
mlinspect: Lightweight Inspection of Native
Machine Learning Pipelines

Stefan Grafberger

UvA

Joint work with

Sebastian Schelter

UvA

Julia Stoyanovich

NYU

Paul Groth

UvA

ML Pipelines in the Real World

2

Integration & Cleaning 
of Data

Feature Encoding Pipelines 
& Data Augmentation

Model Training & 
Evaluation

Heterogeneous 
Datasources

⋈

σ

π⋈

The “last mile” of end-to-end ML

make_pipeline([
(‘encoding’, ColumnTransformer([
 ('num', StandardScaler, …),
 (‘cat', OneHotEncoder, …)])),  
 ’learner’, KerasClassifier(…))

1 2 3

Data Representation  
Bugs

Schema Violations 
& Missing Data

Unsound 
Experimentation

ML in Research vs ML in Production

• Lab conditions

• Mental model of working in a jupyter notebook

• Dataset static, clean, well understood, often fits into memory

• User has PhD in ML

• Production conditions

• Data continuously produced, never clean

• Data originates from many sources, not under control

• Model training is only one piece of large, complex pipelines

• Non-ML experts as end users / operators

• Even experts make mistakes!
On Challenges in Machine Learning Model Management, IEEE Data Engineering Bulletin’19

3

https://chrisguillebeau.com/files/2016/11/Mathboard.jpg

FairPrep: Promoting Data to a First-Class Citizen in Studies on Fairness-Enhancing Interventions, EDBT'20

What Makes Inspection Difficult?

• Relational DBMS: Explicit data model (relations),
computations (queries) expressed declaratively in
relational algebra

• Algebraic properties enable automatic
inspection: e.g. identifying all input records that
contributed to a query result (why-provenance)

• ML Pipelines: lack of unifying algebraic
foundation for data preprocessing, different
technologies “glued together”

4

SELECT name
FROM directors
JOIN movies ON d_id = id
WHERE year > 1990

πname σyear > 1990 (directors ⋈d_id = id movies)

directors movies

⋈d_id = id

σyear > 1990

πname

On Challenges in Machine Learning Model Management, Data Engineering Bulletin’19

The Way Forward

• First approach: invent new holistic systems to regain control -> would require
rewriting all existing code

• Second approach: manually annotating existing code -> does not happen in
practice

• Our approach: retrofit inspection techniques into the existing DS landscape

• Observation: declarative specification of operations for preprocessing present in
some popular ML libraries:

• Pandas mostly applies relational operations

• Estimator / Transformer pipelines (scikit-learn / SparkML / Tensorflow Transform)
offer nestable and composable way to declaratively specify feature transformations

5

Example

6

Can we find ways to automatically hint data  
scientists at potentially problematic operations  
in the preprocessing code of their ML pipelines?

Inspiration from software engineering, e.g.  
code inspection in modern IDE’s

7

Example

mlinspect

• Library to instrument ML preprocessing code with custom
inspections to analyse a single pipeline execution and
detect potential issues

• Works with “native” preprocessing pipelines (no annotation
/ manual instrumentation required) in pandas / sklearn / keras

• Representation of preprocessing operations based on
dataflow graph

• Allows users to implement inspections as user-defined
functions which are automatically applied to the inputs
and outputs of certain operations 
 

8

Data Distribution Debugging in Machine Learning Pipelines, VLDBJ’22

Inspections & Checks

• The central entry point of mlinspect is the
PipelineInspector

• There, you can add inspections and checks

• Inspections:

• Visit each operator in the extracted DAG to analyse
the data flowing through it

• Can also annotate individual tuples, to track how
they flow through the pipeline

• These annotations are only visible for mlinspect

• Checks:

• Check constraints on the extracted DAG and, when
needed, the results of inspections

9

Inspection: MaterializeFirstOutputRows

10

ssn smoke
123 Y
456 N
789 Y
… …

ssn cost
123 100
789 200
… …

ssn smoke cost
123 Y 100
789 Y 200
… … …

smoke cost
Y 100
Y 200
… …

data = pd.merge([patient, cost],  
 on=“ssn”)
data = data[[“smoke”, “cost”]]

• The most simple inspection in mlinspect

• Analyzes the data flowing through each
operator in your ML pipeline, and
materializes the first n rows of each

• This is similar to how data scientists
might try to debug their code with print
statements, just to see what data looks
like at different pipeline stages

• For pipelines using lots of data,
inspections should not materialize all
intermediate data!

Inspection: RowLineage

11

ssn smoke
123 null
456 N
789 Y
… …

ssn cost
123 100
789 200
… …

ssn smoke cost
123 null 100
789 Y 200
… … …

smoke cost
null 100
Y 200
… …

data = pd.merge([patient, cost],  
 on=“ssn”)
data = data[[“smoke”, “cost”]]

• This inspection uses annotation
propagation to track individual tuples
through the ML pipeline

• Operators like filters, joins, and sorting
can make tracking tuples manually
difficult

• Example: you encounter an unexpected
null-value somewhere in your pipeline.
Where does the null-value come from?
What are the corresponding rows in the
initial input tables?

{(1,1)}
{(1,2)}
{(1,3)}

{(2,1)}
{(2,2)}

{(1,1),(2,1)}
{(1,3),(2,2)}

{(1,1),(2,1)}
{(1,3),(2,2)}

HistogramForColumns & NoBiasIntroducedFor

12

• The HistogramForColumns inspection uses
annotation propagation to track group
memberships through the ML pipeline and
materializes histograms of the groups

• The check NoBiasIntroducedFor checks for
sudden distribution shifts by looking at the
histograms before and after each operator

• Next to HistogramForColumns, there is also
IntersectionalHistogramForColumns

• Problem: when should a distribution shift
trigger a warning?

< 60
< 60

data = data[data.county = “CountyA”]
data = data[[“county”]]

age_group county
< 60 CountyA
< 60 CountyA
< 20 CountyA
< 60 CountyB
< 20 CountyB
< 20 CountyB

age_group county
< 60 CountyA
< 60 CountyA
< 20 CountyA

age_group: 50% vs 50% age_group: 66% vs 33%

county
CountyA
CountyA
CountyA < 20

age_group: 66% vs 33%

Check: NoIllegalFeatures

13

• This check only looks at the extracted
DAG to see if columns with certain
names are used as input for an ML model

• As with NoBiasIntroducedFor: this
detection based only on comparing
column names with pre-defined and user-
defined lists is no guarantee that all
features are okay to be used!

• However, this can help with spotting
potential issues easier

Data Quality Inspections

14

• mlinspect also offers exemplary
inspections for data quality checking:
CompletenessOfColumns and
CountDistinctOfColumns

• The completeness of a column is the
fraction of non-null values in it

• On top of these inspections, it is again
possible to build checks

ssn cost
123 100
456 200
789 150

ssn smoke

123 Y

789 N

ssn cost smoke
123 100 Y
456 200 null
789 150 N

data = pd.merge([patient, cost],  
 on=“ssn”, how=“right”)

smoke completeness: N/A

smoke completeness: 66%

smoke completeness: 100%

Demo
https://surfdrive.surf.nl/files/index.php/s/ybriyzsdc6vcd2w 1:06-4:00

https://surfdrive.surf.nl/files/index.php/s/ybriyzsdc6vcd2w
https://surfdrive.surf.nl/files/index.php/s/ybriyzsdc6vcd2w

Inspection Implementation

• Experienced users can also implement
their own inspections and checks

• Implementation of inspections via for-
comprehensions on iterators

• Efficient execution with loop fusion
(“banana-split law”)

• Runtime overhead linear in the number
of input and output records as long as
the row annotations have a fixed size limit

16

Inspection Execution

1. Preparation: Determination of a minimal required set of
inspections based on the inspections and checks
specified by the user.

2. Instrumentation: Instrumentation of function calls of the
AST of the user program, monkey patching.

3. Execution of the instrumented program: Delegation of
the execution of inspections to library-specific
backends; joint execution with pipeline operations;
creation of the dataflow DAG.

4. Results: Evaluation of checks using the DAG and the
inspection results.

17

obj.a_func("arg0", "arg1", my_arg="arg2")

obj.a_func("arg0", "arg1", my_arg=“arg2”,
 **set_code_reference(0,0,0,42))

Monkey Patching

18

Ongoing and Future Work

• Moving the execution of inspections into
more efficient runtime systems like DuckDB

• Use mlinspect as runtime system to enable
different use cases, e.g., automated
screening of ML pipelines during CI pipelines
(ArgusEyes)

• Assisting with more advanced ML pipeline
analysis that requires pipeline rewriting and
cannot be done by just observing a single
execution of a given ML pipeline 
(mlwhatif) 

19

Proactively Screening Machine Learning Pipelines with ArgusEyes, SIGMOD’23 (demo)
Automating and Optimizing Data-Centric What-If Analyses on Native Machine Learning Pipelines, SIGMOD’23

Data-Centric What-If Analysis for ML Pipelines

• ML pipelines are often brittle with respect to
input data

• Data scientists are interested in different what-if
analyses for their pipelines, e.g.,

• What-if there are data quality problems?

• What-if I used different preprocessing?

• Currently, data scientists have to implement this
manually, which is tedious and error-prone

• Goal: Allow declarative what-if analysis by
automatically rewriting extracted pipeline DAGs

20

Automating and Optimizing Data-Centric What-If Analyses on Native Machine Learning Pipelines, SIGMOD’23

mlwhatif: Data-Centric What-If Analysis

21

Thanks!

• Summary

• mlinspect allows inspecting a single execution of a
given input ML pipeline:  
https://github.com/stefan-grafberger/mlinspect

• mlwhatif allows declarative what-if analysis 
https://github.com/stefan-grafberger/mlwhatif

• Limitation: Our approach relies on“declaratively”
written ML pipelines, where we can identify the
semantics of the operations

• For more about my research, visit  
https://stefan-grafberger.com/

22

https://github.com/stefan-grafberger/mlinspect
https://github.com/stefan-grafberger/mlwhatif
https://stefan-grafberger.com/
https://github.com/stefan-grafberger/mlinspect
https://github.com/stefan-grafberger/mlwhatif
https://stefan-grafberger.com/

Banana split law

• Operations like calculating the sum and the length of numerical data can be done
using folds. All folds can be combined into a single fold.

• sumlength :: [Int] → (Int,Int) 
sumlength xs = (sum xs, length xs)

• sumlength = fold (λn (x, y) → (n + x, 1 + y)) (0, 0)

• “The strange name of this property derives from the fact that the fold operator is
sometimes written using brackets (| |) that resemble bananas, and the pairing
operator is sometimes called split.”

23

A tutorial on the universality and expressiveness of fold, Graham Hutton, 1999

