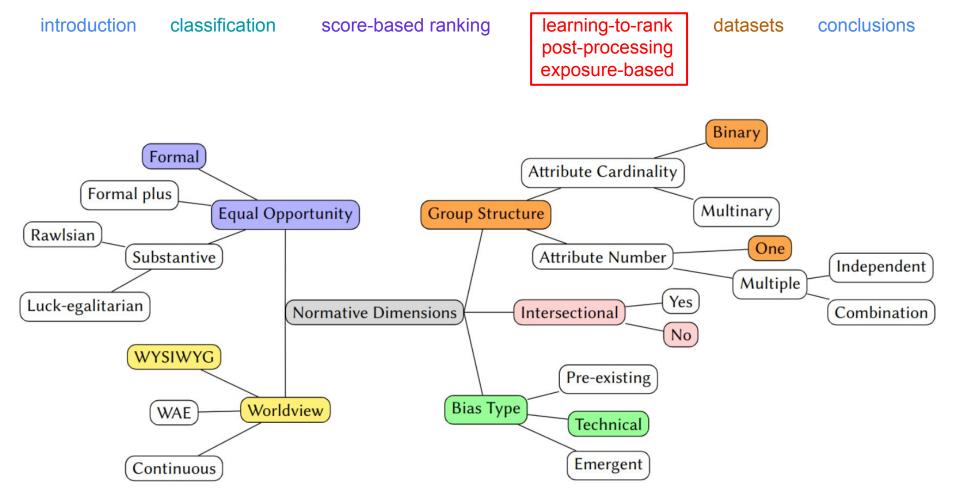
(a) Unconstrained

(b) Fair Ranking









score-based ranking

Amortized attention

Ranking elements *a* and *b* should enjoy equal attention discounted by their utility

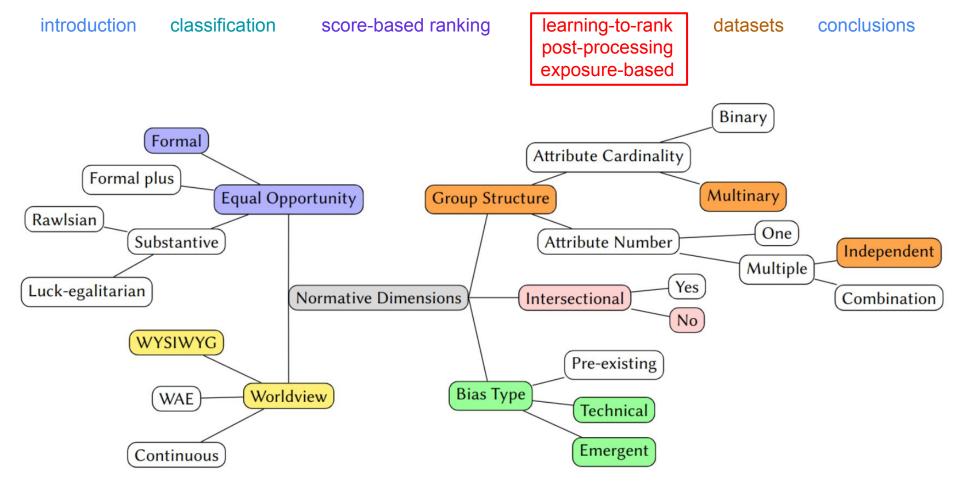
This equality shall be achieved over m rankings $\boldsymbol{\tau}$

datasets conclusions

$$\frac{\sum_{i=1}^{m} att(\boldsymbol{\tau}_i, a)}{\sum_{i=1}^{m} U(\boldsymbol{\tau}_i, a)} = \frac{\sum_{i=1}^{m} att(\boldsymbol{\tau}_i, b)}{\sum_{i=1}^{m} U(\boldsymbol{\tau}_i, b)}$$

Unfairness is measured as the **accumulated difference in attention** unfairness(τ_1, \ldots, τ_m) = $\sum_{a=1}^{n} \left| \sum_{i=1}^{m} att(\tau_i, a) - \sum_{i=1}^{m} U(\tau_i, a) \right|$

[Biega, Gummadi & Weikum, 2018]



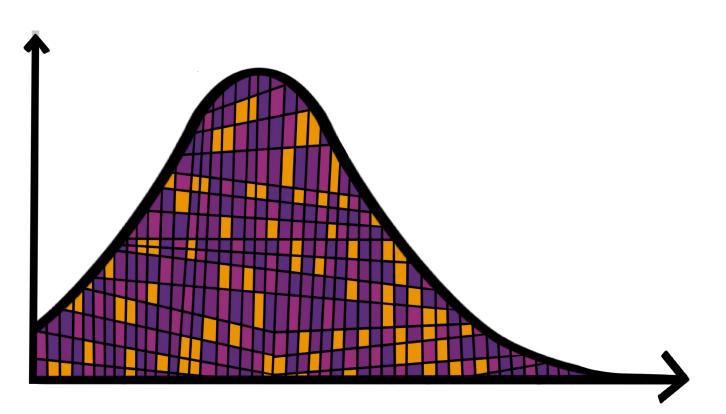
score-based ranking

learning-to-rank post-processing probability-based

datasets concl

conclusions

Probability-based methods



introduction classification

score-based ranking

learning-to-rank post-processing probability-based datasets conclusions

Probability-based vs. exposure-based methods

Probability-based methods measure the probability that a ranking was created according to some statistic process (e.g., tossing a coin)

Thus they fail immediately at the position where the condition does not hold anymore

Exposure-based methods are usually based on a cumulative measure

Thus they allow to make up unfair placement on the top at later positions in the ranking

FA*IR: fair representation condition

Given minimum proportion p, significance level α and a **set** of size k

Let F(x;p,k) be the cumulative distribution function of a binomial distribution with parameters p, k

A ranking of *k* elements having *x* protected elements satisfies the **fair representation condition** with probability *p* and significance *a* if F(x;p,k) > a introduction classification

score-based ranking

learning-to-rank post-processing probability-based datasets conclusions

Example: fair representation condition probability-base

Suppose *p=0.5, k=10, a=0.10*

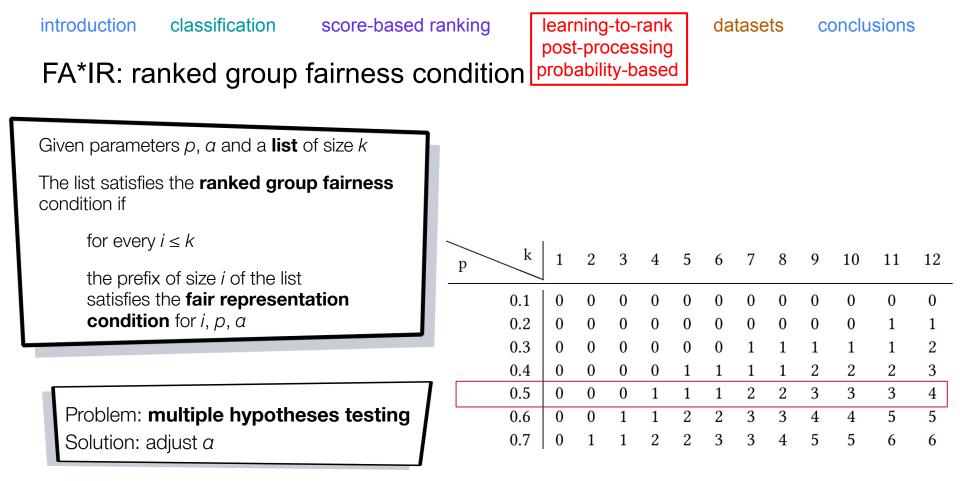
 $F(1, 0.5, 10) = 0.01 < 0.10 \Rightarrow \text{if 1}$ protected element, **fail**

 $F(2, 0.5, 10) = 0.05 < 0.10 \Rightarrow$ if 2 protected elements, **fail**

 $F(3; 0.5, 10) = 0.17 > 0.10 \Rightarrow \text{if } 3$ protected elements, **pass**

 $F(4; 0.5, 10) = 0.37 > 0.10 \Rightarrow \text{if } 4$ protected elements, **pass**

[Zehlike, Bonchi, Castillo, Hajian, Megahed & Baeza-Yates, 2017]



datasets conclusions

Probability-based measure

Given a ranking of k elements ...

 \dots and a significance a:

its **ranked group fairness is the maximum** p such that the ranking passes ranked group fairness at p, a

... and a probability *p*:

its ranked group fairness is the minimum α such that the ranking passes ranked group fairness at p, α

ions

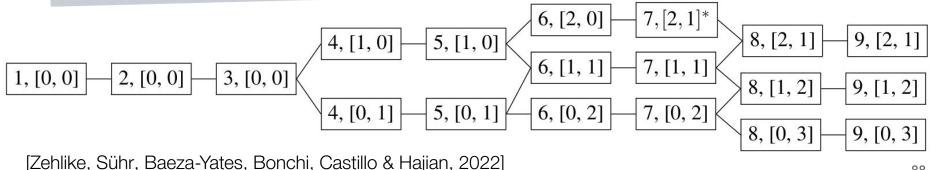
Multiple protected attributes

Extending previously seen definitions to the general case of n-1 protected groups: results in *mTree*

Any path through the tree is a valid configuration of a fair ranking according to the ranked group fairness condition

Shown here for $p_1 = 0.4$ and $p_2 = 0.2$ (a = 0.1)

Read *-node as: by position 7 put at least 2 candidates from group 1 and 1 candidate from group 2



The FA*IR algorithm

Rank candidates of all protected groups p_i and non-protected separately

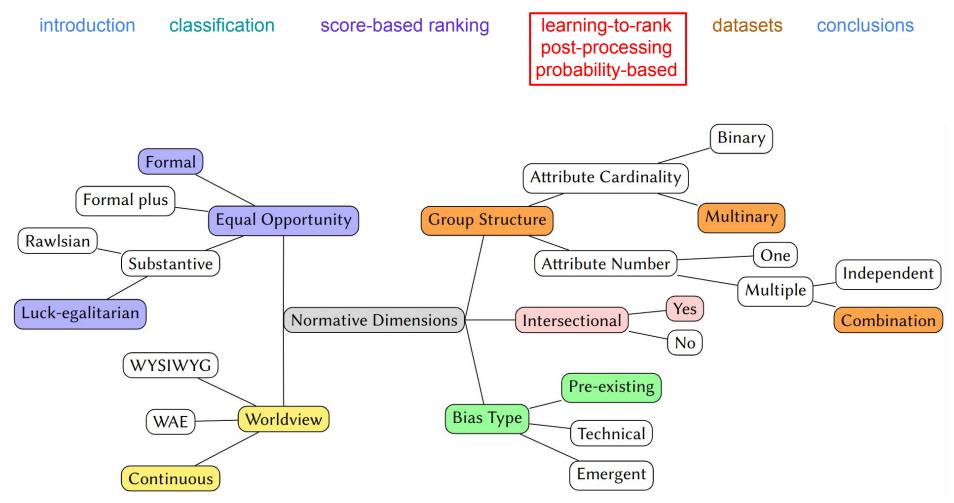
Determine the *minimum number* of protected elements required at every ranking position using p_i , α (that is, compute mTree)

For every position

If *enough* protected elements from all groups: pick next from best of all candidates

else: randomly choose next branch in mTree and put protected candidate from respective group

[Zehlike, Sühr, Baeza-Yates, Bonchi, Castillo & Hajian, 2022]



score-based ranking

learning-to-rank post-processing probability-based datasets conclusions

The DetGreedy algorithm

Input: ranking of length *k*,

n groups of items, n-1 are protected,

 $p_{2...n}$ proportions of protected groups

Fairness Definition: In a fair ranking, the number of protected items from each group shall neither fall below **nor exceed** the respective $p_{2 \le i \le n}$ at any point in the ranking

[Geyik, Ambler & Kenthapadi, 2022]

datasets conclusions

The DetGreedy algorithm

Rank candidates of all protected groups p_i and non-protected separately

For every position:

Check for all groups if they have not yet met their minimum, nor exceeded their maximum

If *enough* protected elements from all groups: pick next from best of all candidates

else: pick best candidate among all that have not reached their maximum yet

classification score-based ranking

learning-to-rank post-processing probability-based

datasets conclusions

FA*IR vs. DetGreedy

Both are post-processing methods

Input and thus interface is almost the same

Re-ranking procedures also very similar

DetGreedy:

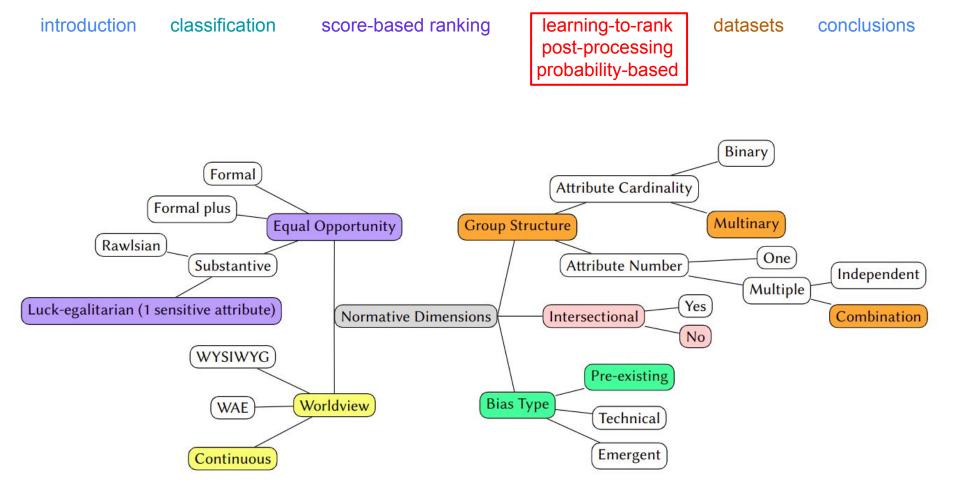
Can run into dead ends during re-ranking

Compares across protected candidates, thus **unsuitable for intersectionality**

FA*IR:

Only infeasible if not enough candidates

Does not ever compare candidates across groups, thus **suitable for intersectionality**



classification score-based ranking

learning-to-rank post-processing probability-based

datasets

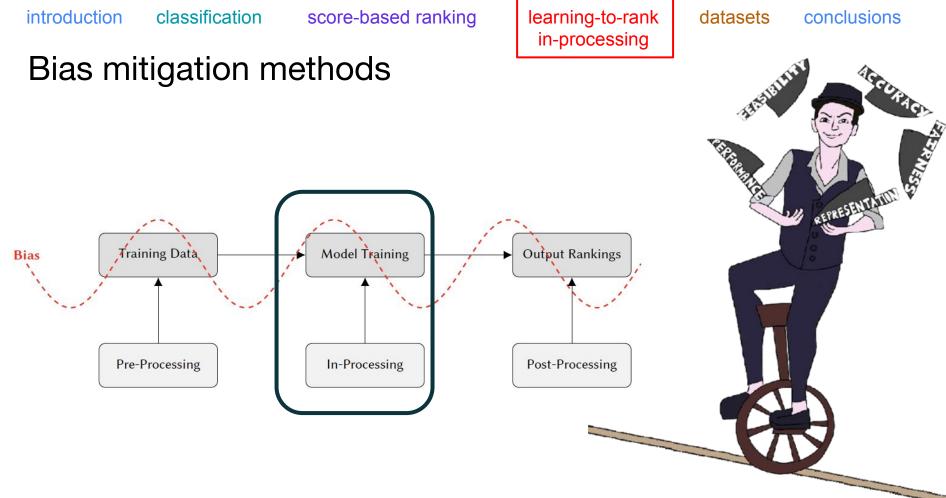
conclusions

Why should I care?

Every technical choice is also always a normative choice

Small differences in technical choices can have tremendous normative implications

> The values we encode in our technical choices should match our intended values for the task at hand



score-based ranking

learning-to-rank in-processing datasets conclusions

Listwise fairness (exposure-based)

Based on ListNet

Combination of two losses:

L = loss due to difference between ranking predictions and training elements

U = loss due to expected different exposure

[Singh & Joachims, 2019] [Zehlike & Castillo, 2020]

DELTR

Exposure differences between two groups

U is not utility discounted

Fair-PG-Rank

Exposure differences between two candidates or two groups

U is utility discounted

datasets conclusions

Pairwise fairness

Idea based on fairness metrics that were proposed for classification ("equal opportunity")

Pairwise accuracy should be the same across groups

$$P\left(\hat{f}(\mathbf{X}_{a}) > \hat{f}(\mathbf{X}_{b}) \mid Y_{a} > Y_{b}, A_{a} = 0\right) = P\left(\hat{f}(\mathbf{X}_{a}) > \hat{f}(\mathbf{X}_{b}) \mid Y_{a} > Y_{b}, A_{a} = 1\right)$$

Distinguishes between intra- and inter-group fairness

$$P\left(\hat{f}(\mathbf{X}_{a}) > \hat{f}(\mathbf{X}_{b}) \mid Y_{a} > Y_{b}, A_{a} = A_{b} = 0, z_{a} = \tilde{z}\right) = P\left(\hat{f}(\mathbf{X}_{a}) > \hat{f}(\mathbf{X}_{b}) \mid Y_{a} > Y_{b}, A_{a} = A_{b} = 1, z_{a} = \tilde{z}\right) \forall \tilde{z}$$

$$P\left(\hat{f}(\mathbf{X}_{a}) > \hat{f}(\mathbf{X}_{b}) \mid Y_{a} > Y_{b}, A_{a} = 0, A_{b} = 1, z_{a} = \tilde{z}\right) \forall \tilde{z}$$

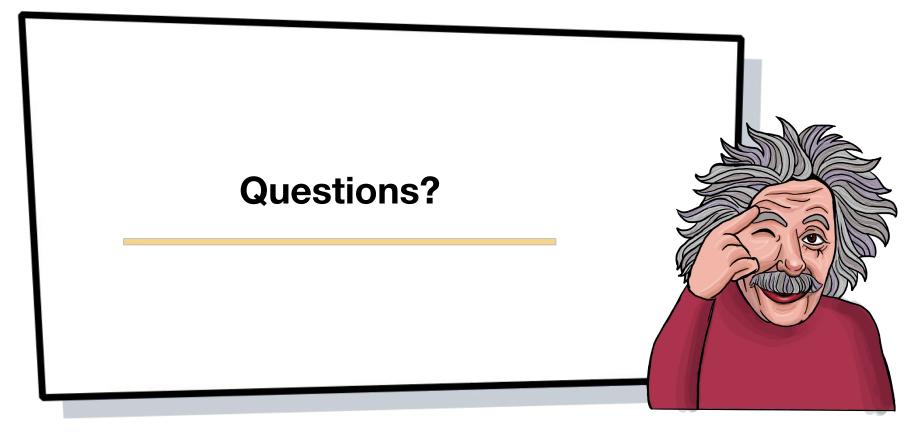
$$P\left(\hat{f}(\mathbf{X}_{a}) > \hat{f}(\mathbf{X}_{b}) \mid Y_{a} > Y_{b}, A_{a} = 0, A_{b} = 1, z_{a} = \tilde{z}\right) \forall \tilde{z}$$

[Beutel, Chen, Doshi, Qian, Wei, Wu, Heidt, Zhao, Hong, Chi & Goodrow, 2019]

classification

score-based ranking

datasets conclusions



Roadmap

- We present a **classification framework**, unifying fair ranking methods in terms of group structure, type of bias, and mitigation objectives
- We map representative **score-based fair ranking** methods to this framework
- We map representative fair **learning-to-rank methods** to this framework
- We discuss existing **datasets & benchmarks** that have have been used in fair ranking research
- We **conclude** with concrete guidance for practitioners wishing to incorporate fairness objectives into algorithmic rankers

Datasets

Name	Size	Sensitive attributes	Scoring attributes
AirBnB	10,201 houses	gender of host	rating, price
COMPAS	7,214 people	gender, race	risk scores
CS departments	51 departments	size, location	# publications in CS areas
DOT	1.3 million flights	airline name	departure delay, arrival delay, taxi-in time
Engineering students	5 queries, 650 students per query	gender, high school type	academic performance after first year
Forbes richest U.S.	400 people	gender	net worth

datasets

conclusions

Datasets

Name	Size	Sensitive attributes	Scoring attributes
German credit	1,000 people	gender, age	credit amount, duration
IIT-JEE	384,977 students	birth category, gender, disability status	test scores
LSAC	21,792 students	gender, race	LSAT scores
MEPS	15,675 people	gender, race, age	# visits requiring medical care
NASA astronauts	357 astronauts	major in college	flight hours
Pantheon	11,341 people	occupation	popularity of Wiki page
SAT	1.6M students	gender	SAT score

Datasets

Name	Size	Sensitive attributes	Score
StackExchange	253,000 queries, 6M documents	domains	document relevance
SSORC	8,975,360 papers	gender of authors	number of citations
W3C experts	60 queries, 200 experts per query	gender	probability of being an expert
XING	40 candidates	gender	years of experience, education
Yahoo LTR	26,927 queries, 638,794 docs	N/A	relevance
Yow news	unknown	source of news	relevance

datasets conclusions

Fair ranking benchmark at TREC

Started in 2019

2022 track "focuses on fairly prioritising Wikimedia articles for editing to provide fair exposure to articles from different groups"

Resource allocation task with **exposure-based fairness** metrics

Explicitly mentions **intersectional** fairness

TREC 2022 Fair Ranking Track

The TREC Fair Ranking track evaluates systems according to how well they fairly rank documents.

The 2022 track focuses on fairly prioritising Wikimedia articles for editing to provide a fair exposure to articles from different groups.

TIMELINE

- May, 2022: guidelines released.
- June, 2022: training queries and corpus released
- July, 2022: evaluation queries released
- 31st August, 2022: submissions due
- September, 2022: evaluated submissions returned

DOWNLOADS

The TREC 2022 Fair Ranking Track participation guidelines, experimentation protocol, data and evaluation scripts will be made available here.

- Participant Instructions
- Corpus
- 2022 Topics and Metadata
- 2022 Eval Topics

datasets conclusions

Fair ranking benchmark at TREC: data

Many different fairness attributes to select from:

- Geographic location (topic and source)
- Gender and occupation (biographies)
- Age of topic and article
- Article popularity
- Article languages
- Alphabetical order of topics

Limitation: English-language only

conclusions

datasets

Fair ranking benchmark at TREC: tasks

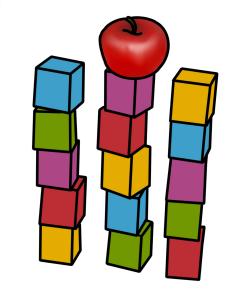
Task 1

WikiProject coordinators who search for articles needing work and produce a ranked list per topic

Outputs a single ranking per query

Relevance as nDCG for topic

Attention-weighted rank fairness: compares cumulative group exposure with target distribution (not relevance discounted)



datasets conclusions

Fair ranking benchmark at TREC: tasks

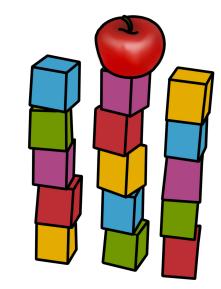
Task 2

Wikipedia editors looking for work associated with a project

Outputs 100 rankings per query (20 articles)

Relevance as nDCG for topic and work needed

Fairness as expected exposure over multiple rankings (relevance discounted)



introduction classification

learning-to-rank

Fair Search, an open source API

Fair Search

A set of tools for ranking post-processing (FA*IR) and in-processing (DELTR) with fairness constraints. ${\cal O}$ https://arxiv.org/abs/1905.13134

Popular repositories

fairsearch-fair-python Public Python library with the core algorithms used to do FA*IR ranking. ● Python ☆ 15 ♀ 6	fairsearch-fair-for-elasticsearch Public Fair search elasticsearch plugin Java 12 3
fairsearch-deltr-python Public Disparate Exposure in Learning To Rank for Python ● Python ☆ 6 ♀ 1	fairsearch-deltr-java Public Disparate Exposure in Learning To Rank for Java ● Java ☆ 2 ♀ 2
fairsearch-fair-java Core algorithms used to do fair search. This algorithm are exposed through the Elasticsearch and Solr plugins.	fairsearch-deltr-for-elasticsearch
● Java ☆ 1	● Python ☆ 1

[Zehlike, Sühr, Castillo, & Kitanovski 2019]

conclusions

Roadmap

- We present a **classification framework**, unifying fair ranking methods in terms of group structure, type of bias, and mitigation objectives
- We map representative **score-based fair ranking** methods to this framework
- We map representative fair **learning-to-rank methods** to this framework
- We discuss existing **datasets & benchmarks** that have have been used in fair ranking research
- We **conclude** with concrete guidance for practitioners wishing to incorporate fairness objectives into algorithmic rankers

conclusions

Key questions

How do we select or design fairness & diversity metrics?

- What values and beliefs do we want to encode?
- What is the legal and practical context of use?

How do we show that our method works?

- With which methods should we compare?
- What dataset should we experiment on?

How do we publish our results?

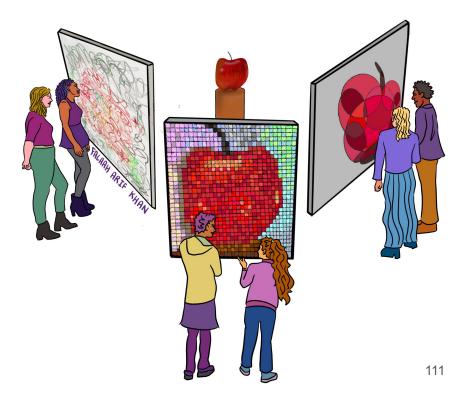
 By being upfront about the limitations, and about the pote for misuse

datasets con

conclusions

Recommendation 1

Make **context of use** explicit



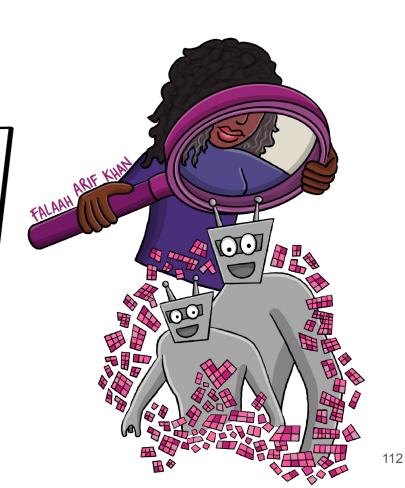
introduction

learning-to-rank

datasets co

Recommendation 2

Surface **normative** consequences of **technical** choices

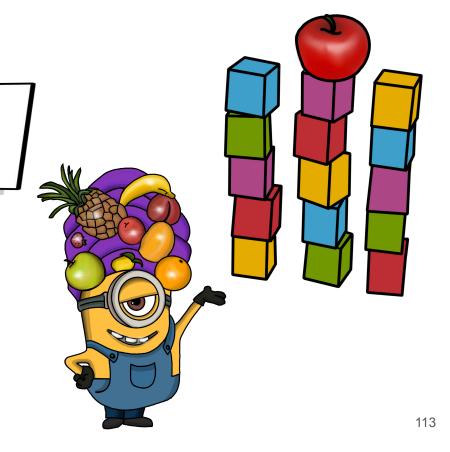


datasets c

conclusions

Recommendation 3

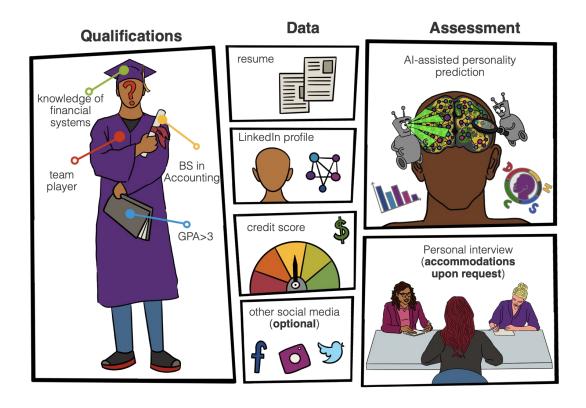
Draw meaningful comparisons



datasets con

conclusions

Beyond fairness: transparency & interpretability



introduction

classification

Ranking Facts

score-based ranking

learning-to-rank

datasets co

conclusions

+ Recipe		Ingredients				+
Attribute	Weight	Attribute		Correlation		
PubCount	1.0	PubCount		1.0	8	0
Faculty	1.0	CSRankingAliArea		0.24		0
GAE	1.0	Faculty		0.12		<u>,</u>
		Correlation strength is be between 0.25 and 0.75 to			pr. over 0.75 is f	Ngh.
Diversity at Regional		Diversity ov Regional C	Alexandra (Dep	cSizeBin	
		Regional C	Alexandra (Dep	cSizeBin	=
	Code = DeptSizeBin	Regional C	Alexandra (Dep		
Regional	Code = DeptSizeBin	Regional C	code =			
Regional	Code = DeptSizeBin	Regional of Regional of the second	code =)
	Code = DeptSizeBin	Regional C Regional C Units State Fairness DeptSize5in	Code 😑	• 142	e • end anter)

[Yang, Stoyanovich, Asudeh, Howe, Jagadish & Miklau 2018]

datasets

Ranking Facts, a "nutritional label" for rankings

Ranking Facts

Ingredients		•
Attribute	Importance	
PubCount	1.0	8
CSRankingAlArea	0.24	0
Faculty	0.12	Q

Importance of an attribute in a ranking is quantified by the correlation coefficient between attribute values and items scores, computed by a linear represent model. Importance is high if the absolute value of the correlation coefficient is over 0.75, medium if this value fails between 0.25 and 0.75, and low otherwise.

Top-K Stability Top-10 Stabile Overal Stable

[Stoyanovich & Howe 2019]

datasets c

conclusions

Beyond fairness: stability

THE NEW YORKER

THE ORDER OF THINGS

What college rankings really tell us.

By Malcolm Gladwell

Rankings depend on what weight we give to what variables. Illustration by SEYMOUR CHWAST

conclusions

Designing stable rankers

Goals

utility: with similar weights as what the human decision-maker had in mind

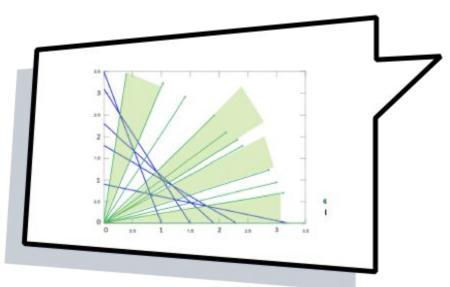
stability: so that the ranking doesn't reshuffle when weights change slightly

\mathcal{D}			f
d	x_1	x_2	$x_1 + x_2$
1	0.63	0.71	1.34
2	0.72	0.65	1.37
3	0.58	0.78	1.36
4	0.7	0.68	1.38
5	0.53	0.82	1.35
6	0.61	0.79	1.4

[Asudeh, Jagadish, Miklau & Stoyanovich 2018]

Belief

stable rankings are more **trustworthy**



introduction class

learning-to-rank

datasets c

conclusions

Beyond fairness: privacy

