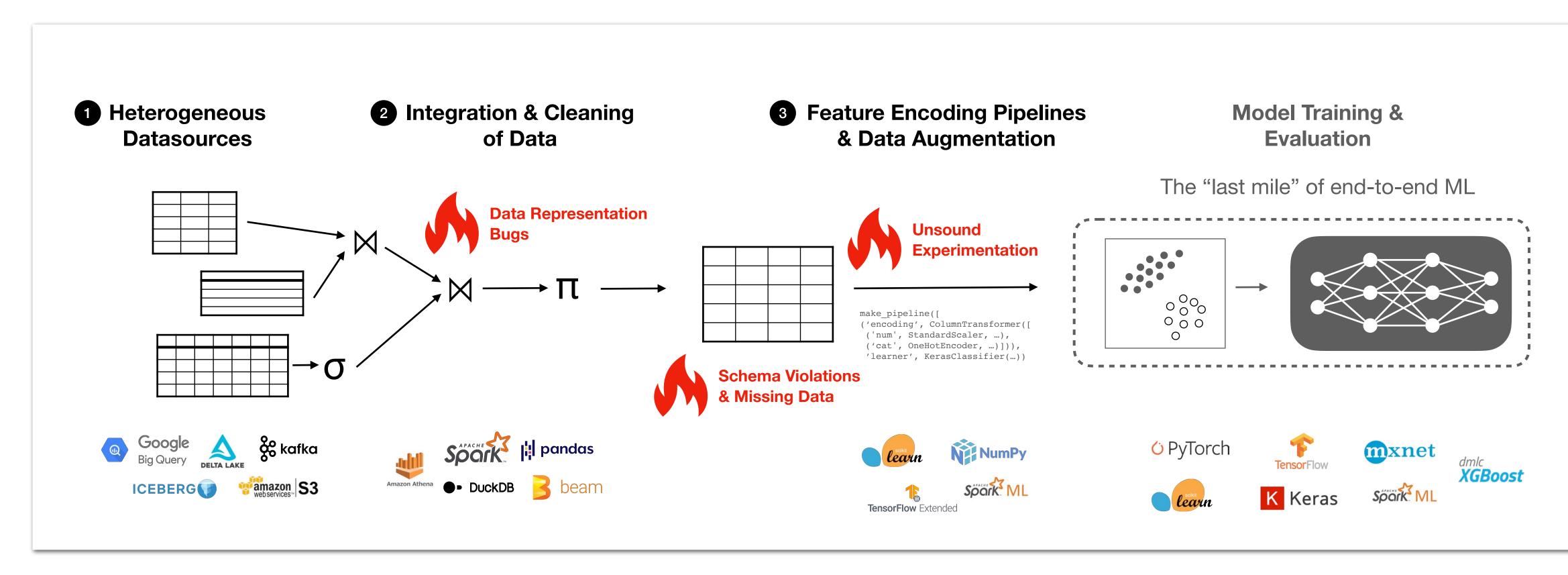
mlinspect: Lightweight Inspection of Native **Machine Learning Pipelines**

Stefan Grafberger UvA

Joint work with

Paul Groth UvA


Julia Stoyanovich NYU

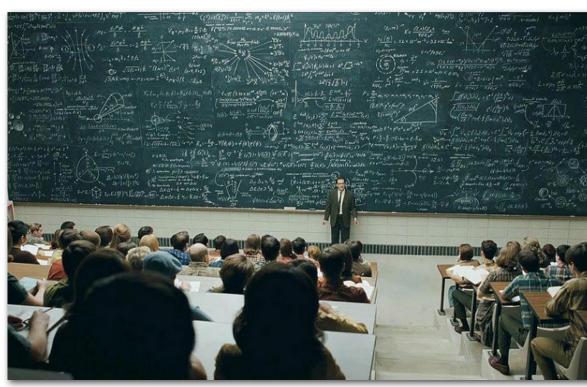
Sebastian Schelter UvA

ML Pipelines in the Real World

ML in Research vs ML in Production

Lab conditions

- Mental model of working in a jupyter notebook
- Dataset static, clean, well understood, often fits into memory
- User has PhD in ML

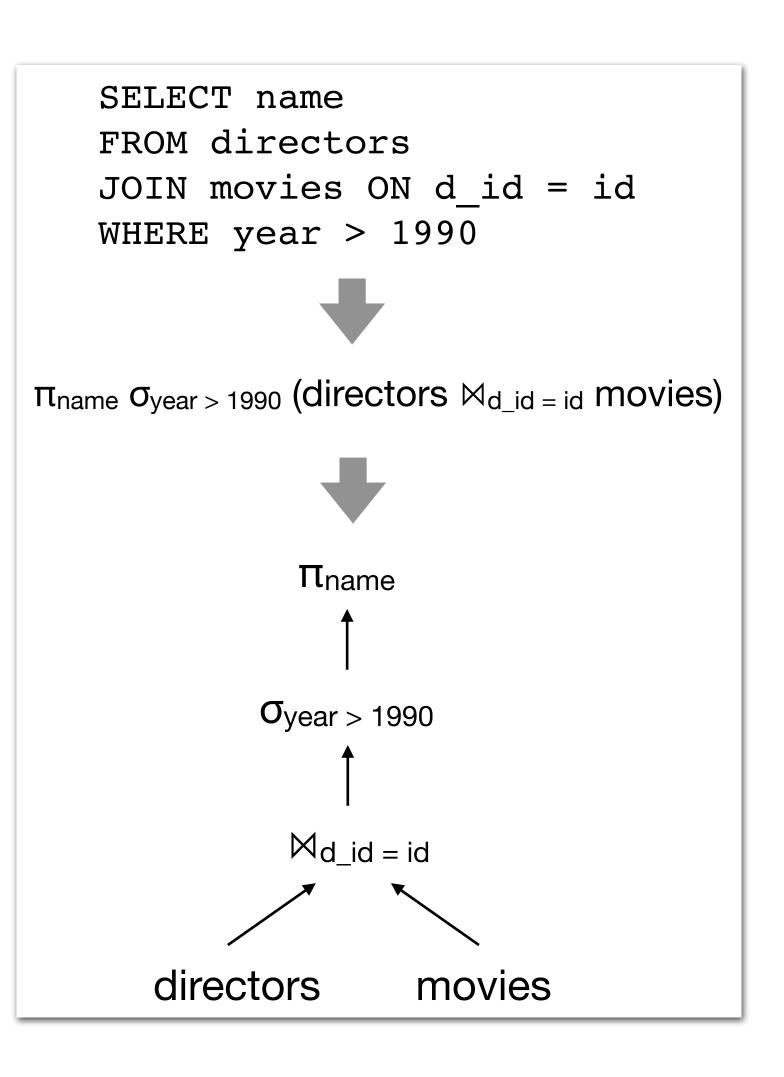

Production conditions

- Data continuously produced, never clean
- Data originates from many sources, not under control
- Model training is only one piece of large, complex pipelines
- Non-ML experts as end users / operators

Even experts make mistakes!

On Challenges in Machine Learning Model Management, IEEE Data Engineering Bulletin'19 FairPrep: Promoting Data to a First-Class Citizen in Studies on Fairness-Enhancing Interventions, EDBT'20

https://chrisguillebeau.com/files/2016/11/Mathboard.jpg



What Makes Inspection Difficult?

- **Relational DBMS:** Explicit data model (relations), computations (queries) expressed declaratively in relational algebra
- Algebraic properties enable automatic **inspection**: e.g. identifying all input records that contributed to a query result (why-provenance)
- ML Pipelines: lack of unifying algebraic foundation for data preprocessing, different technologies "glued together"

On Challenges in Machine Learning Model Management, Data Engineering Bulletin'19

The Way Forward

- First approach: invent new holistic systems to regain control -> would require rewriting all existing code
- Second approach: manually annotating existing code -> does not happen in practice
- Our approach: retrofit inspection techniques into the existing DS landscape
- Observation: declarative specification of operations for preprocessing present in some popular ML libraries:
 - Pandas mostly applies relational operations
 - Estimator / Transformer pipelines (scikit-learn / SparkML / Tensorflow Transform) offer nestable and composable way to declaratively specify feature transformations

Example

Potential issues in preprocessing pipeline:

Join might change proportions of groups in data

Column 'age_group' projected out, but required for fairness

Selection might change proportions of groups in data

Imputation might change proportions of groups in data

'race' as a feature might be illegal!

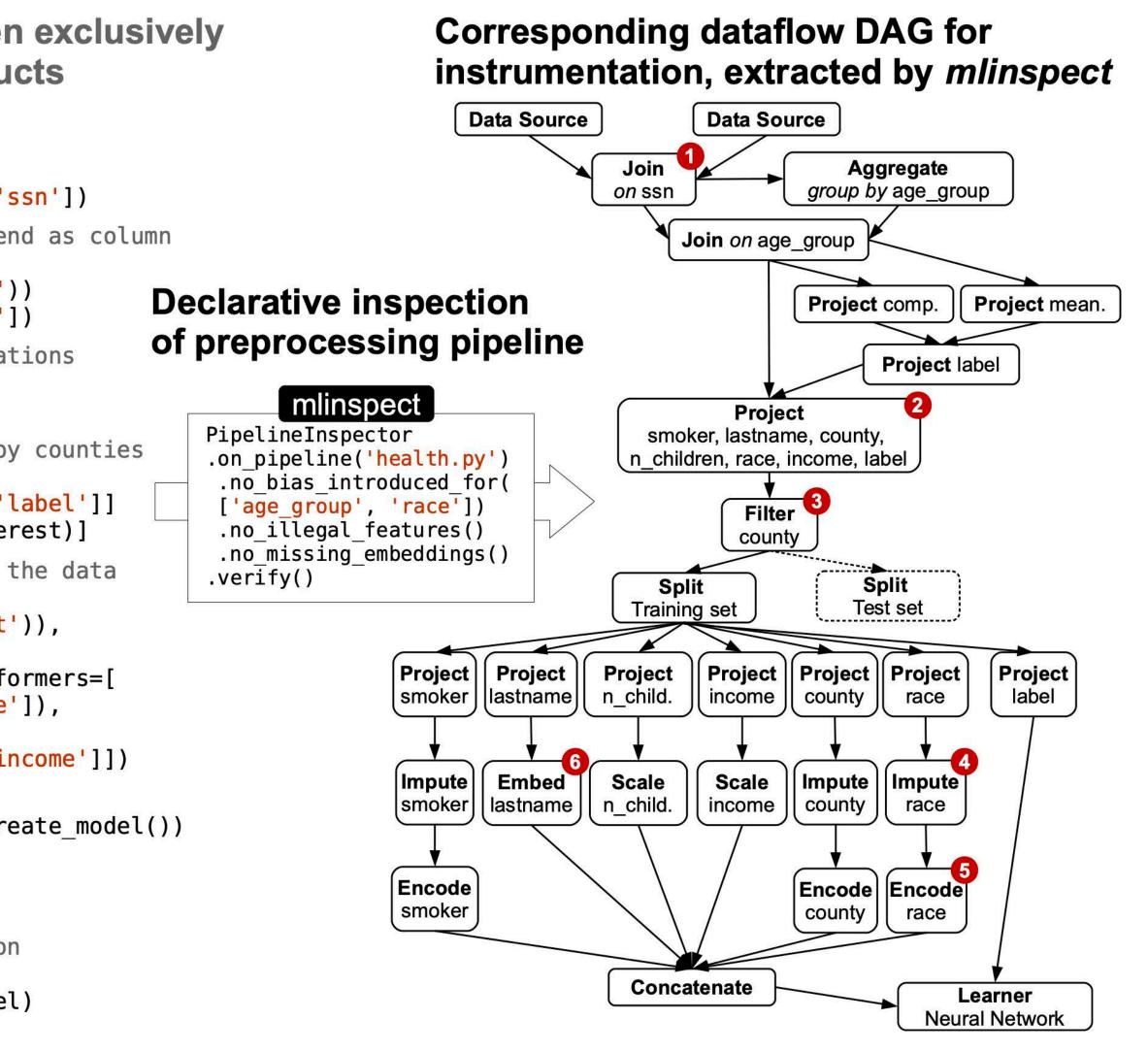
Embedding vectors may not be available for rare names!

load input data sources, join to single table patients = pandas.read csv(...) histories = pandas.read csv(...) data = pandas.merge([patients, histories], on=['ssn']) # compute mean complications per age group, append as column complications = data.groupby('age group') .agg(mean complications=('complications', 'mean')) data = data.merge(complications, on=['age group']) # Target variable: people with frequent complications data['label'] = data['complications'] > 1.2 * data['mean complications'] # Project data to subset of attributes, filter by counties data = data[['smoker', 'last name', 'county', 'num_children', 'race', 'income', 'label']] data = data[data['county'].isin(counties of interest)] # Define a nested feature encoding pipeline for the data impute and encode = sklearn.Pipeline([(sklearn.SimpleImputer(strategy='most frequent')), (sklearn.OneHotEncoder())]) featurisation = sklearn.ColumnTransformer(transformers=[(impute_and_encode, ['smoker', 'county', 'race']), (Word2VecTransformer(), 'last name') (sklearn.StandardScaler(), ['num children', 'income']]) # Define the training pipeline for the model neural net = sklearn.KerasClassifier(build fn=create model()) pipeline = sklearn.Pipeline([('features', featurisation), ('learning_algorithm', neural_net)]) # Train-test split, model training and evaluation

train data, test data = train test split(data) model = pipeline.fit(train data, train data.label) print(model.score(test data, test data.label))

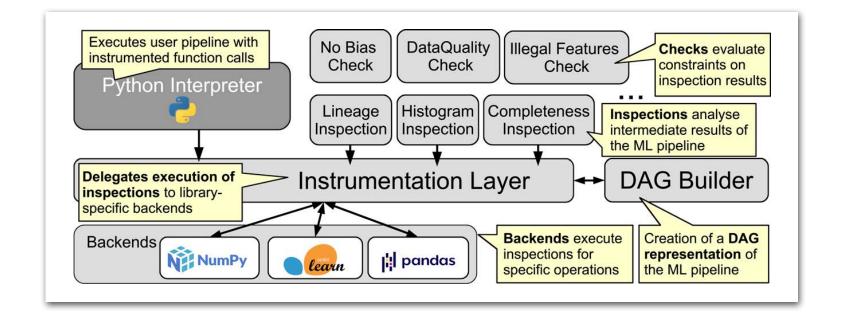
Can we find ways to **automatically hint data** scientists at potentially problematic operations in the preprocessing code of their ML pipelines?

Inspiration from software engineering, e.g. code inspection in modern IDE's



Example

Potential issues Python script for preprocessing, written exclusively with native pandas and sklearn constructs in preprocessing pipeline: # load input data sources, join to single table patients = pandas.read csv(...) histories = pandas.read csv(...) Join might data = pandas.merge([patients, histories], on=['ssn']) change proportions # compute mean complications per age group, append as column of groups in data complications = data.groupby('age group') .agg(mean complications=('complications', 'mean')) Column 'age group' data = data.merge(complications, on=['age_group']) projected out, but # Target variable: people with frequent complications required for fairness data['label'] = data['complications'] > 1.2 * data['mean complications'] Selection might # Project data to subset of attributes, filter by counties data = data[['smoker', 'last name', 'county', change proportions 'num children', 'race', 'income', 'label']] of groups in data data = data[data['county'].isin(counties of interest)] # Define a nested feature encoding pipeline for the data Imputation might impute and encode = sklearn.Pipeline([change proportions (sklearn.SimpleImputer(strategy='most frequent')), of groups in data (sklearn.OneHotEncoder())]) featurisation = sklearn.ColumnTransformer(transformers=[(impute_and_encode, ['smoker', 'county', 'race']), 'race' as a feature (Word2VecTransformer(), 'last name') might be illegal! (sklearn.StandardScaler(), ['num children', 'income']]) # Define the training pipeline for the model **Embedding vectors** neural_net = sklearn.KerasClassifier(build fn=create model()) pipeline = sklearn.Pipeline([may not be available 'features', featurisation), for rare names! 'learning algorithm', neural net)]) # Train-test split, model training and evaluation train data, test data = train test split(data) model = pipeline.fit(train data, train data.label) print(model.score(test data, test data.label))


mlinspect

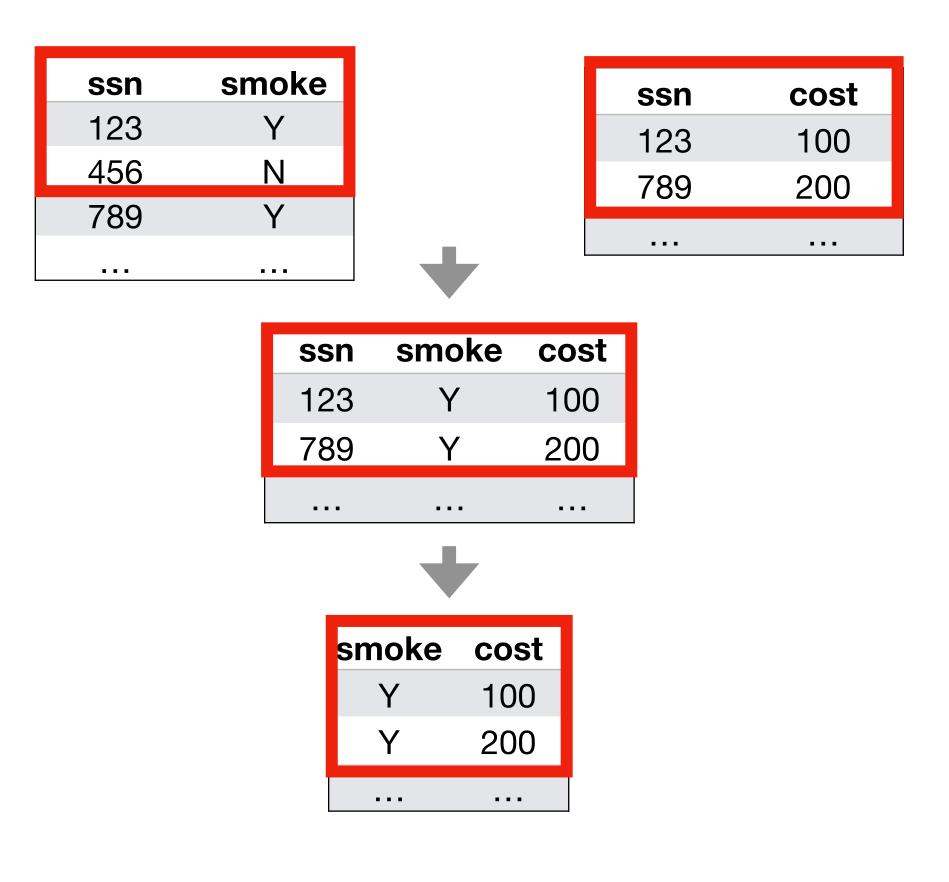
- Library to instrument ML preprocessing code with custom inspections to analyse a single pipeline execution and detect potential issues
- Works with "native" preprocessing pipelines (no annotation / manual instrumentation required) in pandas / sklearn / keras
- **Representation of preprocessing operations based on** dataflow graph
- Allows users to implement inspections as user-defined functions which are automatically applied to the inputs and outputs of certain operations

Data Distribution Debugging in Machine Learning Pipelines, VLDBJ'22

Inspections & Checks

- The central entry point of mlinspect is the **PipelineInspector**
 - There, you can add **inspections** and **checks**
- **Inspections:** \bullet
 - Visit each operator in the extracted DAG to and the data flowing through it
 - Can also annotate individual tuples, to track he they flow through the pipeline
 - These annotations are only visible for mlinspec
- **Checks:**
 - Check constraints on the extracted DAG and, when needed, the results of inspections

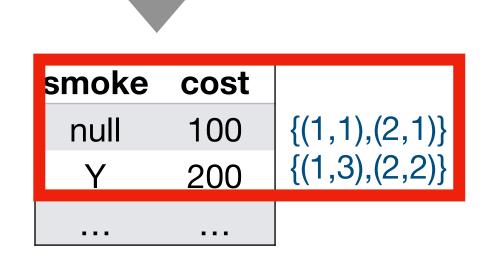
	<pre>from mlinspect import PipelineInspector from mlinspect.inspections import MaterializeFirstOutputRows from mlinspect.checks import NoBiasIntroducedFor</pre>
alyse	IPYNB_PATH =
OW	<pre>inspector_result = PipelineInspector\ .on_pipeline_from_ipynb_file(IPYNB_PATH)\ .add_required_inspection(MaterializeFirstOutputRows(5))\ .add_check(NoBiasIntroducedFor(['race']))\ .execute()</pre>
ct	<pre>extracted_dag = inspector_result.dag dag_node_to_inspection_results = inspector_result.dag_node_to_inspection_r check_to_check_results = inspector_result.check_to_check_results</pre>



Inspection: MaterializeFirstOutputRows

- The most simple **inspection** in mlinspect
- Analyzes the data flowing through each operator in your ML pipeline, and materializes the first *n* rows of each
- This is similar to how data scientists might try to debug their code with *print* statements, just to see what data looks like at different pipeline stages
- For pipelines using lots of data, inspections should not materialize all intermediate data!

data = pd.merge([patient, cost], on="ssn") data = data[["smoke", "cost"]]


Inspection: RowLineage

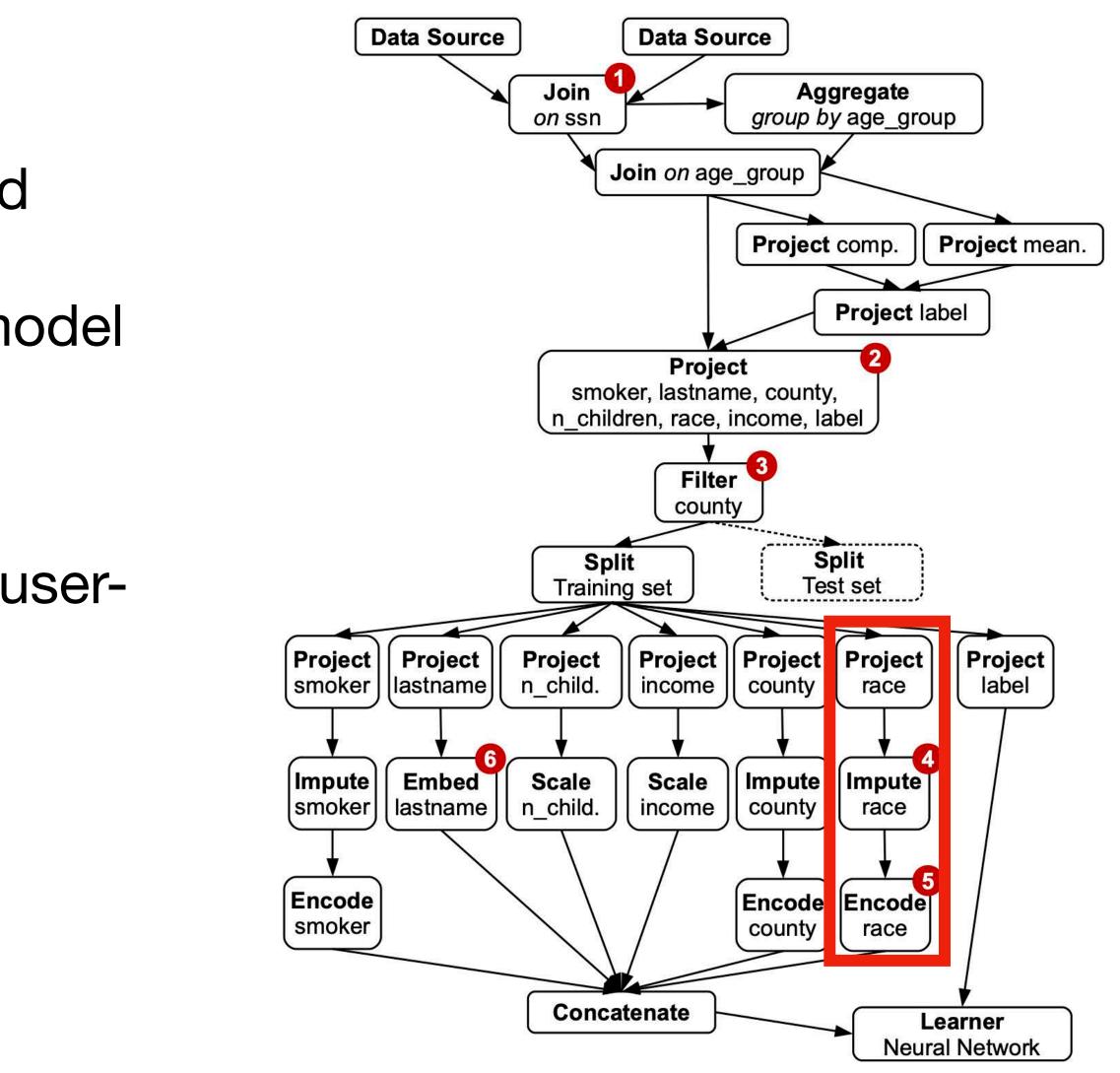
- This inspection uses annotation propagation to track individual tuples through the ML pipeline
- Operators like filters, joins, and sorting can make tracking tuples manually difficult
- Example: you encounter an unexpected *null*-value somewhere in your pipeline. Where does the *null*-value come from? What are the corresponding rows in the initial input tables?

sn	smoke			cen	cost
123	null	{(1,1)}		ssn	
456	N	{(1,2)}		123	100
	V	{(1,3)}		789	200
789	ľ				
	•••		L	•••	•••

ssn	smoke	cost
123	null	100
789	Y	200

HistogramForColumns & NoBiasIntroducedFor

- The *HistogramForColumns* inspection uses annotation propagation to track group memberships through the ML pipeline and materializes histograms of the groups
- The check NoBiasIntroducedFor checks for sudden distribution shifts by looking at the histograms before and after each operator
- Next to *HistogramForColumns*, there is also *IntersectionalHistogramForColumns*
- **Problem:** when should a distribution shift trigger a warning?



Check: NolllegalFeatures

- This check only looks at the extracted DAG to see if columns with certain names are used as input for an ML model
- As with NoBiasIntroducedFor: this detection based only on comparing column names with pre-defined and userdefined lists is no guarantee that all features are okay to be used!
- However, this can help with spotting potential issues easier

Data Quality Inspections

- mlinspect also offers exemplary inspections for data quality checking: *CompletenessOfColumns* and *CountDistinctOfColumns*
- The completeness of a column is the fraction of non-null values in it
- On top of these inspections, it is again possible to build checks

ſ							
	ssn	cost				ssn	smoke
	123	100					V
	456	200				123	Ŷ
	789	150				789	Ν
				_			
amol		leteness	1/Δ		smol		pletene
		10101000					

ssn	cost	smoke
123	100	Y
456	200	null
789	150	Ν

smoke completeness: 66%

Demo

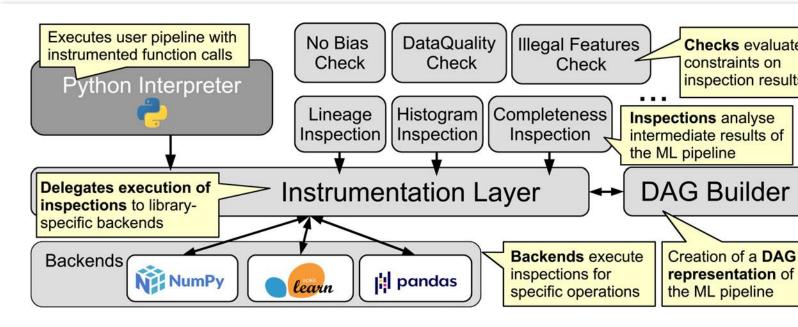
https://surfdrive.surf.nl/files/index.php/s/ybriyzsdc6vcd2w 1:06-4:00

Inspection Implementation

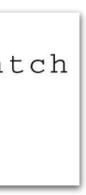
- Experienced users can also implement their own inspections and checks
- Implementation of inspections via for**comprehensions** on iterators
- Efficient execution with loop fusion ("banana-split law")
- Runtime overhead linear in the number of input and output records as long as the row annotations have a fixed size limit

Abstract base class for all inspections class Inspection(metaclass=abc.ABCMeta): # Inspect intermediate data at a DAG operator, based on operator information (op_context), and an iterator over annotated # input rows with the corresponding output rows (row_iterator); # Return computed annotations for output rows def visit_op(self, op_context, row_iterator) -> Iterable # Persist inspection result for the current DAG node def op_annotation_after_visit(self)

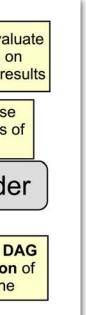
def visit_op(self, op_context, row_iterator) -> Iterable for row in row_iterator: annotation = annotate_and_update_state(self, row) yield annotation


Inspection Execution

- 1. **Preparation**: Determination of a minimal required set of inspections based on the inspections and checks specified by the user.
- 2. **Instrumentation**: Instrumentation of function calls of the AST of the user program, monkey patching.
- 3. Execution of the instrumented program: Delegation of the execution of inspections to library-specific backends; joint execution with pipeline operations; creation of the dataflow DAG.
- **Results:** Evaluation of checks using the DAG and the inspection results.

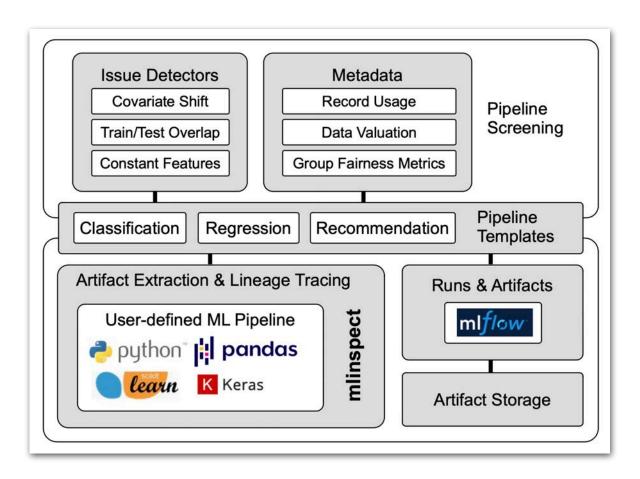


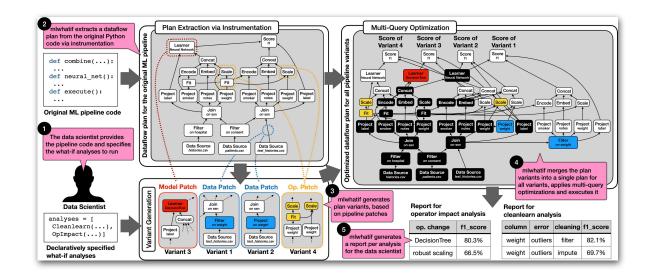
from mlinspect.instrumentation import monkey_patch, undo_monkey_patch monkey_patch() # ... original user code ... undo_monkey_patch()


obj.a func("arg0", "arg1", my arg="arg2") obj.a func("arg0", "arg1", my_arg="arg2", **set code reference(0,0,0,42))

Monkey Patching

```
@gorilla.patches(sklearn.preprocessing)
class SklearnPreprocessingPatching:
 @gorilla.name('label_binarize')
 @gorilla.settings(allow_hit=True)
 def execute_label_binarize(*args, **kwargs):
    original = gorilla.get_original_attribute(sklearn.preprocessing, 'label_binarize')
   # Patched function
    def patched(...):
      function_info = FunctionInfo('sklearn.preprocessing._label', 'label_binarize')
      # Operator mapping for DAG
      op_ctx = OperatorContext(OperatorType.PROJECTION_MODIFY, function_info)
      parent_info = get_parent_node_info(args[0], ...)
      # Initiate inspection execution via backend
      input_df = SklearnBackend.before_call(op_ctx, [parent_info])
      # Execute original function
      result = original(input_df, *args[1:], **kwargs)
      # Finalize inspection execution via backend
      backend_result = SklearnBackend.after_call(op_ctx, input_df, result)
      # Append DAG node with inspection result
      add_new_operator_node_to_dag(DagNode(...), [parent_info], backend_result)
      # Return original result
      return backend_result.updated_result_df
   return execute(original, patched, *args, **kwargs)
```


Ongoing and Future Work

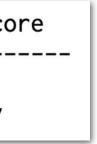
- Moving the execution of inspections into more efficient runtime systems like DuckDB
- Use mlinspect as runtime system to **enable** different use cases, e.g., automated screening of ML pipelines during CI pipelines (ArgusEyes)
- Assisting with more advanced ML pipeline analysis that requires pipeline rewriting and cannot be done by just observing a single execution of a given ML pipeline (mlwhatif)

Proactively Screening Machine Learning Pipelines with ArgusEyes, SIGMOD'23 (demo) Automating and Optimizing Data-Centric What-If Analyses on Native Machine Learning Pipelines, SIGMOD'23

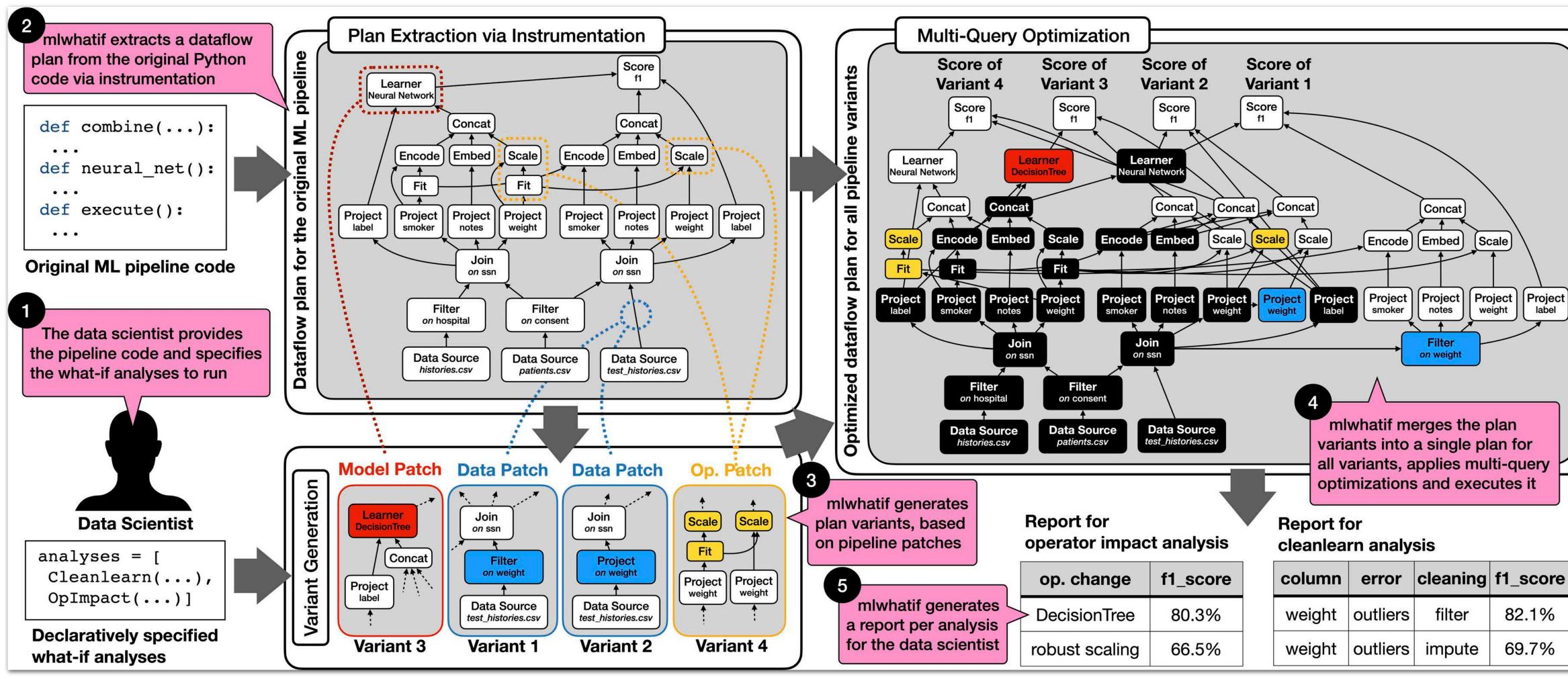
Data-Centric What-If Analysis for ML Pipelines

- ML pipelines are often brittle with respect to input data
- Data scientists are interested in different **analyses** for their pipelines, e.g.,
 - What-if there are data quality problems?
 - What-if I used different preprocessing?
- Currently, data scientists have to implement this manually, which is tedious and error-prone
- Goal: Allow declarative what-if analysis by automatically rewriting extracted pipeline DAGs

Automating and Optimizing Data-Centric What-If Analyses on Native Machine Learning Pipelines, SIGMOD'23


ent	what	t -if

<pre>from mlwhatif.analysis import Cleanlearn, OperatorImpact</pre>
analyses = [# Declarative definition of what-if analyses to run
Cleanlearn(column=' <mark>weight</mark> ', error=Error.OUTLIER,
<pre>cleanings=[Clean.FILTER, Clean.IMPUTE]),</pre>
<pre>OperatorImpact(robust_scaling=True, alternative_model=)]</pre>
<pre># Execution of what-if analyses on a given pipeline</pre>
<pre>report_with_scores = mlwhatif.execute_whatif('healthcare.py', ana)</pre>
<pre>print(report_with_scores)</pre>


		error_detector		f1_sco
cleanlearn cleanlearn	weight	outliers	filter impute_const	0.821

mlwhatif: Data-Centric What-If Analysis

Thanks!

- Summary
 - **mlinspect** allows inspecting a single execution of a given input ML pipeline: https://github.com/stefan-grafberger/mlinspect
 - mlwhatif allows declarative what-if analysis https://github.com/stefan-grafberger/mlwhatif
 - Limitation: Our approach relies on "declaratively" written ML pipelines, where we can identify the semantics of the operations
- For more about my research, visit https://stefan-grafberger.com/

<pre>from mlinspect import PipelineInspector from mlinspect.inspections import MaterializeFirstOutputRows from mlinspect.checks import NoBiasIntroducedFor</pre>
IPYNB_PATH =
<pre>inspector_result = PipelineInspector\ .on_pipeline_from_ipynb_file(IPYNB_PATH)\ .add_required_inspection(MaterializeFirstOutputRows(5))\ .add_check(NoBiasIntroducedFor(['race']))\ .execute()</pre>
<pre>extracted_dag = inspector_result.dag dag node to inspection results = inspector result.dag node to inspection result.dag</pre>

Banana split law

- Operations like calculating the sum and the length of numerical data can be done using folds. All folds can be combined into a single fold.
- sumlength :: $[Int] \rightarrow (Int, Int)$ sumlength xs = (sum xs, length xs)
- sumlength = fold $(\lambda n (x, y) \rightarrow (n + x, 1 + y)) (0, 0)$
- "The strange name of this property derives from the fact that the fold operator is sometimes written using brackets (|) that resemble bananas, and the pairing operator is sometimes called split."

A tutorial on the universality and expressiveness of fold, Graham Hutton, 1999

