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ML Pipelines in the Real World
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The “last mile” of end-to-end ML

make_pipeline([
(‘encoding’, ColumnTransformer([
 ('num', StandardScaler, …),
 (‘cat', OneHotEncoder, …)])),  
 ’learner’, KerasClassifier(…))
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ML in Research vs ML in Production

• Lab conditions 

• Mental model of working in a jupyter notebook


• Dataset static, clean, well understood, often fits into memory


• User has PhD in ML


• Production conditions 

• Data continuously produced, never clean


• Data originates from many sources, not under control


• Model training is only one piece of large, complex pipelines


• Non-ML experts as end users / operators


• Even experts make mistakes!
On Challenges in Machine Learning Model Management, IEEE Data Engineering Bulletin’19
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https://chrisguillebeau.com/files/2016/11/Mathboard.jpg

FairPrep: Promoting Data to a First-Class Citizen in Studies on Fairness-Enhancing Interventions, EDBT'20



What Makes Inspection Difficult?

• Relational DBMS: Explicit data model (relations), 
computations (queries) expressed declaratively in 
relational algebra


• Algebraic properties enable automatic 
inspection: e.g. identifying all input records that 
contributed to a query result (why-provenance)


• ML Pipelines: lack of unifying algebraic 
foundation for data preprocessing, different 
technologies “glued together”
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SELECT name 
FROM directors
JOIN movies ON d_id = id 
WHERE year > 1990

πname σyear > 1990 (directors ⋈d_id = id movies)

directors        movies

⋈d_id = id

σyear > 1990

πname

On Challenges in Machine Learning Model Management, Data Engineering Bulletin’19



The Way Forward

• First approach: invent new holistic systems to regain control -> would require 
rewriting all existing code 

• Second approach: manually annotating existing code -> does not happen in 
practice


• Our approach: retrofit inspection techniques into the existing DS landscape 

• Observation: declarative specification of operations for preprocessing present in 
some popular ML libraries: 


• Pandas mostly applies relational operations


• Estimator / Transformer pipelines (scikit-learn / SparkML / Tensorflow Transform) 
offer nestable and composable way to declaratively specify feature transformations
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Example
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Can we find ways to automatically hint data  
scientists at potentially problematic operations  
in the preprocessing code of their ML pipelines?


Inspiration from software engineering, e.g.  
code inspection in modern IDE’s
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Example



mlinspect

• Library to instrument ML preprocessing code with custom 
inspections to analyse a single pipeline execution and 
detect potential issues 

• Works with “native” preprocessing pipelines (no annotation 
/ manual instrumentation required) in pandas / sklearn / keras


• Representation of preprocessing operations based on 
dataflow graph


• Allows users to implement inspections as user-defined 
functions which are automatically applied to the inputs 
and outputs of certain operations 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Data Distribution Debugging in Machine Learning Pipelines, VLDBJ’22



Inspections & Checks

• The central entry point of mlinspect is the 
PipelineInspector 

• There, you can add inspections and checks 

• Inspections: 

• Visit each operator in the extracted DAG to analyse 
the data flowing through it


• Can also annotate individual tuples, to track how 
they flow through the pipeline


• These annotations are only visible for mlinspect


• Checks: 

• Check constraints on the extracted DAG and, when 
needed, the results of inspections

9



Inspection: MaterializeFirstOutputRows
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ssn smoke
123 Y
456 N
789 Y
… …

ssn cost
123 100
789 200
… …

ssn smoke cost
123 Y 100
789 Y 200
… … …

smoke cost
Y 100
Y 200
… …

data = pd.merge([patient, cost],  
                on=“ssn”)
data = data[[“smoke”, “cost”]]

• The most simple inspection in mlinspect


• Analyzes the data flowing through each 
operator in your ML pipeline, and 
materializes the first n rows of each 


• This is similar to how data scientists 
might try to debug their code with print 
statements, just to see what data looks 
like at different pipeline stages


• For pipelines using lots of data, 
inspections should not materialize all 
intermediate data!



Inspection: RowLineage
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ssn smoke
123 null
456 N
789 Y
… …

ssn cost
123 100
789 200
… …

ssn smoke cost
123 null 100
789 Y 200
… … …

smoke cost
null 100
Y 200
… …

data = pd.merge([patient, cost],  
                on=“ssn”)
data = data[[“smoke”, “cost”]]

• This inspection uses annotation 
propagation to track individual tuples 
through the ML pipeline 

• Operators like filters, joins, and sorting 
can make tracking tuples manually 
difficult


• Example: you encounter an unexpected 
null-value somewhere in your pipeline. 
Where does the null-value come from? 
What are the corresponding rows in the 
initial input tables? 

{(1,1)}
{(1,2)}
{(1,3)}

{(2,1)}
{(2,2)}

{(1,1),(2,1)}
{(1,3),(2,2)}

{(1,1),(2,1)}
{(1,3),(2,2)}



HistogramForColumns & NoBiasIntroducedFor
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• The HistogramForColumns inspection uses 
annotation propagation to track group 
memberships through the ML pipeline and 
materializes histograms of the groups 

• The check NoBiasIntroducedFor checks for 
sudden distribution shifts by looking at the 
histograms before and after each operator


• Next to HistogramForColumns, there is also 
IntersectionalHistogramForColumns 

• Problem: when should a distribution shift 
trigger a warning?

< 60
< 60

data = data[data.county = “CountyA”]
data = data[[“county”]]

age_group county
< 60 CountyA
< 60 CountyA
< 20 CountyA
< 60 CountyB
< 20 CountyB
< 20 CountyB

age_group county
< 60 CountyA
< 60 CountyA
< 20 CountyA

age_group: 50% vs 50% age_group: 66% vs 33%

county
CountyA
CountyA
CountyA < 20

age_group: 66% vs 33%



Check: NoIllegalFeatures
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• This check only looks at the extracted 
DAG to see if columns with certain 
names are used as input for an ML model


• As with NoBiasIntroducedFor: this 
detection based only on comparing 
column names with pre-defined and user-
defined lists is no guarantee that all 
features are okay to be used!


• However, this can help with spotting 
potential issues easier



Data Quality Inspections
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• mlinspect also offers exemplary 
inspections for data quality checking: 
CompletenessOfColumns and 
CountDistinctOfColumns 

• The completeness of a column is the 
fraction of non-null values in it


• On top of these inspections, it is again 
possible to build checks

ssn cost
123 100
456 200
789 150

ssn smoke

123 Y

789 N

ssn cost smoke
123 100 Y
456 200 null
789 150 N

data = pd.merge([patient, cost],  
                on=“ssn”, how=“right”)

smoke completeness: N/A

smoke completeness: 66%

smoke completeness: 100%



Demo 
https://surfdrive.surf.nl/files/index.php/s/ybriyzsdc6vcd2w 1:06-4:00

https://surfdrive.surf.nl/files/index.php/s/ybriyzsdc6vcd2w
https://surfdrive.surf.nl/files/index.php/s/ybriyzsdc6vcd2w


Inspection Implementation

• Experienced users can also implement 
their own inspections and checks


• Implementation of inspections via for-
comprehensions on iterators


• Efficient execution with loop fusion 
(“banana-split law”)


• Runtime overhead linear in the number 
of input and output records as long as 
the row annotations have a fixed size limit
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Inspection Execution

1. Preparation: Determination of a minimal required set of 
inspections based on the inspections and checks 
specified by the user. 


2. Instrumentation: Instrumentation of function calls of the 
AST of the user program, monkey patching. 


3. Execution of the instrumented program: Delegation of 
the execution of inspections to library-specific 
backends; joint execution with pipeline operations; 
creation of the dataflow DAG. 


4. Results: Evaluation of checks using the DAG and the 
inspection results. 
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obj.a_func("arg0", "arg1", my_arg="arg2") 

obj.a_func("arg0", "arg1", my_arg=“arg2”,
            **set_code_reference(0,0,0,42)) 



Monkey Patching
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Ongoing and Future Work

• Moving the execution of inspections into 
more efficient runtime systems like DuckDB


• Use mlinspect as runtime system to enable 
different use cases, e.g., automated 
screening of ML pipelines during CI pipelines 
(ArgusEyes)


• Assisting with more advanced ML pipeline 
analysis that requires pipeline rewriting and 
cannot be done by just observing a single 
execution of a given ML pipeline 
(mlwhatif) 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Proactively Screening Machine Learning Pipelines with ArgusEyes, SIGMOD’23 (demo)
Automating and Optimizing Data-Centric What-If Analyses on Native Machine Learning Pipelines, SIGMOD’23



Data-Centric What-If Analysis for ML Pipelines

• ML pipelines are often brittle with respect to 
input data 

• Data scientists are interested in different what-if 
analyses for their pipelines, e.g.,


• What-if there are data quality problems?


• What-if I used different preprocessing?


• Currently, data scientists have to implement this 
manually, which is tedious and error-prone


• Goal: Allow declarative what-if analysis by 
automatically rewriting extracted pipeline DAGs
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Automating and Optimizing Data-Centric What-If Analyses on Native Machine Learning Pipelines, SIGMOD’23



mlwhatif: Data-Centric What-If Analysis
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Thanks!

• Summary 

• mlinspect allows inspecting a single execution of a 
given input ML pipeline:  
https://github.com/stefan-grafberger/mlinspect 

• mlwhatif allows declarative what-if analysis 
https://github.com/stefan-grafberger/mlwhatif 

• Limitation: Our approach relies on“declaratively” 
written ML pipelines, where we can identify the 
semantics of the operations  

• For more about my research, visit  
https://stefan-grafberger.com/
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https://github.com/stefan-grafberger/mlinspect
https://github.com/stefan-grafberger/mlwhatif
https://stefan-grafberger.com/
https://github.com/stefan-grafberger/mlinspect
https://github.com/stefan-grafberger/mlwhatif
https://stefan-grafberger.com/


Banana split law

• Operations like calculating the sum and the length of numerical data can be done 
using folds. All folds can be combined into a single fold.


• sumlength :: [Int] → (Int,Int) 
sumlength xs = (sum xs, length xs)


• sumlength = fold (λn (x, y) → (n + x, 1 + y)) (0, 0)


• “The strange name of this property derives from the fact that the fold operator is 
sometimes written using brackets (| |) that resemble bananas, and the pairing 
operator is sometimes called split.”
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A tutorial on the universality and expressiveness of fold, Graham Hutton, 1999


