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Pervasively Deployed DP Mechanisms

And so does the U.S. Government...

2020 Census Redistricting Data
* A lot of these deployments rely on

variations of DP Synthetic Data

e« DP for the Census was met with resistance

among many in the research community.
They claim DP noise:

2020 Census Demographic Data Map Viewer

This map shows the population
density—expressed as persol

» Affects demographic totals [Ruggles
2019]

* Exacerbates underrepresentation of

minorities [Ganev et. al 2021, Kenny et.
al 2021]
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* However, DP is still probably better than
swapping in terms of the privacy/utility
tradeoff [Christ et al 2022]
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A Proposed Benchmark @

* Major challenge: Evaluation!

« How do we convincingly evaluate DP synthetic data?
 Social scientists and practitioners don't trust random linear query workloads

« Open questions: how do these synthesizers perform on a variety of
data? What are their limitations?

« SynRD: An “Epistemic Parity” Benchmark
1. Avoid assumptions about the representativeness of proxy tasks!

2. Instead, measure likelihood that published conclusions (like those run on Census
data) would change had the authors used DP synthetic data.

3. Make this an accessible benchmark and choose the “published conclusions” to be
real, high-quality papers on impactful studies
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SynRD: Benchmark for Evaluating “"Epistemic Parity”

study paper paper-relevant findings privatized datgsgt pgrity = proporti:)n of
dataset data subset method m, trial? trials wheref,(d;,) > k
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(see Figure 3)




Challenge: Taxonomy over findings

* Problem with operationalizing “Epistemic Parity:” many scientific
findings/conclusions are semantic!

« Solution: principled taxonomy over language of scientific literature
(inspired by Cohen et. al, 2018)

* Means we can realize taxonomy (we do this in python)

conclusion

finding 1

claim

values

=

def finding_6_9(self):

corr_df = self.get_corr()

corr_obesity_death = \
corr_df['Obesity'].loc['Cerebrovascular death']

soft_finding = abs(corr_obesity_death) < .05




Challenge: significance of results

 Correctly done, experimental science relies on significance testing
« How does this work with DP synthetic data?

« Rubin’s Rules for calculating uncertainty over results of synthetic data
 (over estimated locations g_1, ...q_m and variances v_1, ..v_m)
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* Problem: Crucially relies on a normality assumption for each t (X_i) = g_li



Solution: simplify finding statistics!

1. Findings are simply “reproduced or not”

.. th th

finding(r,q;""", gj*®") = 1[|2(g;""") - r(q}**)| < a]

2. Source of randomness 1 - Synthetic draw from fixed synthesizer
Solution: Bootstrap over B samples from synthesizer (B is 'big, > 25).

3. Source of randomness 2 — fitting synthesizer (expensive!).
Solution: Fit as many synthesizers as we can, aggregate and caveat that

variance is underreported.

Thus, we report on the uncertainty relative to the real finding of the
synthetic one, bootstrapping to estimate variance.



SynRD Composition

study paper paper-relevant findings privatized datgsgt pgrity = proportion of
dataset data subset method m, trial? trials wheref,(d;,) > k

F u £ () >k _;‘;d:ni %L:‘“ ' ﬁ?ﬁ]]
H i




Four Studies => 8 Papers

Studies

« HSLS:09 (High School Longitudinal Study)
* ACL (Americans Changing Lives Survey)
« AddHealth (National Study of Adolescent and Adult Health) "

* NSDUH (National Survey on Drug Use and Health)

8 Papers (8 different journals)
« Variety of methodologies

« Strict criteria for selection

* Reproducibility is hard!

IS THERE A

REPRODUCIBILITY
CRISIS?

A Nature survey lifts the lid on
how researchers view the ‘crisis’

BY MONYA BAKER
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be (Baker, Nature 2016)
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SynRD Composition
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Five Synthesizers => 4 € regimes

Synthesizers
Budget-aware Workload-aware Data- Efficiency-aware Type?
aware
PrivBayes * * * Bayesian
MST * * Marginal (PGM)
PATECTGAN 'S * GANs (Neural
PrivMRF * * * Marginal (PGM)
Marginal (PGM)
AIM * * * *

€ = [eM-1, eNO, e, eN2]

* Here, e is scientific constant e (~2.72)

» Representative of “low to medium privacy” (informally)




SynRD Composition
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The benchmark!

from SynRD.papers import Saw2018Cross
from SynRD.benchmark import Benchmark
from SynRD.synthesizers import MSTSynthesizer
benchmark = Benchmark ()
B = 25 # Bootstrap parameter
synth = MSTSynthesizer (epsilon=1.0)
papers = benchmark.initialize_papers([Saw2018Cross])
for paper in papers:
synth.fit(paper.real_dataframe)
dataset = synth.sample(len(paper.real_dataframe) * B)
paper.set_synthetic_dataframe (dataset)
benchmark.eval (paper, B=B)




Results
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Results

 Overall performance of the synthesizers: impressive!

« Still, no synthesizer succeeded across all papers, and, remarkably,
some findings were never reproduced by any of the synthesizers

* High number of findings across all our papers (even those that we
were unable to replicate) relying only on 1- or 2-dimensional
comparisons

* The low-dimensionality suggests that targeted improvements to the
synthesizers may allow us to simultaneously support high utility for
individual findings and their composition into broad conclusions
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Future Work

 Improving reproducibility and replicability of scientific discovery.
* File-drawer problem [29, 52] or publication bias - researchers publish
positive results, negative results “end up in the researcher's drawer.”

« Epistemic parity could be extended to quantify the effect of DP noise in
producing findings—which may or may not be false positives—that
would not have been identified from the original data

« Monte Carlo estimation of sample size for desired power for a
particular finding



Questions?
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