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Perspectives on the role and responsibility of
the data-management research community in
designing, developing, using, and overseeing
automated decision systems.

BY JULIA STOYANOVICH, SERGE ABITEBOUL,
BILL HOWE, H.V. JAGADISH, AND SEBASTIAN SCHELTER

Responsible
Data
Management

INCORPORATING ETHICS AND legal compliance into
data-driven algorithmic systems has been attracting
significant attention from the computing research
community, most notably under the umbrella of fair®
and interpretable'® machine learning. While important,
much of this work has been limited in scope to the “last
mile” of data analysis and has disregarded both the
system’s design, development, and use life cycle (What
are we automating and why? Is the system working
as intended? Are there any unforeseen consequences
post-deployment?) and the data life cycle (Where

did the data come from? How long is it valid and
appropriate?). In this article, we argue two points.
First, the decisions we make during data collection
and preparation profoundly impact the robustness,
fairness, and interpretability of the systems we build.
Second, our responsibility for the operation of these
systems does not stop when they are deployed.
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Example: Automated hiring sys-
tems. To make our discussion con-
crete, consider the use of predictive
analytics in hiring. Automated hiring
systems are seeing ever broader use
and are as varied as the hiring practic-
es themselves, ranging from resume
screeners that claim to identify prom-
ising applicants® to video and voice
analysis tools that facilitate the inter-
view process® and game-based assess-
ments that promise to surface person-
ality traits indicative of future success.*
Bogen and Rieke® describe the hiring
process from the employer’s point of
view as a series of decisions that forms
a funnel, with stages corresponding to

a https://www.crystalknows.com
b https://www.hirevue.com
¢ https://www.pymetrics.ai
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sourcing, screening, interviewing, and
selection. (Figure 1 depicts a slightly
reinterpreted version of that funnel.)

The popularity of automated hir-
ing systems is due in no small part to
our collective quest for efficiency. In
2019 alone, the global market for arti-
ficial intelligence (AI) in recruitment
was valued at $580 million.? Employ-
ers choose to use these systems to
source and screen candidates faster,
with less paperwork, and, in the post-
COVID-19 world, as little in-person
contact as is practical. Candidates
are promised a more streamlined
job-search experience, although they
rarely have a say in whether they are
screened by a machine.

d https://www.industryarc.com/Report/19231/ar-
tificial-intelligence-in-recruitmentmarket.html

The flip side of efficiency afforded
by automation is that we rarely under-
stand how these systems work and, in-
deed, whether they work. Is a resumé
screener identifying promising candi-
dates or is it picking up irrelevant—or
even discriminatory—patterns from
historical data, limiting access to es-
sential economic opportunity for en-
tire segments of the population and
potentially exposing an employer to le-
gal liability? Is a job seeker participat-
ing in a fair competition if she is being
systematically screened out, with no
opportunity for human intervention
and recourse, despite being well-quali-
fied for the job?

If current adoption trends are any
indication, automated hiring systems
are poised toimpacteach one ofus—as
employees, employers, or both. What’s

key insights

m Responsible data management
involves incorporating ethical and legal
considerations across the life cycle of
data collection, analysis, and use in all
data-intensive systems, whether they
involve machine learning and Al or not.

m Decisions during data collection and
preparation profoundly impact the
robustness, fairness, and interpretability
of data-intensive systems. We must
consider these earlier life cycle stages
to improve data quality, control for
bias, and allow humans to oversee the
operation of these systems.

B Data alone is insufficient to distinguish
between a distorted reflection of a
perfect world, a perfect reflection of
a distorted world, or a combination
of both. The assumed or externally
verified nature of the distortions must
be explicitly stated to allow us to decide
whether and how to mitigate their effects.
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Figure 1. The hiring funnel is an example
of an automated decision system—a data-
driven, algorithm-assisted process that
culminates in job offers to some candi-
dates and rejections to others.

more, many of us will be asked to help
design and build such systems. Yet,
their widespread use far outpaces our
collective ability to understand, verify,
and oversee them. This is emblematic
of a broader problem: the widespread
and often rushed adoption of automat-
ed decision systems (ADSs) without an
appropriate prior evaluation of their
effectiveness, legal compliance, and
social sustainability.

Defining ADSs. There is currently
no consensus as to what an ADS is or
is not, though proposed regulation
in the European Union (EU), several
U.S. states, and other jurisdictions are
beginning to converge on some fac-
tors to consider: the degree of human
discretion in the decision, the level of
impact, and the specific technologies
involved. As an example of the chal-
lenges, Chapter 6 of the New York City
ADS Task Force report® summarizes a
months-long struggle to, somewhat
ironically, define its own mandate:
to craft a definition that captures the
breadth of ethical and legal concerns,
yet remains practically useful. Our
view is to lean towards breadth, but to
tailor operational requirements and
oversight mechanisms for an ADS de-

e https://wwwl.nyc.gov/site/adstaskforce/index.
page

pending on application domain and
context of use, level of impact,** and
relevant legal and regulatory require-
ments. For example, the use of ADSs
in hiring and employment is subject
to different concerns than their use in
credit and lending. Further, the poten-
tial harms will be different depending
on whether an ADS is used to advertise
employment or financial opportuni-
ties or to help make decisions about
whom to hire and to whom a loan
should be offered.

To define ADS, we may start with
some examples. Figure 1’s hiring fun-
nel and associated components, such
as an automated resume screening
tool and a tool that matches job ap-
plicants with positions, are natural
examples of ADSs. But is a calculator
an ADS? No, because it is not qualified
with a context of use. Armed with these
examples, we propose a pragmatic def-
inition of ADSs:

» They process data about people,
some of which may be sensitive or pro-
prietary

» They help make decisions that are
consequential to people’s lives and
livelihoods

» They involve a combination of hu-
man and automated decision-making

» They are designed to improve effi-
ciency and, where applicable, promote
equitable access to opportunity

In this definition, we deliberately
direct our attention toward systems in
which the ultimate decision-making
responsibility is with a human and
away from fully autonomous systems,
such as self-driving cars. Advertising
systems are ADSs; while they may op-
erate autonomously, the conditions
of their operation are specified and
reviewed via negotiations between
platform providers and advertisers.
Further, regulation is compelling
ever closer human oversight and in-
volvement in the operations of such
systems. Actuarial models, music rec-
ommendation systems, and health
screening tools are all ADSs as well.

Why responsible data manage-
ment? The placement of technical
components that assist in decision-
making—a spreadsheet formula, a
matchmaking algorithm, or predictive
analytics—within the [life cycle of data
collection and analysis is central to de-
fining an ADS. This, in turn, uniquely

66 COMMUNICATIONS OF THE ACM | JUNE 2022 | VOL.65 | NO.6

positions the data-management com-
munity to deliver true practical impact
in the responsible design, develop-
ment, use, and oversight of these sys-
tems. Because data-management tech-
nology offers a natural, centralized
point for enforcing policies, we can
develop methodologies to enforce re-
quirements transparently and explicit-
ly through the life cycle of an ADS. Due
to the unique blend of theory and sys-
tems in our methodological toolkit, we
can help inform regulation by study-
ing the feasible tradeoffs between dif-
ferent classes of legal and efficiency re-
quirements. Our pragmatic approach
enables us to support compliance by
developing standards for effective and
efficient auditing and disclosure, and
by developing protocols for embed-
ding these standards in systems.

In this article, we assert that the
data-management community should
play a central role in responsible ADS
design, development, use, and over-
sight. Automated decision systems
may or may not use Al, and they may
or may not operate with a high degree
of autonomy, but they all rely heav-
ily on data. To set the stage for our
discussion, we begin by interpreting
the term “bias” (Section 2). We then
discuss the data management-related
challenges of ADS oversight and em-
bedding responsibility into ADS life
cycle management, pointing out spe-
cific opportunities for novel research
contributions. Our focus is on specific
issues where there is both a well-artic-
ulated need and strong evidence that
technical interventions are possible.
Fully addressing all the issues we raise
requires socio-technical solutions that
go beyond the scope of what we can do
with technology alone. Although vital,
since our focus is on technical data-
management interventions, we do not
discuss such socio-technical solutions
in this article.

Crucially, the data-management
problems we seek to address are not
purely technical. Rather, they are so-
cio-legal-technical. It is naive to expect
that purely technical solutions will suf-
fice, so we must step outside our engi-
neering comfort zone and start rea-
soning in terms of values and beliefs,
in addition to checking results against
known ground truths and optimizing
for efficiency objectives. This seems



high-risk, but one of the upsides is
being able to explain to our children
what we do and why it matters.

AU About That Bias

We often hear that an ADS, such as an
automated hiring system, operates on
“biased data” and results in “biased
outcomes.” What is the meaning of
the term “bias” in this context, how
does it exhibit itself through the ADS
life cycle, and what does data-manage-
ment technology have to offer to help
mitigate it?

Bias in a general sense refers to
systematic and unfair discrimination
against certain individuals or groups
of individuals in favor of others. In
their seminal 1996 paper, Friedman
and Nissenbaum identified three types
of bias that can arise in computer sys-
tems: preexisting, technical, and emer-
gent.*> We discuss each of these in turn
in the remainder of this section, while
also drawing on a recent fine-grained
taxonomy of bias, with insightful ex-
amples that concern social media plat-
forms, from Olteanu et al.?¢

Preexisting bias. This type of bias
has its origins in society. In data-sci-
ence applications, it exhibits itself in
the input data. Detecting and miti-
gating preexisting bias is the subject
of much research under the heading
of algorithmic fairness.® Importantly,
the presence or absence of this type of
bias cannot be scientifically verified;
rather, it must be postulated based on
a belief system." Consequently, the ef-
fectiveness—or even the validity—of
a technical attempt to mitigate preex-

isting bias is predicated on that belief
system. To explain preexisting bias
and the limits of technical interven-
tions, such as data debiasing, we find
it helpful to use the mirror reflection
metaphor, depicted in Figure 2.

The mirror metaphor. Data is a mir-
ror reflection of the world. When we
think about preexisting bias in the
data, we interrogate this reflection,
which is often distorted. One possible
reason is that the mirror (the mea-
surement process) introduces distor-
tions. It faithfully represents some
portions of the world, while amplify-
ing or diminishing others. Another
possibility is that even a perfect mir-
ror can only reflect a distorted world—
aworld such as itis, and not as it could
or should be.

The mirror metaphor helps us
make several simple but important
observations. First, based on the re-
flection alone, and without knowledge
about the properties of the mirror
and of the world it reflects, we cannot
know whether the reflection is dis-
torted, and, if so, for what reason. That
is, data alone cannot tell us whether
it is a distorted reflection of a perfect
world, a perfect reflection of a distort-
ed world, or whether these distortions
compound. The assumed or externally
verified nature of the distortions must
be explicitly stated, to allow us to de-
cide whether and how to mitigate their
effects. Our second observation is that
itis up to people—individuals, groups,
and society at large—and not data
or algorithms, to come to a consen-
sus about whether the world is how it

Figure 2. Data as a mirror reflection of the world,* illustrated by Falaah Arif Khan.
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should be or if it needs to be improved
and, if so, how we should go about im-
proving it. The third and final observa-
tion is that, if data is used to make im-
portant decisions, such as who to hire
and what salary to offer, then compen-
sating for distortions is worthwhile.
But the mirror metaphor only takes us
so far. We must work much harder—
usually going far beyond technological
solutions—to propagate the changes
back into the world and not merely
brush up the reflection.*”

As an example of preexisting bias
in hiring, consider the use of an ap-
plicant’s Scholastic Assessment Test
(SAT) score during the screening stage.
It has been documented that the mean
score of the math section of the SAT,
as well as the shape of the score distri-
bution, differs across racial groups.*
If we believed that standardized test
scores were sufficiently impacted by
preparation courses and that the score
itself says more about socioeconomic
conditions than an individual’s aca-
demic potential, then we would con-
sider the data to be biased. We may
then seek to correct for that bias be-
fore using the feature, for example,
by selecting the top-performing indi-
viduals of each racial group, or by us-
ing a more sophisticated fair ranking
method in accordance with our beliefs
about the nature of the bias and with
our bias mitigation goals.** Alterna-
tively, we may disregard this feature
altogether.

Technical bias. This type of bias
arises due to the operation of the tech-
nical system itself, and it can amplify

(a) Data is an image of the world, its mirror reflec-
tion. When we think about bias in the data,
we interrogate this reflection. Does the data
systematically over-represent or under-repre-
sent some parts of the world, or does it distort
reality in some other way?

(b) Even if we were able to reflect the world per-
fectly in the data, it would still be a reflection
of the world as it is, not how it could or should
be. People—not data or algorithms—must
decide what world we want to live in.
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(c) Debiasing data may be worthwhile if we are
about to base consequential decisions on that
data. But we must be careful to propagate the
changes back into the world, not merely touch
up its reflection.
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preexisting bias. Technical bias, par-
ticularly when it is due to preprocess-
ing decisions or post-deployment is-
sues in data-intensive pipelines, has
been noted as problematic,*?%% but
it has so far received limited attention
when it comes to diagnostics and miti-
gation techniques. We now give exam-
ples of potential sources of technical
bias in several ADS life cycle stages,
which are particularly relevant to data
management.

Data cleansing. Methods for miss-
ing-value imputation that are based on
incorrect assumptions about whether
data is missing at random may distort
protected group proportions. Con-
sider a form that gives job applicants
a binary gender choice but also allows
gender to be unspecified. Suppose that
about half of the applicants identify
as men and half as women, but that
women are more likely to omit gen-
der. If mode imputation—replacing a
missing value with the most frequent
value for the feature, a common set-
ting in scikit-learn—is applied, then
all (predominantly female) unspeci-
fied gender values will be set to male.
More generally, multiclass classifi-
cation for missing-value imputation
typically only uses the most frequent
classes as target variables,* leading to
a distortion for small groups, because
membership in these groups will not
be imputed.

Next, suppose that some individu-
als identify as non-binary. Because the
system only supports male, female,
and unspecified as options, these indi-
viduals will leave gender unspecified.
If mode imputation is used, then their
gender will be set to male. A more so-
phisticated imputation method will
still use values from the active domain
of the feature, setting the missing val-
ues of gender to either male or female.
This example illustrates that bias can
arise from an incomplete or incorrect
choice of data representation. While
dealing with null values is known to
be difficult and is already considered
among the issues in data cleansing,
the needs of responsible data manage-
ment introduce new problems. It has
been documented that data-quality
issues often disproportionately affect
members of historically disadvan-
taged groups,*® so we risk compound-
ing technical bias due to data repre-

The flip side of
efficiency afforded
by automation

is that we rarely
understand how
these systems
work and, indeed,
whether they work.
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sentation with bias due to statistical
concerns.

Other data transformations that
can introduce skew include text nor-
malization, such as lowercasing, spell
corrections, or stemming. These op-
erations can be seen as a form of ag-
gregation, in effect collapsing terms
with different meanings under the
same representation. For example,
lowercasing “Iris,” a person’s name,
as “iris” will make it indistinguishable
from the name of a flower or from the
membrane behind the cornea of the
eye, while stemming the terms “[tree]
leaves” and “[he is] leaving” will repre-
sent both as “leav.”*

Other examples of aggregation that
can lead to data distribution changes
include “zooming out” spatially or
temporally: replacing an attribute val-
ue with a coarser geographic or tempo-
ral designation or mapping a location
to the center of the corresponding geo-
graphical bounding box.?

Filtering. Selections and joins are
commonly used as part of data pre-
processing. A selection operation
checks each data record against a
predicate—for instance, U.S. address
ZIP code is 10065 or age is less than
30—and retains only those records
that match the predicate. A join com-
bines data from multiple tables—for
example, creating a record that con-
tains a patient’s demographics and
clinical records using the social securi-
ty number attribute contained in both
data sources as the join key. These
operations can arbitrarily change the
proportion of protected groups (for ex-
ample, female gender) even if they do
not directly use the sensitive attribute
(for example, gender) as part of the
predicate or the join key. For example,
selecting individuals whose mailing
address ZIP code is 10065—one of the
most affluent locations on Manhat-
tan’s Upper East Side—may change
the data distribution by race. Similar-
ly, joining patient demographic data
with clinical records may introduce
skew by age, with fewer young individ-
uals having matching clinical records.
These changes in proportion may be
unintended but are important to de-
tect, particularly when they occur dur-
ing one of many preprocessing steps
in the ADS pipeline.

Another potential source of techni-



cal bias is the use of pretrained word
embeddings. For example, a pipeline
may replace a textual name feature
with the corresponding vector from a
word embedding that is missing for
rare, non-Western names. If we then
filter out records for which no embed-
ding was found, we may dispropor-
tionately remove individuals from spe-
cific ethnic groups.

Ranking. Technical bias can arise
when results are presented in ranked
order, such as when a hiring manager
is considering potential candidates
to invite for in-person interviews.
The main reason is inherent position
bias—the geometric drop in visibility
for items at lower ranks compared to
those at higher ranks—which arises
because in Western cultures we read
from top to bottom and from left to
right: Items in the top-left corner of
the screen attract more attention.* A
practical implication is that, even if
two candidates are equally suitable
for the job, only one of them can be
placed above the other, which implies
prioritization. Depending on the ap-
plication’s needs and on the decision-
maker’s level of technical sophistica-
tion, this problem can be addressed
by suitably randomizing the ranking,
showing results with ties, or plotting
the score distribution.

Emergent bias. This type of bias
arises in the context of use of the tech-
nical system. In Web ranking and
recommendation in e-commerce, a
prominent example is “rich-get-rich-
er”: searchers tend to trust systems
to show them the most suitable items
at the top positions, which in turn
shapes a searcher’s idea of a satisfac-
tory answer.

This example immediately trans-
lates to hiring and employment. If hir-
ing managers trust recommendations
from an ADS, and if these recommen-
dations systematically prioritize ap-
plicants of a particular demographic
profile, then a feedback loop will be
created, further diminishing work-
force diversity over time. Bogen and
Rieke® illustrate this problem: “For
example, an employer, with the help
of a third-party vendor, might select
a group of employees who meet some
definition of success—for instance,
those who ‘outperformed’ their peers
on the job. If the employer’s perfor-

mance evaluations were themselves
biased, favoring men, then the result-
ing model might predict that men are
more likely to be high performers than
women, or make more errors when
evaluating women.”

Emergent bias is particularly dif-
ficult to detect and mitigate, because
it refers to the impacts of an ADS out-
side the systems’ direct control. We
will cover this in the “Overseeing ADS”
section.

Managing the ADS Data Life Cycle
Automated decision systems critically
depend on data and should be seen
through the lens of the data life cycle.*
Responsibility concerns, and impor-
tant decision points, arise in data shar-
ing, annotation, acquisition, curation,
cleansing, and integration. Conse-
quently, substantial opportunities for
improving data quality and represen-
tativeness, controlling for bias, and al-
lowing humans to oversee the process
are missed if we do not consider these
earlier life cycle stages.

Database systems centralize cor-
rectness constraints to simplify appli-
cation development with the help of
schemas, standards, and transaction
protocols. As algorithmic fairness and
interpretability emerge as first-class
requirements, there is a need to de-
velop generalized solutions that em-
bed them as constraints and that work
across a range of applications. In what
follows, we highlight promising ex-
amples of our own recent and ongoing
work that is motivated by this need.
These examples underscore that tangi-
ble technical progress is possible and
that much work remains to be done to
offer systems support for the respon-
sible management of the ADS life cy-
cle. These examples are not intended
to be exhaustive, but merely illustrate
technical approaches that apply to dif-
ferent points of the data life cycle. Ad-
ditional examples, and research direc-
tions, are discussed in Stoyanovich et
al.”” Before diving into the details, we
recall the previously discussed mirror-
reflection metaphor, as a reminder of
the limits of technical interventions.

Data acquisition. Consider the use
of an ADS for pre-screening employ-
ment applications. Historical under-
representation of women and minori-
ties in the workforce can lead to an
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underrepresentation of these groups
in the training set, which in turn could
push the ADS to reject more minority
applicants or, more generally, to ex-
hibit disparate predictive accuracy.’
It is worth noting that the problem
here is not only that some minorities
are proportionally under-represented,
but also that the absolute representa-
tion of some groups is low. Having 2%
African Americans in the training set
is a problem when they constitute 13%
of the population. But it is also a prob-
lem to have only 0.2% Native Ameri-
cans in the training set, even if that is
representative of their proportion in
the population. Such a low number
can lead to Native Americans being ig-
nored by the ADS as a small “outlier”
group.

To mitigate low absolute represen-
tation, Asudeh et al.> assess the cov-
erage of a given dataset over multiple
categorical features. An important
question for an ADS vendor is, then,
what can it do about the lack of cover-
age. The proposed answer is to direct
them to acquire more data, in a way
that is cognizant of the cost of data ac-
quisition. Asudeh et al.? use a thresh-
old to determine an appropriate level
of coverage and experimentally dem-
onstrate an improvement in classifier
accuracy for minority groups when ad-
ditional data is acquired.

This work addresses a step in the
ADS life cycle upstream from model
training and shows how improving
data representativeness can improve
accuracy and fairness, in the sense of
disparate predictive accuracy.” There
are clear future opportunities to inte-
grate coverage-enhancing interven-
tions more closely into ADS life cycle
management, both to help orchestrate
the pipelines and, perhaps more im-
portantly, to make data acquisition
task-aware, setting coverage objectives
based on performance requirements
for the specific predictive analytics
downstream rather than based on a
global threshold.

Data preprocessing. Even when the
acquired data satisfies representative-
ness requirements, it may still be sub-
ject to preexisting bias, as discussed in
the “Preexisting bias” section. We may
thus be interested in developing inter-
ventions to mitigate these effects. The
algorithmic fairness community has
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developed dozens of methods for data
and model de-biasing, yet the vast ma-
jority of these methods take an asso-
ciational interpretation of fairness that
is solely based on data, without refer-
ence to additional structure or con-
text. In what follows, we present two
recent examples of work that take a
causal interpretation of fairness: a da-
tabase repair framework for fair classi-
fication by Salimi et al.? and a frame-
work for fair ranking that mitigates
intersectional discrimination by Yang
et al.’® We focus on examples of causal
fairness notions here because they
correspond very closely to the method-
ological toolkit of data management
by making explicit the use of structural
information and constraints.

Causal fairness approaches—for
example, Kilbertus et al.** and Kusner
et al.*?>—capture background knowl-
edge as causal relationships between
variables, usually represented as caus-
al DAGs, or directed acyclic graphs,
in which nodes represent variables,
and edges represent potential causal
relationships. Consider the task of
selecting job applicants at a mov-
ing company and the corresponding
causal model in Figure 3, an example
inspired by Datta et al.'® Applicants
are hired based on their qualification
score Y, computed from weight-lifting
ability X, and affected by gender G and
race R, either directly or through X. By
representing relationships between
features in a causal DAG, we gain an
ability to postulate which relation-
ships between features and outcomes
are legitimate and which are potential-
ly discriminatory. In our example, the
impact of gender (G) on the decision to
hire an individual for a position with
a moving company (Y) may be consid-
ered admissible if it flows through the
node representing weight-lifting abil-
ity (X). On the other hand, the direct
impact of gender on the decision to
hire would constitute direct discrimi-
nation and would thus be considered
inadmissible.

Salimi et al.?” introduced a measure
called interventional fairness for classi-
fication and showed how to achieve it
based on observational data, without
requiring the complete causal mod-
el. The authors consider the Markov
boundary (MB)—parents, children,
children’s other parents—of a vari-

The data
management
problems we are
looking to address
are not purely
technical. Rather,
they are socio-legal-
technical.
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able Y, which describes whether those
nodes can potentially influence Y.
Their key result is that the algorithm
satisfies interventional fairness if the
MB of the outcome is a subset of the
MB of the admissible variables—that
is, admissible variables “shield” the
outcome from the influence of sensi-
tive and inadmissible variables. This
condition on the MB is used to design
database repair algorithms, through
a connection between the indepen-
dence constraints encoding fairness
and multivalued dependencies (MVD)
that can be checked using the train-
ing data. Several repair algorithms are
described, and the results show that in
addition to satisfying interventional
fairness, the classifier trained on re-
paired data performs well against as-
sociational fairness metrics.

As another example of a data pre-
processing method that makes explic-
it use of structural assumptions, Yang
et al.’® developed a causal framework
for intersectionally fair ranking. Their
motivation is that it is possible to give
the appearance of being fair with re-
spect to each sensitive attribute, such
as race and gender separately, while
being unfair with respect to intersec-
tional subgroups.’ For example, if fair-
ness is taken to mean proportional
representation among the top-k, it is
possible to achieve proportionality for
each gender subgroup (for instance,
men and women) and for each racial
subgroup (for example, Black and
White), while still having inadequate
representation for a subgroup defined
by the intersection of both attributes
(for example, Black women). The gist
of the methods of Yang et al.’® is to
use a causal model to compute model-
based counterfactuals, answering the
question: “What would this person’s
score be if she had been a Black wom-
an (for example)?” and then ranking
on counterfactual scores to achieve in-
tersectional fairness.

Data-distribution debugging. We
now return to our discussion of tech-
nical bias and consider data-distri-
bution shifts, which may arise during
data preprocessing and impact ma-
chine learning-model performance
downstream. In contrast to important
prior work on data-distribution shift
detection in deployed models—for
instance, Rabanser et al.?’—our focus



is explicitly on data manipulation, a
cause of data-distribution shifts that
has so far been overlooked. We will il-
lustrate how this type of bias can arise
and will suggest an intervention: a
data-distribution debugger that helps
surface technical bias, allowing a data
scientist to mitigate it.*

Consider Ann, a data scientist at
a job-search platform that matches
profiles of job seekers with openings
for which they are well-qualified and
in which they may be interested. A
job seeker’s interest in a position is
estimated based on several factors,
including the salary and benefits be-
ing offered. Ann uses applicants’ re-
sumes, self-reported demographics,
and employment histories as input.
Following her company’s best practic-
es, she starts by splitting her dataset
into training, validation, and test sets.
Ann then uses pandas, scikit-learn,
and accompanying data transform-
ers to explore the data and implement
data preprocessing, model selection,
tuning, and validation. Ann starts
preprocessing by computing value
distributions and correlations for the
features in the dataset and identifying
missing values. She will use a default
imputation method in scikit-learn to
fill these in, replacing missing values
with the mode value for that feature.
Finally, Ann implements model se-
lection and hyperparameter tuning,
selecting a classifier that displays suf-
ficient accuracy.

When Ann more closely considers
the performance of the classifier, she
observes a disparity in predictive ac-
curacy:’ Accuracy is lower for older job
seekers, who are frequently matched
with lower-paying positions than they
would expect. Ann now needs to un-
derstand why this is the case, whether
any of her technical choices during
pipeline construction contributed to
this disparity, and what she can do to
mitigate this effect.

It turns out that this issue was the
result of a data-distribution bug—a
shift in the values of a feature that is
important for the prediction and that
is the result of a technical choice dur-
ing pre-processing. Here, that feature
is the number of years of job experi-
ence. The bug was introduced because
of Ann’s assumption that the values
of this feature are missing at random

and because of her choice to use mode
imputation, which is consistent with
this assumption. In fact, values were
missing more frequently for older job
seekers: They would not enter a high
value in “years of experience” because
they might be afraid of age discrimi-
nation. This observation is consistent
with the intuition that individuals are
more likely to withhold information
that may disadvantage them. Taken
together, these two factors resulted
in imputed years-of-experience val-
ues skewing lower, leading to a lower
salary-requirement estimate and im-
pacting older applicants more than
younger ones.

Data-distribution bugs are difficult
to catch. In part, this is because differ-
ent pipeline steps are implemented
using different libraries and abstrac-
tions, and the data representation
often changes from relational data
to matrices during data preparation.
Further, preprocessing often com-
bines relational operations on tabu-
lar data with estimator/transformer
pipelines, a composable and nestable
abstraction for combining operations
on array data which originates from
scikit-learn and is executed in a hard-
to-debug manner with nested function
calls.

Grafberger et al. designed and
implemented mlinspect,’”® a light-
weight data-distribution debugger
that supports automated inspection
of data-intensive pipelines to detect
the accidental introduction of statisti-
cal bias and linting for best practices.
The mlinspect library extracts logical
query plans—modeled as DAGs of pre-
processing operators—from pipelines
that use popular libraries, such as pan-
das and scikit-learn, and combines
relational operations and estimator/

Figure 3. Causal model includes sensitive
attributes: G (gender), R (race), X (weight-

lifting ability), and Y (utility score).
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transformer pipelines. The library
automatically instruments the code
and traces the impact of operators on
properties, such as the distribution of
sensitive groups in the data. mlinspect
is a necessary first step in what we
hope will be a long line of work in col-
lectively developing data-science best
practices and the tooling to support
their broad adoption. Much important
work remains to allow us to start treat-
ing data as a first-class citizen in soft-
ware development.

Overseeing ADS

We are in the midst of a global trend to
regulate the use of ADSs. In the EU, the
General Data Protection Regulation
(GDPR) offers individuals protections
regarding the collection, processing,
and movement of their personal data,
and applies broadly to the use of such
data by governments and private-
sector entities. Regulatory activity in
several countries outside of the EU,
notably Japan and Brazil, is in close
alignment with the GDPR. In the U.S,,
many major cities, a handful of states,
and the Federal government are estab-
lishing task forces and issuing guide-
lines about responsible development
and technology use. With its focus
on data rights and data-driven deci-
sion-making, the GDPR is, without a
doubt, the most significant piece of
technology regulation to date, serving
as a “common denominator” for the
oversight of data collection and usage,
both in the EU and worldwide. For this
reason, we will discuss the GDPR in
some depth in the remainder of this
section.

The GDPR aims to protect the rights
and freedoms of natural persons with
regard to how their personal data is
processed, moved, and exchanged (Ar-
ticle 1). The GDPR is broad in scope
and applies to “the processing of per-
sonal data wholly or partly by automat-
ed means” (Article 2), both in the pri-
vate and public sectors. Personal data
is broadly construed and refers to any
information relating to an identified
or identifiable natural person, called
the data subject (Article 4). The GDPR
aims to give data subjects insight into,
and control over, the collection and
processing of their personal data. Pro-
viding such insight, in response to
the “right to be informed,” requires
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technical methods for interpretabil-
ity, discussed in the following section,
“Interpretability for a range of stake-
holders.” We will also highlight, in the
upcoming section, “Removing per-
sonal data,” the right to erasure as a
representative example of a regulatory
requirement that raises a concrete da-
ta-management challenge. Additional
details can be found in Abitebout and
Stoyanovich.!

As we have done throughout this ar-
ticle, we highlight specific challenges
within the broad topic of ADS over-
sight and outline promising directions
for technical work to address these
challenges. It is important to keep in
mind that ADS oversight will not admit
a purely technical solution. Rather, we
hope that technical interventions will
be part of a robust distributed infra-
structure of accountability, in which
multiple stakeholder groups partici-
pate in ADS design, development, and
oversight.

Interpretability for a range of
stakeholders. Interpretability—allow-
ing people to understand the process
and decisions of an ADS—is critical to
the responsible use of these systems.
Interpretability means different

things to different stakeholders, yet
the common theme is that it allows
people, including software develop-
ers, decision-makers, auditors, regu-
lators, individuals who are affected
by ADS decisions, and members of
the public at large, to exercise agency
by accepting or challenging algorith-
mic decisions and, in the case of de-
cision-makers, to take responsibility
for these decisions.

Interpretability rests on making
explicit the interactions between the
computational process and the data
on which it acts. Understanding how
code and data interact is important
both when an ADS is interrogated for
bias and discrimination, and when it
is asked to explain an algorithmic de-
cision that affects an individual.

To address the interpretability
needs of different stakeholders, sev-
eral recent projects have been develop-
ing tools based on the concept of a nu-
tritional label—drawing an analogy to
the food industry, where simple, stan-
dard labels convey information about
ingredients and production process-
es. Short of setting up a chemistry
lab, a food consumer would otherwise
have no access to this information.

Figure 4. Ranking Facts for the CS department’s dataset.
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Similarly, consumers of data products
or individuals affected by ADS deci-
sions cannot be expected to reproduce
the data collection and computational
procedures. These projects include
the Dataset Nutrition Label,'® Data-
sheets for Datasets,’* Model Cards,?
and Ranking Facts,* which all use spe-
cific kinds of metadata to support in-
terpretability. Figure 4 offers an exam-
ple of a nutritional label; it presents
Ranking Facts® to explain a ranking of
computer science departments.

In much of this work, nutritional
labels are manually constructed, and
they describe a single component in
the data life cycle, typically a dataset or
a model. Yet, to be broadly applicable,
and to faithfully represent the compu-
tational process and the data on which
it acts, nutritional labels should be
generated automatically or semiauto-
matically as a side effect of the compu-
tational process itself, embodying the
paradigm of interpretability by design.*
This presents an exciting responsible
data-management challenge.

The data-management community
has been studying systems and stan-
dards for metadata and provenance
for decades.” This includes work on
fine-grained provenance, where the
goal is to capture metadata associated
with a data product and propagate it
through a series of transformations,
to explain its origin and history of der-
ivation, and to help answer questions
about the robustness of the compu-
tational process and the trustworthi-
ness of its results. There is now an
opportunity to revisit many of these
insights and to extend them to sup-
port the interpretability needs of dif-
ferent stakeholders, both technical
and non-technical.

Removing personal data. The right
to be forgotten is originally motivated
by the desire of individuals not to be
perpetually stigmatized by something
they did in the past. Under pressure
from despicable social phenomena
such as revenge porn, it was turned
into law in 2006 in Argentina, and
since then in the EU, as part of the
GDPR (Article 17), stating that data
subjects have the right to request the
timely erasure of their personal data.

An important technical issue of
clear relevance to the data-manage-
ment community is deletion of infor-



mation in systems that are designed
explicitly to accumulate data. Making
data-processing systems GDPR-com-
pliant has been identified as one of
the data-management community’s
key research challenges.* The require-
ment of efficient deletion is in stark
contrast with the typical requirements
for data-management systems, neces-
sitating substantial rethinking and
redesign of the primitives, such as en-
hancing fundamental data structures
with efficient delete operations.*

Data deletion must be both perma-
nent and deep, in the sense that its
effects must propagate through data
dependencies. To start, it is difficult to
guarantee that all copies of every piece
of deleted data have actually been de-
leted. Further, when some data is de-
leted, the remaining database may
become inconsistent, and may, for ex-
ample, include dangling pointers. Ad-
ditionally, production systems typical-
ly do not include a strong provenance
mechanism, so they have no means of
tracking the use of an arbitrary data
item (one to be deleted) and reason-
ing about the dependencies on that
data item in derived data products.
Although much of the data-manage-
ment community’s attention over the
years has been devoted to tracking and
reasoning about provenance, primar-
ily in relational contexts and in work-
flows (see Herschel et al.'” for a recent
survey), there is still important work to
be done to make these methods both
practically feasible and sufficiently
general to accommodate current legal
requirements.

An important direction that has
onlyrecently come into the academic
community’s focus concerns ascer-
taining the effects of a deletion on
downstream processes that are not
purely relational but include other
kinds of data analysis tasks, such as
data mining or predictive analytics.
Recent research'"?' argues that it is
not sufficient to merely delete per-
sonal user data from primary data
stores such as databases, but that
machine-learning models trained
on stored data also fall under the
regulation. This view is supported
by Recital 75 of the GDPR: “The
risk to the rights and freedoms of
natural persons...may result from
personal data processing...where

We must learn

to step outside

our engineering
comfort zone and to
start reasoning in
terms of values and
beliefs.
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personal aspects are evaluated, in par-
ticular analyzing or predicting aspects
concerning performance at work,
economic situation, health, personal
preferences or interests, reliability or
behavior, location or movements.”
The machine-learning community
has been working on this issue under
the umbrella of machine unlearning.**
Given a model, its training data, and
a set of user data to delete/unlearn,
the community proposes efficient
ways to accelerate the retraining of
the model. However, these approach-
es ignore the constraints imposed by
the complexity of production set-ups
(such as redeployment costs) and are
thereby hard to integrate into real-
world ML applications.?

Requests for deletion may also con-
flict with other laws, such as require-
ments to keep certain transaction
data for some period or requirements
for fault tolerance and recoverability.
Understanding the impact of deletion
requests on our ability to offer guaran-
tees on system resilience and perfor-
mance, and developing appropriate
primitives and protocols for practical
use, is another call to action for the
data-management community.

Conclusion

In this article, we offered a perspec-
tive on the role that the data-manage-
ment research community can play
in the responsible design, develop-
ment, use, and oversight of ADSs.
We grounded our discussion in au-
tomated hiring tools, a specific use
case that gave us ample opportunity
to appreciate the potential benefits of
data science and AI in an important
domain and to get a sense of the ethi-
cal and legal risks.

An important point is that we can-
not fully automate responsibility.
While some of the duties of carrying
out the task of, say, legal compliance
can in principle be assigned to an al-
gorithm, accountability for the deci-
sions being made by an ADS always
rests with a person. This person may
be a decision-maker or a regulator, a
business leader or a software develop-
er. For this reason, we see our role as
researchers in helping build systems
that “expose the knobs” or responsi-
bility to people.

Those of us in academia have an
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additional responsibility to teach stu-
dents about the social implications of
the technology they build. Typical stu-
dents are driven to develop technical
skills and have an engineer’s desire to
build useful artifacts, such as a classi-
fication algorithm with low error rates.
They are also increasingly aware of
historical discrimination that can be
reinforced, amplified, and legitimized
with the help of technical systems. Our
students will soon become practicing
data scientists, influencing how tech-
nology companies impact society. It
is our responsibility as educators to
equip them with the skills to ask and
answer the hard questions about the
choice of a dataset, a model, or a met-
ric. It is critical that the students we
send out into the world understand re-
sponsible data science.

Toward this end, we are develop-
ing educational materials and teach-
ing courses on responsible data sci-
ence. H.V. Jagadish launched the first
Data Science Ethics MOOC on the
EdX platform in 2015. This course has
since been ported to Coursera and
FutureLearn, and it has been taken
by thousands of students worldwide.
Individual videos are licensed under
Creative Commons and can be freely
incorporated in other courses where
appropriate. Julia Stoyanovich teaches
highly visible technical courses on Re-
sponsible Data Science,* with all ma-
terials publicly available online. These
courses are accompanied by a comic
book series, developed under the lead-
ership of Falaah Arif Khan, as supple-
mentary reading.

In a pre-course survey, in response
to the prompt, “Briefly state your view
of the role of data science and Alin so-
ciety”, one student wrote: “It is some-
thing we cannot avoid and therefore
shouldn’t be afraid of. I'm glad that
as a data science researcher, I have
more opportunities as well as more
responsibility to define and develop
this ‘monster’ under a brighter goal.”
Another student responded, “Data
Science [DS] is a powerful tool and
has the capacity to be used in many
different contexts. As a responsible
citizen, it is important to be aware of
the consequences of DS/AI decisions
and to appropriately navigate situa-
tions that have the risk of harming
ourselves or others.”
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DETAIL

To predict and serve?

Predictive policing systems are used increasingly by law enforcement to try to prevent crime
before it occurs. But what happens when these systems are trained using biased data?
Kristian Lum and William Isaac consider the evidence - and the social consequences
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IN DETAIL

n late 2013, Robert McDaniel - a 22-year-old black

man who lives on the South Side of Chicago - received

an unannounced visit by a Chicago Police Department

commander to warn him not to commit any further
crimes. The visit took McDaniel by surprise. He had not
committed a crime, did not have a violent criminal record, and
had had no recent contact with law enforcement. So why did
the police come knocking?

It turns out that McDaniel was one of approximately 400
people to have been placed on Chicago Police Department’s
“heat list”. These individuals had all been forecast to be
potentially involved in violent crime, based on an analysis of
geographic location and arrest data. The heat list is one of a
growing suite of predictive “Big Data” systems used in police
departments across the USA and in Europe to attempt what was
previously thought impossible: to stop crime before it occurs.!

This seems like the sort of thing citizens would want their
police to be doing. But predictive policing software - and
the policing tactics based on it — has raised serious concerns
among community activists, legal scholars, and sceptical
police chiefs. These concerns include: the apparent conflict
with protections against unlawful search and seizure and the
concept of reasonable suspicion; the lack of transparency
from both police departments and private firms regarding how
predictive policing models are built; how departments utilise
their data; and whether the programs unnecessarily target
specific groups more than others.

But there is also the concern that police-recorded data sets
are rife with systematic bias. Predictive policing software is
designed to learn and reproduce patterns in data, but if biased
datais used to train these predictive models, the models will
reproduce and in some cases amplify those same biases. At
best, this renders the predictive models ineffective. At worst, it
results in discriminatory policing.

Bias in police-recorded data

Decades of criminological research, dating to at least the
nineteenth century, have shown that police databases are not a
complete census of all criminal offences, nor do they constitute
a representative random sample.?-> Empirical evidence suggests
that police officers - either implicitly or explicitly — consider race
and ethnicity in their determination of which persons to detain
and search and which neighbourhoods to patrol.5”

If police focus attention on certain ethnic groups and
certain neighbourhoods, it is likely that police records
will systematically over-represent those groups and
neighbourhoods. That is, crimes that occur in locations
frequented by police are more likely to appear in the database
simply because that is where the police are patrolling.

Bias in police records can also be attributed to levels of
community trust in police, and the desired amount of local
policing - both of which can be expected to vary according
to geographic location and the demographic make-up of
communities. These effects manifest as unequal crime
reporting rates throughout a precinct. With many of the crimes
in police databases being citizen-reported, a major source of »
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IN DETAIL

What is predictive policing?

According to the RAND Corporation, predictive policing is defined as “the application
of analytical techniques - particularly quantitative techniques — to identify likely
targets for police intervention and prevent crime or solve past crimes by making
statistical predictions”.: Much like how Amazon and Facebook use consumer data
to serve up relevant ads or products to consumers, police departments across the
United States and Europe increasingly utilise software from technology companies,
such as PredPol, Palantir, HunchLabs, and IBM to identify future offenders, highlight
trends in criminal activity, and even forecast the locations of future crimes.

What is a synthetic population?

A synthetic population is a demographically accurate individual-level representation
of a real population — in this case, the residents of the city of Oakland. Here,
individuals in the synthetic population are labelled with their sex, household
income, age, race, and the geo-coordinates of their home. These characteristics are
assigned so that the demographic characteristics in the synthetic population match
data from the US Census at the highest geographic resolution possible.

How do we estimate the number of drug users?

In order to combine the NSDUH survey with our synthetic population, we first

fit a model to the NSDUH data that predicts an individual’s probability of drug

use within the past month based on their demographic characteristics (i.e. sex,
household income, age, and race). Then, we apply this model to each individual in
the synthetic population to obtain an estimated probability of drug use for every
synthetic person in Oakland. These estimates are based on the assumption that
the relationship between drug use and demographic characteristics is the same
at the national level as it is in Oakland. While this is probably not completely true,
contextual knowledge about the local culture in Oakland leads us to believe that,
if anything, drug use is even more widely and evenly spread than indicated by
national-level data. While some highly localised “hotspots” of drug use may be
missed by this approach, we have no reason to believe the location of those should
correlate with the locations indicated by police data.

» bias may actually be community-driven rather than police-
driven. How these two factors balance each other is unknown
and is likely to vary with the type of crime. Nevertheless, it is
clear that police records do not measure crime. They measure
some complex interaction between criminality, policing
strategy, and community-police relations.

Machine learning algorithms of the kind predictive policing
software relies upon are designed to learn and reproduce
patterns in the data they are given, regardless of whether the
data represents what the model's creators believe or intend.
One recent example of intentional machine learning bias is Tay,
Microsoft's automated chatbot launched earlier this year. A
coordinated effort by the users of 4chan - an online message
board with a reputation for crass digital pranks - flooded Tay
with misogynistic and otherwise offensive tweets, which then
became part of the data corpus used to train Tay's algorithms.
Tay's training data quickly became unrepresentative of the
type of speech its creators had intended. Within a day, Tay’s
Twitter account was put on hold because it was generating
similarly unsavoury tweets.

A prominent case of unintentionally unrepresentative
data can be seen in Google Flu Trends - a near real-time
service that purported to infer the intensity and location of

16 | SIGNIFICANCE | October 2016

influenza outbreaks by applying machine learning models to
search volume data. Despite some initial success, the models
completely missed the 2009 influenza A-HIN1pandemic and
consistently over-predicted flu cases from 2011 to 2014. Many
attribute the failure of Google Flu Trends to internal changes to
Google’s recommendation systems, which began suggesting
flu-related queries to people who did not have flu.? In this case,
the cause of the biased data was self-induced rather than
internet hooliganism. Google’'s own system had seeded the
data with excess flu-related queries, and as a result Google Flu
Trends began inferring flu cases where there were none.

In both examples the problem resides with the data, not
the algorithm. The algorithms were behaving exactly as
expected - they reproduced the patterns in the data used to
train them. Much in the same way, even the best machine
learning algorithms trained on police data will reproduce the
patterns and unknown biases in police data. Because this data
is collected as a by-product of police activity, predictions made
on the basis of patterns learned from this data do not pertain to
future instances of crime on the whole. They pertain to future
instances of crime that becomes known to police. In this sense,
predictive policing (see “What is predictive policing?”) is aptly
named: it is predicting future policing, not future crime.

To make matters worse, the presence of bias in the initial
training data can be further compounded as police departments
use biased predictions to make tactical policing decisions.
Because these predictions are likely to over-represent areas
that were already known to police, officers become increasingly
likely to patrol these same areas and observe new criminal
acts that confirm their prior beliefs regarding the distributions
of criminal activity. The newly observed criminal acts that police
document as a result of these targeted patrols then feed into the
predictive policing algorithm on subsequent days, generating
increasingly biased predictions. This creates a feedback loop
where the model becomes increasingly confident that the
locations most likely to experience further criminal activity are
exactly the locations they had previously believed to be high in
crime: selection bias meets confirmation bias.

Predictive policing case study

How biased are police data sets? To answer this, we would
need to compare the crimes recorded by police to a complete
record of all crimes that occur, whether reported or not. Efforts
such as the National Crime Victimization Survey provide
national estimates of crimes of various sorts, including
unreported crime. But while these surveys offer some
insight into how much crime goes unrecorded nationally, it

is still difficult to gauge any bias in police data at the local
level because there is no “ground truth” data set containing

a representative sample of local crimes to which we can
compare the police databases.

We needed to overcome this particular hurdle to assess
whether our claims about the effects of data bias and feedback
in predictive policing were grounded in reality. Our solution
was to combine a demographically representative synthetic
population of Oakland, California (see “What is a synthetic
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population?”) with survey data from the 2011 National Survey
on Drug Use and Health (NSDUH). This approach allowed us
to obtain high-resolution estimates of illicit drug use from a
non-criminal justice, population-based data source (see “How
do we estimate the number of drug users?”) which we could
then compare with police records. In doing so, we find that
drug crimes known to police are not a representative sample
of all drug crimes.

While it is likely that estimates derived from national-level
data do not perfectly represent drug use at the local level, we
still believe these estimates paint a more accurate picture of
drug use in Oakland than the arrest data for several reasons.
First, the US Bureau of Justice Statistics — the government
body responsible for compiling and analysing criminal justice
data - has used data from the NSDUH as a more representative
measure of drug use than police reports.? Second, while arrest
datais collected as a by-product of police activity, the NSDUH
is a well-funded survey designed using best practices for
obtaining a statistically representative sample. And finally,
although there is evidence that some drug users do conceal
illegal drug use from public health surveys, we believe that any
incentives for such concealment apply much more strongly
to police records of drug use than to public health surveys,
as public health officials are not empowered (nor inclined) to
arrest those who admit to illicit drug use. For these reasons, our
analysis continues under the assumption that our public health-
derived estimates of drug crimes represent a ground truth for
the purpose of comparison.

Figure 1(a) shows the number of drug arrests in 2010 based
on data obtained from the Oakland Police Department; Figure
1(b) shows the estimated number of drug users by grid square.
From comparing these figures, it is clear that police databases
and public health-derived estimates tell dramatically different
stories about the pattern of drug use in Oakland. In Figure
1(a), we see that drug arrests in the police database appear
concentrated in neighbourhoods around West Oakland (1)
and International Boulevard (2), two areas with largely non-
white and low-income populations. These neighbourhoods
experience about 200 times more drug-related arrests than
areas outside of these clusters. In contrast, our estimates (in
Figure 1(b)) suggest that drug crimes are much more evenly
distributed across the city. Variations in our estimated number
of drug users are driven primarily by differences in population
density, as the estimated rate of drug use is relatively uniform
across the city. This suggests that while drug crimes exist
everywhere, drug arrests tend to only occur in very specific
locations - the police data appear to disproportionately
represent crimes committed in areas with higher populations
of non-white and low-income residents.

To investigate the effect of police-recorded data on
predictive policing models, we apply a recently published
predictive policing algorithm to the drug crime records in
Oakland.® This algorithm was developed by PredPol, one of the
largest vendors of predictive policing systems in the USA and
one of the few companies to publicly release its algorithmin a
peer-reviewed journal. It has been described by its founders  »
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FIGURE 1(a) Number of drug arrests made by Oakland police department, 2010. (1) West Oakland,
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P as a parsimonious race-neutral system that uses “only three
data points in making predictions: past type of crime, place of
crime and time of crime. It uses no personal information about
individuals or groups of individuals, eliminating any personal
liberties and profiling concerns.” While we use the PredPol
algorithm in the following demonstration, the broad conclusions
we draw are applicable to any predictive policing algorithm that
uses unadjusted police records to predict future crime.

The PredPol algorithm, originally based on models of
seismographic activity, uses a sliding window approach to
produce a one-day-ahead prediction of the crime rate across
locations in a city, using only the previously recorded crimes.
The areas with the highest predicted crime rates are flagged
as "hotspots” and receive additional police attention on the
following day. We apply this algorithm to Oakland's police
database to obtain a predicted rate of drug crime for every grid
square in the city for every day in 2011. We record how many
times each grid square would have been flagged by PredPol
for targeted policing. This is shown in Figure 2(a).

We find that rather than correcting for the apparent biases in
the police data, the model reinforces these biases. The locations
that are flagged for targeted policing are those that were,
by our estimates, already over-represented in the historical
police data. Figure 2(b) shows the percentage of the population
experiencing targeted policing for drug crimes broken down by
race. Using PredPol in Oakland, black people would be targeted
by predictive policing at roughly twice the rate of whites.
Individuals classified as a race other than white or black would
receive targeted policing at a rate 1.5 times that of whites. This is
in contrast to the estimated pattern of drug use by race, shown
in Figure 2(c), where drug use is roughly equivalent across racial
classifications. We find similar results when analysing the rate of
targeted policing by income group, with low-income households
experiencing targeted policing at disproportionately high rates.
Thus, allowing a predictive policing algorithm to allocate police
resources would result in the disproportionate policing of low-
income communities and communities of colour.

The results so far rely on one implicit assumption: that the
presence of additional policing in a location does not change the
number of crimes that are discovered in that location. But what
if police officers have incentives to increase their productivity
as aresult of either internal or external demands? If true, they
might seek additional opportunities to make arrests during
patrols. It is then plausible that the more time police spendin a
location, the more crime they will find in that location.

We can investigate the consequences of this scenario
through simulation. For each day of 2011, we assign targeted
policing according to the PredPol algorithm. In each location
where targeted policing is sent, we increase the number of
crimes observed by 20%. These additional simulated crimes
then become part of the data set that is fed into PredPol on
subsequent days and are factored into future forecasts. We
study this phenomenon by considering the ratio of the predicted
daily crime rate for targeted locations to that for non-targeted
locations. This is shown in Figure 3, where large values indicate
that many more crimes are predicted in the targeted locations



relative to the non-targeted locations. This is shown separately
for the original data (baseline) and the described simulation. If the
additional crimes that were found as a result of targeted policing
did not affect future predictions, the lines for both scenarios
would follow the same trajectory. Instead, we find that this
process causes the PredPol algorithm to become increasingly
confident that most of the crime is contained in the targeted bins.
This illustrates the feedback loop we described previously.

Discussion

We have demonstrated that predictive policing of drug crimes
results in increasingly disproportionate policing of historically
over-policed communities. Over-policing imposes real costs on
these communities. Increased police scrutiny and surveillance
have been linked to worsening mental and physical health;""
and, in the extreme, additional police contact will create
additional opportunities for police violence in over-policed
areas.” When the costs of policing are disproportionate to the
level of crime, this amounts to discriminatory policy.

In the past, police have relied on human analysts to allocate
police resources, often using the same data that would be
used to train predictive policing models. In many cases, this has
also resulted in unequal or discriminatory policing. Whereas
before, a police chief could reasonably be expected to justify
policing decisions, using a computer to allocate police attention
shifts accountability from departmental decision-makers to
black-box machinery that purports to be scientific, evidence-
based and race-neutral. Although predictive policing is simply
reproducing and magnifying the same biases the police have
historically held, filtering this decision-making process through
sophisticated software that few people understand lends
unwarranted legitimacy to biased policing strategies.

The impact of poor data on analysis and prediction is not
a new concern. Every student who has taken a course on
statistics or data analysis has heard the old adage “garbage
in, garbage out”. In an era when an ever-expanding array of
statistical and machine learning algorithms are presented as
panaceas to large and complex real-world problems, we must
not forget this fundamental lesson, especially when doing so
can result in significant negative consequences for society. m

Note

The authors would like to thank Bobbi Isaac, Corwin Smidt, Eric
Juenke, James Johndrow, Jim Hawdon, Matt Grossman, Michael
Colaresi, Patrick Ball and the members of the HRDAG policing
team for insightful conversations on this topic and comments
on this article.
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Abstract Profiling data to determine metadata about a
given dataset is an important and frequent activity of any
IT professional and researcher and is necessary for vari-
ous use-cases. It encompasses a vast array of methods to
examine datasets and produce metadata. Among the simpler
results are statistics, such as the number of null values and
distinct values in a column, its data type, or the most frequent
patterns of its data values. Metadata that are more difficult
to compute involve multiple columns, namely correlations,
unique column combinations, functional dependencies, and
inclusion dependencies. Further techniques detect condi-
tional properties of the dataset at hand. This survey provides
a classification of data profiling tasks and comprehensively
reviews the state of the art for each class. In addition, we
review data profiling tools and systems from research and
industry. We conclude with an outlook on the future of data
profiling beyond traditional profiling tasks and beyond rela-
tional databases.
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1 Data profiling: finding metadata

Data profiling is the set of activities and processes to deter-
mine the metadata about a given dataset. Profiling data is
an important and frequent activity of any IT professional
and researcher. We can safely assume that any reader of this
article has engaged in the activity of data profiling, at least
by eye-balling spreadsheets, database tables, XML files, etc.
Possibly, more advanced techniques were used, such as key-
word searching in datasets, writing structured queries, or even
using dedicated data profiling tools.

Johnson gives the following definition: “Data profiling
refers to the activity of creating small but informative sum-
maries of a database” [79]. Data profiling encompasses a vast
array of methods to examine datasets and produce metadata.
Among the simpler results are statistics, such as the number
of null values and distinct values in a column, its data type,
or the most frequent patterns of its data values. Metadata
that are more difficult to compute involve multiple columns,
such as inclusion dependencies or functional dependencies.
Also of practical interest are approximate versions of these
dependencies, in particular because they are typically more
efficient to compute. In this survey we preclude these and
concentrate on exact methods.

Like many data management tasks, data profiling faces
three challenges: (i) managing the input, (ii) performing the
computation, and (iii) managing the output. Apart from typ-
ical data formatting issues, the first challenge addresses the
problem of specifying the expected outcome, i.e., determin-
ing which profiling tasks to execute on which parts of the data.
In fact, many tools require a precise specification of what to
inspect. Other approaches are more open and perform a wider
range of tasks, discovering all metadata automatically.

The second challenge is the main focus of this survey and
that of most research in the area of data profiling: The com-
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putational complexity of data profiling algorithms depends
on the number or rows, with a sort being a typical opera-
tion, but also on the number of columns. Many tasks need
to inspect all column combinations, i.e., they are exponen-
tial in the number of columns. In addition, the scalability of
data profiling methods is important, as the ever-growing data
volumes demand disk-based and distributed processing.

The third challenge is arguably the most difficult, namely
meaningfully interpreting the data profiling results. Obvi-
ously, any discovered metadata refer only to the given data
instance and cannot be used to derive schematic/semantic
properties with certainty, such as value domains, primary
keys, or foreign key relationships. Thus, profiling results need
interpretation, which is usually performed by database and
domain experts.

Tools and algorithms have tackled these challenges in
different ways. First, many rely on the capabilities of the
underlying DBMS, as many profiling tasks can be expressed
as SQL queries. Second, many have developed innovative
ways to handle the individual challenges, for instance using
indexing schemes, parallel processing, and reusing interme-
diate results. Third, several methods have been proposed that
deliver only approximate results for various profiling tasks,
for instance by profiling samples. Finally, users may be asked
to narrow down the discovery process to certain columns
or tables. For instance, there are tools that verify inclusion
dependencies on user-suggested pairs of columns, but cannot
automatically check inclusion between all pairs of columns
or column sets.

Systematic data profiling, i.e., profiling beyond the occa-
sional exploratory SQL query or spreadsheet browsing, is
usually performed with dedicated tools or components, such
as IBM’s Information Analyzer, Microsoft’s SQL Server
Integration Services (SSIS), or Informatica’s Data Explorer.!
These approaches follow the same general procedure: A
user specifies the data to be profiled and selects the types
of metadata to be generated. Next, the tool computes the
metadata in batch mode, using SQL queries and/or spe-
cialized algorithms. Depending on the volume of the data
and the selected profiling results, this step can last minutes
to hours. Results are usually displayed in a vast collec-
tion of tabs, tables, charts, and other visualizations to be
explored by the user. Typically, discoveries can then be
translated to constraints or rules that are then enforced in
a subsequent cleansing/integration phase. For instance, after
discovering that the most frequent pattern for phone numbers
is (ddd) ddd-dddd, this pattern can be promoted to a rule
stating that all phone numbers must be formatted accord-
ingly. Most data cleansing tools can then either transform
differently formatted numbers or mark them as improper.

I See Sect. 6 for a more comprehensive list of tools.
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We focus our discussion on relational data, the predomi-
nant format of traditional data profiling methods, but we do
cover data profiling for other data models in Sect. 7.2.

1.1 Use-cases for data profiling

Data profiling has many traditional use-cases, including the
data exploration, data cleansing, and data integration scenar-
ios. Statistics about data are also useful in query optimization.
Finally we describe several domain-specific use-cases, such
as scientific data management and big data analytics.

Data exploration Database administrators, researchers, and
developers are often confronted with new datasets, about
which they know nothing. Examples include data files down-
loaded from the Web, old database dumps, or newly gained
access to some DBMS. In many cases, such data have no
known schema, no or old documentation, etc. Even if a for-
mal schema is specified, it might be incomplete, for instance
specifying only the primary keys but no foreign keys. A nat-
ural first step is to understand how the data are structured,
what they are about, and how much of them there are.

Such manual data exploration, or data gazing?, can and
should be supported with data profiling techniques. Simple,
ad hoc SQL queries can reveal some insight, such as the
number of distinct values, but more sophisticated methods
are needed to efficiently and systematically discover meta-
data. Furthermore, we cannot always expect an SQL expert
as the explorer, but rather “data enthusiasts” without formal
computer science training [68]. Thus, automated data profil-
ing is needed to provide a basis for further analysis. Morton
et al. [107] recognize that a key challenge is overcoming
the current assumption of data exploration tools that data are
“clean and in a well-structured relational format.” Often data
cannot be analyzed and visualized as is.

Database management A basic form of data profiling is the
analysis of individual columns in a given table. Typically, the
generated metadata include various counts, such as the num-
ber of values, the number of unique values, and the number
of non-null values. These metadata are often part of the basic
statistics gathered by a DBMS. An optimizer uses them to
estimate the selectivity of operators and perform other opti-
mization steps. Mannino et al. [99] give a survey of statistics
collection and its relationship to database optimization. More
advanced techniques use histograms of value distributions,
functional dependencies, and unique column combinations
to optimize range queries [118] or for dynamic reoptimiza-
tion [80].

2 “Data gazing involves looking at the data and trying to reconstruct
a story behind these data. [...] Data gazing mostly uses deduction and
common sense.” [104]
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Database reverse engineering Given a “bare” database
instance, the task of schema and database reverse engineer-
ing is to identify its relations and attributes, as well as domain
semantics, such as foreign keys and cardinalities [103,116].
Hainaut et al. [66] call these metadata “implicit constructs,”
i.e., those that are not explicitly specified by DDL statements.
However, possible sources for reverse engineering are DDL
statements, data instances, data dictionaries, etc. The result of
reverse engineering might be an entity-relationship model or
alogical schema to assist experts in maintaining, integrating,
and querying the database.

Data integration Often, the datasets to be integrated are
unfamiliar and the integration expert wants to explore the
datasets first: How large are they? What data types are
needed? What are the semantics of columns and tables? Are
there dependencies between tables and among databases?,
etc. The vast abundance of (linked) open data and the desire
and potential to integrate them with local data has amplified
this need.

A concrete use-case for data profiling is that of schema
matching, i.e., finding semantically correct correspondences
between elements of two schemata [44]. Many schema
matching systems perform data profiling to create attribute
features, such as data type, average value length, and pat-
terns, to compare feature vectors and align those attributes
with the best matching ones [98,109].

Scientific data management and integration have cre-
ated additional motivation for efficient and effective data
profiling: When importing raw data, e.g., from scientific
experiments or extracted from the Web, into a DBMS, it is
often necessary and useful to profile the data and then devise
an adequate schema. In many cases, scientific data are pro-
duced by non-database experts and without the intention to
enable integration. Thus, they often come with no adequate
schematic information, such as data types, keys, or foreign
keys.

Apart from exploring individual sources, data profiling
can also reveal how and how well two datasets can be inte-
grated. For instance, inclusion dependencies across tables
from different sources suggest which tables might reasonably
be combined with a join operation. Additionally, specialized
data profiling techniques can reveal how much two relations
overlap in their intent and extent. We discuss these challenges
in Sect. 7.1.

Data quality / data cleansing The need to profile a new or
unfamiliar set of data arises in many situations, in general to
prepare for some subsequent task. A typical use-case is pro-
filing data to prepare a data cleansing process. Commercial
data profiling tools are usually bundled with corresponding
data quality / data cleansing software.

Profiling as a data quality assessment tool reveals data
errors, such as inconsistent formatting within a column, miss-
ing values, or outliers. Profiling results can also be used to
measure and monitor the general quality of a dataset, for
instance by determining the number of records that do not
conform to previously established constraints [81, 117]. Gen-
erated constraints and dependencies also allow for rule-based
data imputation.

Big data analytics “Big data,” with its high volume, high
velocity, and high variety [90], are data that cannot be man-
aged with traditional techniques. Thus, data profiling gains a
new importance. Fetching, storing, querying, and integrating
big data are expensive, despite many modern technologies:
Before exposing an infrastructure to Twitter’s firehose, it
might be worthwhile to know about properties of the data
one is receiving; before downloading significant parts of the
linked data cloud, some prior sense of the integration effort
is needed; before augmenting a warehouse with text min-
ing results an understanding of its data quality is required.
In this context, leading researchers have noted “If we just
have a bunch of datasets in a repository, it is unlikely anyone
will ever be able to find, let alone reuse, any of these data.
With adequate metadata, there is some hope, but even so,
challenges will remain]...] [7].”

Many big data and related data science scenarios call for
data mining and machine learning techniques to explore and
mine data. Again, data profiling is an important preparatory
task to determine which data to mine, how to import it into
the various tools, and how to interpret the results [120].

Further use-cases Knowledge about data types, keys, for-
eign keys, and other constraints supports data modeling and
helps keep data consistent, improves query optimization, and
reaps all the other benefits of structured data management.
Others have mentioned query formulation and indexing [126]
and scientific discovery [75] as further motivation for data
profiling. Also, compression techniques internally perform
basic data profiling to optimize the compression ratio.
Finally, the areas of data governance and data life-cycle
management are becoming more and more relevant to busi-
nesses trying to adhere to regulations and code. Especially
concerned are financial institutions and health care organiza-
tions. Again, data profiling can help ascertain which actions
to take on which data.

1.2 Article overview and contributions

Data profiling is an important and practical topic that is
closely connected to several other data management areas. It
is also a timely topic and is becoming increasingly important
given the recent trends in data science and big data analyt-
ics [108]. While it may not yet be a mainstream term in the
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database community, there already exists a large body of
work that directly and indirectly addresses various aspects
of data profiling. The goal of this survey is to classify and
describe this body of work and illustrate its relevance to data-
base research and practice. We also show that data profiling is
far from a “done deal” and identify several promising direc-
tions for future work in this area.

The remainder of this paper is organized as follows. In
Sect. 2, we outline and define data profiling based on a
new taxonomy of profiling tasks. Sections 3, 4, and 5 sur-
vey the state of the art of the three main research areas in
data profiling: analysis of individual columns, analysis of
multiple columns, and detection of dependencies between
columns, respectively. Section 6 surveys data profiling tools
from research and industry. We provide an outlook of data
profiling challenges in Sect. 7 and conclude this survey in
Sect. 8.

2 Profiling tasks

This section presents a classification of data profiling tasks.
Figure 1 shows our classification, which includes single-
column tasks, multi-column tasks and dependency detection.
While dependency detection falls under multi-column pro-
filing, we chose to assign a separate profiling class to this
large, complex, and important set of tasks. The classes are
discussed in the following subsections. We also highlight
additional dimensions of data profiling, such as the type of
storage, the approximation of profiling results, as well as the
relationship between data profiling and data mining.

Collectively, a set of results of these tasks is called the
data profile or database profile. In general, we assume the
dataset itself as our only input, i.e., we cannot rely on query
logs, schema, documentation.

2.1 Single-column profiling

A basic form of data profiling is the analysis of individual
columns in a given table. Typically, the generated metadata
comprise various counts, such as the number of values, the
number of unique values, and the number of non-null values.
These metadata are often part of the basic statistics gath-
ered by the DBMS. In addition, the maximum and minimum
values are discovered and the data type is derived (usu-
ally restricted to string versus numeric versus date). More
advanced techniques create histograms of value distributions
and identify typical patterns in the data values in the form of
regular expressions [122]. Data profiling tools display such
results and can suggest actions, such as declaring a column
with only unique values to be a key candidate or suggesting
to enforce the most frequent patterns. As another exemplary
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Fig. 1 A classification of traditional data profiling tasks

use-case, query optimizers in database management systems
also make heavy use of such statistics to estimate the cost of
an execution plan.

Table 1 lists the possible and typical metadata as a result
of single-column data profiling. Some tasks are self-evident
while others deserve more explanation. In Sect. 3, we elabo-
rate on the more interesting tasks, their implementation, and
their use.

2.2 Multi-column profiling

The second class of profiling tasks covers multiple columns
simultaneously. Multi-column profiling generalizes profil-
ing tasks on single columns to multiple columns and also
identifies intervalue dependencies and column similarities.
One task is to identify correlations between values through
frequent patterns or association rules. Furthermore, cluster-
ing approaches that consume values of multiple columns as
features allow for the discovery of coherent subsets of data
records and outliers. Similarly, generating summaries and
sketches of large datasets relates to profiling values across
columns.
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Table 1 Overview of selected

single-column profiling tasks Category Task

Description

(see Sect. 3 for details)

Cardinalities num-rows Number of rows
value length Measurements of value lengths (minimum, maximum,
median, and average)
null values Number or percentage of null values
distinct Number of distinct values; sometimes called “cardinality”
uniqueness Number of distinct values divided by the number of rows
Value distributions histogram Frequency histograms (equi-width, equi-depth, etc.)
constancy Frequency of most frequent value divided by number of
rows
quartiles Three points that divide the (numeric) values into four equal
groups
first digit Distribution of first digit in numeric values; to check
Benford’s law
Patterns, data types, basic type Generic data type, such as numeric, alphabetic,
and domains alphanumeric, date, time
data type Concrete DBMS-specific data type, such as varchar,
timestamp.
size Maximum number of digits in numeric values
decimals Maximum number of decimals in numeric values
patterns Histogram of value patterns (Aa9...)
data class Semantic, generic data type, such as code, indicator, text,
date/time, quantity, identifier
domain Classification of semantic domain, such as credit card, first

name, city, phenotype

Such metadata are useful in many applications, such as
data exploration and analytics. Outlier detection is used
in data cleansing applications, where outliers may indicate
incorrect data values.

Section 4 describes these tasks and techniques in more
detail. It comprises multi-column profiling tasks that gen-
erate metadata on horizontal partitions of the data, such
as values and records, instead vertical partitions, such as
columns and column groups. Although the discovery of col-
umn dependencies, such as key or functional dependency
discovery, also relates to multi-column profiling, we dedi-
cate a separate section to dependency discovery as described
next.

2.3 Dependencies

Dependencies are metadata that describe relationships among
columns. The difficulties of automatically detecting such
dependencies in a given dataset are twofold: First, pairs of
columns or larger column sets must be examined, and second,
the chance existence of a dependency in the data at hand does
not imply that this dependency is meaningful. While much
research has been invested in addressing the first challenge
and is the focus of this survey, there is less work on seman-
tically interpreting the profiling results.

A common goal of data profiling is to identify suitable
keys for a given table. Thus, the discovery of unique column
combinations, i.e., sets of columns whose values uniquely
identify rows, is an important data profiling task [70]. Once
unique column combinations have been discovered, a second
step is to identify among them the intended primary key of a
relation.

A frequent real-world use-case of multi-column profiling
is the discovery of foreign keys [96,123] with the help of
inclusion dependencies [14,100]. An inclusion dependency
states that all values or value combinations from one set of
columns also appear in the other set of columns—a prereq-
uisite for a foreign key.

Another form of dependency that is also relevant for
data quality is the functional dependency (FD). A func-
tional dependency states that values in one set of columns
functionally determine the value of another column. Again,
much research has been performed to automatically detect
FDs [75,139]. Section 5 surveys dependency discovery algo-
rithms in detail.

Dependencies have many applications: An obvious use-
case for functional dependencies is schema normalization.
Inclusion dependencies can suggest how to join two relations,
possibly across data sources. Their conditional counterparts
help explore the data by focusing on certain parts of the
dataset.
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2.4 Conditional, partial, and approximate solutions

Real datasets usually contain exceptions to rules. To account
for this, dependencies and other constraints detected by data
profiling can be relaxed. We describe two relaxations below:
partial and approximate.

Partial dependencies hold for only a subset of the records,
for instance, for 95 % of the records or for all but 10 records.
Such dependencies are especially valuable in data cleansing
scenarios: They are patterns that hold for almost all records
and thus should probably hold for all records if the data were
clean. Violating records can be extracted and cleansed [129].

Once a partial dependency has been detected, it is inter-
esting to characterize for which records it holds, i.e., if we
can find a condition that selects precisely those records.
Conditional dependencies can specify such conditions. For
instance, a conditional unique column combination might
state that the column street is unique for all records with city
= ‘NY.’ Conditional inclusion dependencies (CINDs) were
proposed by Bravo et al. for data cleaning and contextual
schema matching [19]. Conditional functional dependencies
(CrDs) were introduced in [46], also for data cleaning.

Approximate dependencies and other constraints are
unconditional statements, but are not guaranteed to hold for
the entire relation. Such dependencies are often discovered
using sampling [76] or other summarization techniques [31].
Their approximate nature is often sufficient for certain tasks,
and approximate dependencies can be used as input to the
more rigorous task of detecting true dependencies. This sur-
vey does not discuss such approximation techniques.

2.5 Types of storage

Data profiling tasks are applicable to a wide range of sit-
vations in which data are provided in various forms. For
instance, most commercial profiling tools assume that data
reside in a relational database, make use of SQL queries and
indexes. In other situations, for instance, a csv file is provided
and a data profiling method needs to create its own data struc-
tures in memory or on disk. And finally, there are situations in
which a mixed approach is useful: Data that were originally
in the database are read once and processed further outside
the database.

The discussion and distinction of such different situa-
tions is relevant when evaluating the performance of data
profiling algorithms and tools. Can we assume that data are
already loaded into main memory? Can we assume the pres-
ence of indices? Are profiling results, which can be quite
voluminous, written to disk? Fair comparisons need to estab-
lish a level playing field with same assumptions about data
storage.
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2.6 Data profiling versus data mining

A clear, well-defined, and accepted distinction between data
profiling and data mining does not exist. Two criteria are
conceivable:

1. Distinction by the object of analysis: instance versus
schema or columns versus rows

2. Distinction by the goal of the task: description of existing
data versus new insights beyond existing data.

Following the first criterion, Rahm and Do distinguish data
profiling from data mining by the number of columns that are
examined: “Data profiling focuses on the instance analysis
of individual attributes. [...] Data mining helps discover spe-
cific data patterns in large datasets, e.g., relationships holding
between several attributes” [121]. While this distinction is
well defined, we believe several tasks, such as IND or FD
detection, belong to data profiling, even if they discover rela-
tionships between multiple columns.

We believe a different distinction along both criteria is
more useful: Data profiling gathers technical metadata to
support data management; data mining and data analytics
discovers non-obvious results to support business manage-
ment with new insights. While data profiling focuses mainly
on columns, some data mining tasks, such as rule discovery
or clustering, may also be used for identifying interesting
characteristics of a dataset. Others, such as recommendation
or classification, are not related to data profiling.

With this distinction, we concentrate on data profiling
and put aside the broad area of data mining, which has
already received unifying treatment in numerous textbooks
and surveys. However, in Sect. 4, we address the subset
of unsupervised mining approaches that can be applied on
unknown data to generate metadata and hence serves the pur-
pose of data profiling.

Classifications of data mining tasks include an overview
by Chen et al., who distinguish the kinds of databases (rela-
tional, OO, temporal, etc.), the kinds of knowledge to be
mined (association rules, clustering, deviation analysis, etc.),
and the kinds of techniques to be used [130]. We make a sim-
ilar distinction in this survey. In particular, we distinguish
the different classes of data profiling tasks and then exam-
ine various techniques to perform them. We discuss profiling
non-relational data in Sect. 7.

2.7 Summary

We summarize this section by connecting the various data
profiling tasks with the use-cases mentioned in the introduc-
tion. Conceivably, any task can be useful for any use-case,
depending on the context, the properties of the data at hand,
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Table 2 Data profiling tasks and their primary use-cases
Database Data Data Database Data Data Scientific
management integration cleansing reverse exploration analytics data
engineering management
Single-column
Cardinalities v v v
Patterns and data types v 4 v
Value distributions v v v v
Domain classification v v v v
Multi-column
Correlations v v v
Association rules v v
Clustering v v v v
Outliers v v
Summaries and sketches v v 4
Dependencies
Unique column v 4 4
combinations
Inclusion dependencies v v v v v
Conditional inclusion 4 v v v
dependencies
Functional dependencies v v v v
Conditional functional v v v
dependencies

etc. Table 2 lists the profiling tasks and their primary use-
cases.

3 Column analysis

The analysis of the values of individual columns is usually
a straightforward task. Table 1 lists the typical metadata that
can determined for a given column. The following sections
describe each category of tasks in more detail, mention-
ing possible uses of the respective results. In [104], a book
addressing practitioners, several of these tasks are discussed
in more detail.

3.1 Cardinalities

Cardinalities or counts of values in a column are the most
basic form of metadata. The number of rows in a table (num-
rows) reflects how many entities (e.g., customers, orders,
items) are represented in the data, and it is relevant to data
management systems, for instance to estimate query costs or
to assign storage space.

Information about the length of values in terms of char-
acters (value length), including the length of the longest
and shortest value and the average length, is useful for
schema reverse engineering (e.g., to determine tight data type

bounds), outlier detection (e.g., single-character first names),
and formatting (dates have the same min-, max- and average
length).

The number of empty cells, i.e., cells with null values or
empty strings (null values), indicates the (in-)completeness
of a column. The number of distinct values (distinct) allows
query optimizers to estimate selectivity of selection or join
operations: The more distinct values there are, the more selec-
tive such operations are. To users, this number can indicate
a candidate key by comparing it with the number of rows.
Alternatively, this number simply illustrates how many dif-
ferent values are present (e.g., how many customers have
ordered something or how many cities appear in an address
table).

Determining the number of rows, metadata about value
lengths, and the number of null values is straightforward and
can be performed in a single pass over the data. Determining
the number of distinct values is more involved: Either hashing
or sorting all values is necessary. When hashing, the number
of non-empty buckets must be counted, taking into account
hash collisions, which further add to the count. When sorting,
a pass through the sorted data counts the number of values,
where groups of same values are counted only once.

From the number of distinct values the uniqueness can be
calculated, which s typically defined as the number of unique
values divided by the number of rows. Note that the number
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of distinct values can also be estimated using the minHash
technique discussed in Sect. 4.3.

Apart from determining the exact number of distinct val-
ues, query optimization is a strong incentive to estimate those
counts in order to predict query execution plan costs with-
out actually reading the entire data. Because approximate
profiling is not the focus of this survey, we give only two
exemplary pointers. Haas et al. [65] base their estimation on
data samples and describe and empirically compare various
estimators from the literature. Other works do scan the entire
data but use only a small amount of memory to hash the
values and estimate the number of distinct values, an early
example being [11].

3.2 Value distribution

Value distributions are more fine-grained cardinalities,
namely the cardinalities of groups of values. Histograms
are among the most common profiling results. A histogram
stores frequencies of values within well-defined groups, usu-
ally by dividing the ordered set of values into a fixed set of
buckets. The buckets of equi-width histograms span value
ranges of same length, while the buckets of equi-depth (or
equi-height) histograms each represent the same number of
value occurrences. A common special case of an equi-depth
histogram is dividing the data into four quartiles. A more
general concept is biased histograms, which can adapt their
accuracy for different regions[33]. Histograms are used for
database optimization as a rough probability distribution to
avoid a uniform distribution assumption and thus provide
better cardinality estimations [77]. In addition, histograms
are interpretable by humans, as their visual representation is
easy to comprehend.

The constancy of a column is defined as the ratio of the
frequency of the most frequent value (possibly a pre-defined
default value) and the overall number of values. It thus rep-
resents the proportion of some constant value compared with
the entire column.

A particularly interesting distribution is the first digit dis-
tribution for numeric values. Benford’s law [15] states that in
naturally occurring numbers the distribution of the first digit
d of a number approximately follows P(d) = log;q(1 + é).
Thus, the 1 is expected to be the most frequent leading digit,
followed by 2, etc. Benford and others have observed this
behavior in many sets of numbers, such as molecular weights,
building sizes, and electricity bills. In fact, the law has been
used to uncover accounting fraud and other fraudulently cre-
ated numbers.

Determining the above distributions usually involves a sin-
gle pass over the column, except for equi-depth histograms
(i.e., with fixed bucket sizes) and quartiles, which determine
bucket boundaries through sorting. In the same manner or
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through hashing the most frequent value can be discovered
to determine constancy.

Finally, many more things can be counted and aggregated
in a column. For instance, some profiling tools and meth-
ods determine among others the frequency distribution of
soundex code, n-grams, and others, the inverse frequency dis-
tribution, i.e., the distribution of the frequency distribution,
or the entropy of the frequency distribution of the values in
a column [82].

3.3 Types and patterns

The profiling tasks of this section are ordered by increasing
semantic richness (see also Table 1). We start with the most
simple observable properties, move on to specific patterns of
the values of a column, and end with the semantic domain of
a column.

Discovering the basic type of a column, i.e., classifying it
as numeric, alphabetic, alphanumeric, date, or time, is fairly
simple: The presence or absence of numeric and non-numeric
characters already distinguishes the first three. The latter two
can usually be recognized by the presence of numbers only
within certain ranges, and by numbers separated in regu-
lar patterns by special symbols. Recognizing the actual data
type, for instance among the SQL types, is similarly easy. In
fact, data of many data types, such as timestamp, boolean,
or int, must follow a fixed, sometimes DBMS-specific pat-
tern. When classifying columns into data types, one should
choose the most specific data type—in particular avoiding
the catchalls char or varchar if possible. For the data types
decimal, float, and double, one can additionally extract the
maximum number of digits and decimals to determine the
metadata size and decimals.

A common and useful data profiling result is the extrac-
tion of frequent patterns observed in the data of a col-
umn. Then, data that do not conform to such a pattern
are likely erroneous or ill-formed. For instance, a pat-
tern for phone numbers might be informally encoded as
+dd (ddd) ddd dddd or as a simple regular expression
\(\d3\)\ — \d3\ —\d4).? A challenge when determining
frequent patterns is to find a good balance between generality
and specificity. The regular expression . * is the most general
and matches any string. On the other hand, the expression
data allows only that one single string. For the Potter’s
Wheel tool, Raman and Hellerstein [122] suggest finding
the data pattern with the minimal description length (MDL).
They model description length as a combination of precision,
recall, and conciseness and provide an algorithm to enumer-
ate all possible patterns. The RellE system was designed

3 A more detailed regular expression, taking into account different for-
matting options and different restrictions (e.g., phone numbers cannot
begin with a 1), can easily reach 200 characters in length.
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for information extraction from textual data [92]. It creates
regular expressions based on training data with positive and
negative examples by systematically, greedily transforming
regular expressions. Finally, Fernau [51] provides a good
characterization of the problem of learning regular expres-
sions from data and presents a learning algorithm for the task.
This work is also a good starting point for further reading

The semantic domain of a column describes not the syntax
of its values but their meaning. While a regular expression
might characterize a column, labeling it as “phone number”
provides a concrete domain. Clearly, this task cannot be fully
automated, but some work has been done for common-place
domains about persons, places, etc. Zhang et al. take a first
step by clustering columns that have the same meaning across
the tables of a database [144], which they extend to the par-
ticularly difficult area of numeric values in [142]. In [133]
the authors take the additional step of matching columns to
pre-defined semantics from the person domain. Knowledge
of the domain is not only of general data profiling interest,
but also of particular interest to schema matching, i.e., the
task of finding semantic correspondences between elements
of different database schemata.

3.4 Data completeness

Explicit missing data are simple to characterize: For each col-
umn, we report the number of tuples with a null or a default
value. However, datasets may contain disguised missing val-
ues. For example, Web forms often include fields whose
values must be chosen from pull-down lists. The first value
from the pull-down list may be pre-populated on the form,
and some users may not replace it with a proper or correct
value due to lack of time or privacy concerns. Specific exam-
ples include entering 99999 as the zip code of an address
or leaving “Alabama” as the pre-populated state (in the US,
Alabama is alphabetically the first state). Of course, for some
records, Alabama may be the true state.

Detecting disguised default values is difficult. One heuris-
tic solution is to examine each column at a time, and, for each
possible value, compute the distribution of the other attribute
values [74]. For example, if Alabama is indeed a disguised
default value, we expect a large subset of tuples with state =
Alabama (i.e., those whose true state is different) to form
an unbiased sample of the whole relation.

Another instance in which profiling missing data is not
trivial involves timestamped data, such as measurement or
transaction data feeds. In some cases, tuples are expected to
arrive regularly, e.g., in datacenter monitoring, every machine
may be configured to report its CPU utilization every minute.
However, measurements may be lost en route to the data-
base, and overloaded or malfunctioning machines may not
report any measurements at all. [60]. In contrast to detecting
missing attribute values, here we are interested in estimat-

ing the number of missing tuples. Thus, the profiling task
may be to single out the columns identified as being of type
timestamp, and, for those that appear to be distributed uni-
formly across a range, infer the expected frequency of the
underlying data source and estimate the number of miss-
ing tuples. Of course, some timestamp columns correspond
to application timestamps with no expectation of regularity,
rather than data arrival timestamps. For instance, in an online
retailer database, order dates and delivery dates are generally
not expected to be scattered uniformly over time.

4 Multi-column analysis

Profiling tasks over a single column can be generalized to
projections of multiple columns. For example, there has been
work on computing multi-dimensional histograms for query
optimization [41,119]. Multi-column profiling also plays
an important role in data cleansing, e.g., in assessing and
explaining data glitches, which often occur in column com-
binations [40].

In the remainder of this section, we discuss statistical
methods and data mining approaches for generating meta-
data based on co-occurrences and dependencies of values
across attributes. We focus on correlation and rule mining
approaches as well as unsupervised clustering and learning
approaches; machine learning techniques that require train-
ing data or detailed knowledge of the data are beyond the
scope of data profiling.

4.1 Correlations and association rules

Correlation analysis reveals related numeric columns, e.g.,
in an Employees table, age and salary may be correlated. A
straightforward way to do this is to compute pairwise correla-
tions among all pairs of columns. In addition to column-level
correlations, value-level associations may provide useful
data profiling information.

Traditionally, a common application of association rules
has been to find items that tend to be purchased together based
on point-of-sale transaction data. In these datasets, each row
is alist of items purchased in a given transaction. An associa-
tionrule {bread} — {butter}, for example, states that if
a transaction includes bread, it is also likely to include butter,
i.e., customers who buy bread also buy butter. A set of items
is referred to as an ifemset, and an association rule specifies
an itemset on the left-hand side and another itemset on the
right-hand side.

Algorithms for generating association rules from data
decompose the problem into two steps [8]:

1. Discover all frequent itemsets, i.e., those whose fre-
quencies in the dataset (i.e., their support) exceed some
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threshold. For instance, the itemset {bread, butter}
may appear in 800 out of a total of 50,000 transactions
for a support of 1.6 %.

2. For each frequent itemset a, generate association rules
of the form | — a — [ with [ C a, whose confidence
exceeds some threshold. Confidence is defined as the
frequency of a divided by the frequency of [, i.e., the
conditional probability of / given a — [. For example, if
the frequency of {bread, butter} is 800 and the fre-
quency of {bread} alone is 1000, then the confidence
of the association rule {bread} — {butter} is 0.8.
That s, if bread is purchased, there is an 80 % chance that
butter is also purchased in the same transaction.

In the context of relational data profiling, association
rules denote relationships or patterns between attribute val-
ues among columns. Consider an Employees table with
fields name, employee number, department, position,
and allowance. We may find a frequent itemset of the
form {department = finance, position = assistant
manager, allowance = $1000} and a corresponding asso-
ciation rule of the form {department = £inance, position
= assistant manager} — {allowance = $1000}.
This would be the case if most or all assistant managers in
the finance department were assigned an allowance budget
of $1000.

While the second step mentioned above is straightforward
(generating association rules from frequent itemsets), the first
step is computationally expensive due to the large number of
possible frequent itemsets (or patterns of values) [72]. Pop-
ular algorithms for efficiently discovering frequent patterns
include Apriori [8], Eclat [141], and FP-Growth [67].

The Apriori algorithm exploits the observation that all
subsets of a frequent itemset must also be frequent. In the first
iteration, Apriori finds all frequent itemsets of size one, i.e.,
those containing one item or one attribute value. In the next
iteration, only the frequent itemsets of size one are expanded
to find frequent itemsets of size two, and so on.

There are also several optimized versions of Apriori,
such as DHP [115] and RARM [35]. FP-Growth discov-
ers frequent itemsets without a candidate generation step.
It transforms the database into an extended prefix tree of
frequent patterns (FP-tree). The FP-Growth algorithm tra-
verses the tree and generates frequent itemsets by pattern
growth in a depth-first manner. Finally, Eclat is based on
intersecting transaction-id (TID) sets of associated itemsets
and is best suited for dealing with large frequent itemsets.
Eclat’s strategy for identifying frequent itemsets is similar to
Apriori.

Negative correlation rules, i.e., those that identify attribute
values that do not co-occur with other attribute values, may
also be useful in data profiling to find anomalies and out-
liers [21]. However, discovering negative association rules is
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more difficult, because infrequent itemsets cannot be pruned
in the same way as frequent itemsets, and therefore, novel
pruning rules are required [135].

Finally, we note that in addition to using existing tech-
niques, such as correlations and association rules for pro-
filing, extensions have been proposed, such as discovering
linear dependencies between columns [25].

However, in this approach, the user has to choose the
subset of attributes to be analyzed. We discuss dependency
discovery in more detail in Sect. 5.

4.2 Clustering and outlier detection

Another useful profiling task is to segment the records into
homogeneous groups using a clustering algorithm; further-
more, records that do not fit into any cluster may be flagged
as outliers. Cluster analysis can identify groups of similar
records in a table, while outliers may indicate data qual-
ity problems. For example, Dasu and Johnson [36] cluster
numeric columns and identify outliers in the data. Further-
more, based on the assumption that data glitches occur across
attributes and not in isolation [16], statistical inference has
been applied to measure glitch recovery in [39].

Another example of clustering in the context of data profil-
ing is ProLOD++, which applies k-means clustering to RDF
relations [1]. We refer the reader to surveys by Jain et al. [78]
and Xu and Wunsch II [137] for more details on clustering
algorithms for relational data.

4.3 Summaries and sketches

Besides clustering, another way to describe data is to create
summaries or sketches [23]. This can be done by sampling
or hashing data values to a smaller domain. Sketches have
been widely applied to answering approximate queries, data
stream processing and estimating join sizes [37,54,111].
Cormode et al. [31] give an overview of sketching and sam-
pling for approximate query processing.

Another interesting task is to assess the similarity of two
columns, which can be done using multi-column hashing
techniques. The Jaccard similarity of two columns A and
B is |A N B|/|A U B|, i.e., the number of distinct values
they have in common divided by the total number of distinct
values appearing in them. This gives the relative number of
values that appear in both A and B. Since semantically similar
values may have different formats, we can also compute the
Jaccard similarity of the n-gram distributions in A and B. If
the distinct value sets of columns A and B are not available,
we can estimate the Jaccard similarity using their MinHash
signatures [38].
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Table 3 Dependency discovery

algorithms Dependency

Algorithms

Uniques

Functional dependencies
Conditional functional dependencies

Inclusion dependencies
Conditional inclusion dependencies
Foreign keys

Denial constraints

Differential dependencies

Sequential dependencies

HCA [3], GORDIAN [126], DUCC [70], SWAN [5]

TANE [75], FUN [110], FD_Mine [139], Dep-Miner [95],
FastFDs [136], FDEP [52], DFD[6]

[24], [59], CTANE [47], CFUN [42], FACD [91], FastCFD
[47]

[101], [87], SPIDER [14], ZigZag [102]
[61], CINDERELLA [13], PLI [13]
[123], [143]

FastDC [29]

[128]

[57]

5 Dependency detection

We now survey various formalisms for detecting depen-
dencies among columns and algorithms for mining them
from data, including keys and unique column combinations
(Sect. 5.1), functional dependencies (Sect. 5.2), inclusion
dependencies (Sect. 5.3), and other types of dependencies
that are relevant to data profiling (Sect. 5.4). Table 3 lists the
algorithms that are discussed.

We use the following symbols: R and S denote relational
schemata, with r and s denoting instances of R and S, respec-
tively. The number of columns in R is | R| and the number of
tuples in 7 is |r|. We refer to tuples of r and s as r; and s,
respectively. Subsets of columns are denoted by uppercase
X, Y, Z (with | X| denoting the number of columns in X) and
individual columns by uppercase A, B, C. Furthermore, we
define y (r) and 74 (r) as the projection of r on the attribute
set X or attribute A, respectively; thus, |7y (r)| denotes the
count of district combinations of the values of X appearing
in r. Accordingly, r; [ A] indicates the value of the attribute A
of tuple r; and r; [ X] = mx (r;). We refer to an attribute value
of a tuple as a cell.

The number of potential dependencies in r can be expo-
nential in the number of attributes |R|; see Fig. 2 for an
illustration of all possible subsets of the attributes in Table 4.
This means that any dependency discovery algorithm has
a worst-case exponential time complexity. There are two
classes of heuristics that have appeared in the literature.

{first, last, age, phone}

{first, last, age} {first, last, phone} ({first, age, phone} {last, age, phone}

{first, last} ({first, age} {first, phone} {last, age} {last, phone} {age, phone}
~= _——

L
{first} {last} {age} {phone}

Fig. 2 Powerset lattice for the example Table 4

Table 4 Example dataset

Tuple id First Last Age Phone
1 Max Payne 32 1234
2 Eve Smith 24 5432
3 Eve Payne 24 3333
4 Max Payne 24 3333

Column-based or top-down approaches start with “small”
dependencies (in terms of the number of attributes they ref-
erence) and work their way to larger dependencies, pruning
candidates along the way whenever possible. Row-based or
bottom-up approaches attempt to avoid repeated scanning
of the entire relation during candidate generation. While
these approaches cannot reduce the worst-case exponential
complexity of dependency discovery, experimental studies
have shown that column-based approaches work well on
tables containing a very large number of rows and row-based
approaches work well for wide tables [6,113]. For more
details on the computational complexity of various FD and
IND discovery algorithms, we refer the interested reader to
[94].

5.1 Unique column combinations and keys

Given a relation R with instance r, a unique column com-
bination (a “unique”) is a set of columns X € R whose
projection on r contains only unique value combinations.

Definition 1 (Unique) A column combination X € R is a
unique, ift Vri, r; € r,i # j: ri[X] # r;[X].

Analogously, a set of columns X C R is a non-unique
column combination (a “non-unique”), iff its projection on r
contains at least one duplicate value combination.

Definition 2 (Non-unique) A column combination X C R
is a non-unique, iff Ir;, rj e r,i # j: ri[X] =r;[X].

@ Springer



568

Z. Abedjan et al.

Each superset of a unique is also unique while each subset
of a non-unique is also a non-unique. Therefore, discovering
all uniques and non-uniques can be reduced to the discovery
of minimal uniques and maximal non-uniques:

Definition 3 (Minimal Unique) A column combination X C
R is a minimal unique, iff VX' C X : X’ is a non-unique.

Definition 4 (Maximal Non-Unique) A column combina-
tion X C R is a maximal non-unique, iff VX' > X : X’
is a unique.

A primary key is a unique that was explicitly chosen to be
the unique record identifier while designing the table schema.
Since the discovered uniqueness constraints are only valid for
a relational instance at a specific point of time, we refer to
uniques and non-uniques instead of keys and non-keys. A
further distinction can be made in terms of possible keys and
certain keys when dealing with uncertain data and NULL
values [86].

The problem of discovering a minimal unique of size
k < n is NP-complete [97]. To discover all minimal uniques
and maximal non-uniques of a relational instance, in the
worst case, one has to visit all subsets of the given relation, no
matter the strategy (breadth-first or depth-first) or direction
(bottom-up or top-down). Thus, the discovery of all minimal
uniques and maximal non-uniques of a relational instance is
an NP-hard problem and even the solution set can be expo-
nential [64].

Given | R|, there can be (@) > 25" minimal uniques in the

2

. . . R .
worst case, as all combinations of size \_2| can simultaneously

be minimal uniques.
5.1.1 GORDIAN: row-based discovery

Row-based algorithms require multiple runs over all column
combinations as more and more rows are considered. They
benefit from the intuition that non-uniques can be detected
without considering every row. A recursive unique discovery
algorithm that works this way is GORDIAN [126]. The algo-
rithm consists of three parts: (i) Pre-organize the data in form
of a prefix tree, (ii) find maximal non-uniques by traversing
the prefix tree, (iii) compute minimal uniques from maximal
non-uniques.

The prefix tree is stored in main memory. Each level of
the tree represents one column of the table, whereas each
branch stands for one distinct tuple. Tuples that have the
same values in their prefix share the corresponding branches.
For example, all tuples that have the same value in the first
column share the same node cells. The time to create the
prefix tree depends on the number of rows; therefore, this
can be a bottleneck for very large datasets.

The traversal of the tree is based on the cube operator [63],
which computes aggregate functions on projected columns.

@ Springer

Non-unique discovery is performed by a depth-first traver-
sal of the tree for discovering maximum repeated branches,
which constitute maximal non-uniques.

After discovering all maximal non-uniques, GORDIAN
computes all minimal uniques by generating minimal com-
binations that are not covered by any of the maximal
non-uniques. In [126] it is stated that this complementation
step needs only quadratic time in the number of minimal
uniques, but the presented algorithm implies cubic runtime:
For each non-unique, the updated set of minimal uniques
must be simplified by removing redundant uniques. This
simplification requires quadratic runtime in the number of
uniques. As the number of minimal uniques is bound lin-
early by the number s of maximal non-uniques, the runtime
of the unique generation step is O (s>).

GORDIAN exploits the intuition that non-uniques can be
discovered faster than uniques. Non-unique discovery can be
aborted as soon as one repeated value is discovered among
the projections. The prefix structure of the data facilitates this
analysis. It is stated that the algorithm is polynomial in the
number of tuples for data with a Zipfian distribution of values.
Nevertheless, in the worst case, GORDIAN has exponential
runtime.

The generation of minimal uniques from maximal non-
uniques can be a bottleneck if there are many maximal
non-uniques. Experiments showed that in most cases the
unique generation dominates the runtime [3]. Furthermore,
the approach is limited by the available main memory.
Although data may be compressed because of the prefix
structure of the tree, the amount of processed data may still
be too large to fit in main memory.

5.1.2 Column-based traversal of the column lattice

The problem of finding minimal uniques is comparable to
the problem of finding frequent itemsets [8]. The well-known
Apriori approach is applicable to minimal unique discovery,
working bottom-up as well as top-down. With regard to the
powerset lattice of arelational schema, the Apriori algorithms
generate all relevant column combinations of a certain size
and verify those at once. Figure 2 illustrates the powerset lat-
tice for the running example in Table 4. The effectiveness and
theoretical background of those algorithms is discussed by
Giannela and Wyss [55]. They presented three breadth-first
traversal strategies: a bottom-up, a top-down, and a hybrid
traversal strategy.

Bottom-up unique discovery traverses the powerset lat-
tice of the schema R from the bottom, beginning with all
1-combinations toward the top of the lattice, which is the
|R|-combination. The prefixed number k of k-combination
indicates the size of the combination. The same notation
applies for k-candidates, k-uniques, and k-non-uniques. To
generate the set of 2-candidates, we generate all pairs of
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1-non-uniques. k-candidates with k > 2 are generated by
extending the (k — 1)-non-uniques by another non-unique
column. After the candidate generation, each candidate is
checked for uniqueness. If it is identified as a non-unique,
the k-candidate is added to the list of k-non-uniques.

If the candidate is verified as unique, its minimality
has to be checked. The algorithm terminates when k =
|1-non-uniques|. A disadvantage of this candidate generation
technique is that redundant uniques and duplicate candidates
are generated and tested.

The Apriori idea can also be applied to the top-down
approach. Having the set of identified k-uniques, one has
to verify whether the uniques are minimal. Therefore, for
each k-unique, all possible (k — 1)-subsets have to be gener-
ated and verified. The hybrid approach generates the kth and
(n—k)th levels simultaneously. Experiments have shown that
in most datasets, uniques usually occur in the lower levels of
the lattice, which favors bottom-up traversal [3].

HcA is an improved version of the bottom-up Apriori
technique [3]. HCA optimizes the candidate generation step,
applies statistical pruning and considers functional depen-
dencies that have been inferred on the fly. In terms of
candidate generation, HCA applies the optimized join that
was introduced for frequent itemset mining [8]. HCA gener-
ates candidates by combining only (k — 1)-non-uniques that
share the first k — 2 elements. If no such two non-uniques
exist, no candidates are generated and the algorithm termi-
nates before reaching the last level of the powerset lattice.
Further pruning can be achieved by considering value his-
tograms and distinct counts that can be retrieved on the fly in
previous levels. For example, consider the /-non-uniqueslast
and age from Table 4. The column combination {last,age}
cannot be a unique based on the value distributions. While
the value “Payne” occurs three times in last, the column
age contains only two distinct values. That means at least
two of the rows containing the value “Payne” also have a
duplicate value in the age column. Using the count distinct
values, HCA detects functional dependencies on the fly and
leverages them to avoid unnecessary uniqueness checks.

While HCA improves existing bottom-up approaches, it
does not perform the early identification of non-uniques in
a row-based manner done by GORDIAN. Thus, GORDIAN is
faster on datasets with many non-uniques, but HCA works
better on datasets with many minimal uniques.

5.1.3 DUCC: traversing the lattice via random walk

While the breadth-first approach for discovering minimal
uniques gives the most pruning, a depth-first approach might
work well if there are relatively few minimal uniques that are
scattered on different levels of the powerset lattice. Depth-
first detection of unique column combinations resembles the
problem of identifying the most promising paths through the

lattice to discover existing minimal uniques and avoid unnec-
essary uniqueness checks. DUCC is a depth-first approach that
traverses the lattice back and forth based on the uniqueness
of combinations [70]. Following a random walk principle
by randomly adding columns to non-uniques and removing
columns from uniques, DUCC traverses the lattice in a manner
that resembles the border between uniques and non-uniques
in the powerset lattice of the schema.

Ducc starts with a seed set of 2-non-uniques and picks
a seed at random. Each k-combination is checked using the
superset/subset relations and pruned if any of them subsumes
the current combination. If no previously identified combi-
nation subsumes the current combination DuCC performs
uniqueness verification. Depending on the verification, Ducc
proceeds with an unchecked (k—1)-subset or (k—1)-superset
of the current k-combination. If no seeds are available, it
checks whether the set of discovered minimal uniques and
maximal non-uniques correctly complement each other. If
so, DUCC terminates; otherwise, a new seed set is generated
by complementation.

Ducc also optimizes the verification of minimal uniques
by using a position list index (PLI) representation of val-
ues of a column combination. In this index, each position
list contains the tuple ids that correspond to the same value
combination. Position lists with only one tuple id can be dis-
carded, so that the position list index of a unique contains no
position lists. To obtain the PLI of a column combination,
the position lists in PLIs of all contained columns have to
be cross-intersected. In fact, DUCC intersects two PLIs in a
similar way in which a hash join operator would join two
relations. As a result of using PLIs, DUCC can also apply
row-based pruning, because the total number of positions
decreases with the size of column combinations. Intuitively,
combining columns makes the contained combination values
more specific and therefore more likely to be distinct.

Ducc has been experimentally compared to HCA, a
column-based approach, and GORDIAN, a row-based unique
discovery algorithm. Since DUCC combines row-based and
column-based pruning, it performs significantly better [70].
Experiments on smaller datasets showed that while HCA
outperforms GORDIAN on low-dimensional data with many
uniques, GORDIAN outperforms HCA on datasets with many
attributes but few uniques [3].

Furthermore the random walk strategy allows a distributed
application of DUCC for better scalability.

5.1.4 SWAN: an incremental approach

SWAN maintains a set of indexes to efficiently find the new
sets of minimal uniques and maximal non-uniques after
inserting or deleting tuples [5]. SWAN builds such indexes
based on existing minimal uniques and maximal non-uniques
in a way that avoids a full table scan. SWAN consists of two
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main components: the Inserts Handler and the Deletes Han-
dler. The Inserts Handler takes as input a set of inserted
tuples, checks all minimal uniques for uniqueness, finds the
new sets of minimal uniques and maximal non-uniques, and
updates the repository of minimal uniques and maximal non-
uniques accordingly. Similarly, the Deletes Handler takes as
input a set of deleted tuples, searches for duplicates in all
maximal non-uniques, finds the new sets of minimal uniques
and maximal non-uniques, and updates the repository accord-

ingly.
5.2 Functional dependencies

A functional dependency (FD) over R is an expression of the
form X — A, indicating that Vr;, 7; € r if r;[X] = r;[X];
then, r;[A] = r;[A]. That is, any two tuples that agree on
X must also agree on A. We refer to X as the left-hand side
(LHS) and A as the right-hand side (RHS). Given r, we are
interested in finding all non-trivial and minimal FDs X — A
that hold on r, with non-trivial meaning A N X = ¢ and
minimal meaning that there must not be any FD ¥ — A for
any ¥ C X. A naive solution to the FD discovery problem is
as follows.

For each possible RHS A
For each possible LHS X € R\ A
For each pair of tuples r; and r;
If ri[X] = rj[X] and r;[A] # r;[A] Break
Return X — A

This algorithm is prohibitively expensive: For each of the
|R| possibilities for the RHS, it tests 2URI=D possibilities
for the LHS, each time having to scan » multiple times to
compare all pairs of tuples. However, notice that for X — A
to hold, the number of distinct values of X must be the same as
the number of distinct values of X A—otherwise at least one
combination of values of X that is associated with more than
one value of A, thereby breaking the FD [75]. Thus, if we pre-
compute the number of distinct values of each combination
of one or more columns, the algorithm simplifies to:

For each possible RHS A
For each possible LHS X € R\ A
If |mx (r)| =[x a(r)]
Return X — A

Recall Table 4. We have |7phone ()| = |7age,phone ()| =
|Tlast,phone (7)|. Thus, phone — age and phone —
last hold. Furthermore, |7jast,age ()| = |7last,age,phone ()1,
implying {last,age} — phone.

The above algorithm is still inefficient due to the need
to compute distinct value counts and test all possible col-
umn combinations. As was the case with unique discovery,
FD discovery algorithms employ row-based (bottom-up) and
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Fig. 3 Classification of algorithms for functional dependency discov-
ery and their extensions to conditional functional dependencies

column-based (top-down) optimizations, as discussed below.
Figure 3 lists the algorithms that are discussed, along with
their extensions to conditional FD discovery, which are cov-
ered in Sect. 5.2.4. An extensive experimental evaluation of
various FD discovery algorithms on different datasets, scal-
ing in both the number of rows and the number of columns,
is presented in [113].

5.2.1 Column-based algorithms

As was the case with uniques, Apriori-like approaches can
help prune the space of FDs that need to be examined, thereby
optimizing the first two lines of the above straightforward
algorithms. TANE [75], FUN [110], and FD_Mine [139]
are three algorithms that follow this strategy, with FUN
and FD_Mine introducing additional pruning rules beyond
TANE’s based on the properties of FDs. They start with sets
of single columns in the LHS and work their way up the
powerset lattice in a level-wise manner. Since only min-
imal FDs need to be returned, it is not necessary to test
possible FDs whose LHS is a superset of an already found
FD with the same RHS. For instance, in Table 4, once we
find that phone — age holds, we do not need to consider
{first,phone} — age, {last,phone} — age, etc.
Additional pruning rules may be formulated from Arm-
strong’s axioms, i.e., we can prune from consideration those
FDs that are logically implied by those we have found so
far. For instance, if we find that A — B and B — A, then
we can prune all LHS column sets including B, because A
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and B are equivalent [139]. Another pruning strategy is to
ignore columns sets that have the same number of distinct
values as their subsets [110]. Returning to Table 4, observe
that phone — first does not hold. Since |mphone(r)| =
|7Tlast,phone(")| = |7Tage,phone(r)| = |7T|ast,age,phone(”)|, we
know that adding last and/or age to the LHS cannot lead to a
valid FD with first on the RHS. To determine these cardinal-
ities the approaches use a so-called partition data structure,
which is similar to the PLIs of Sect. 5.1.3.

5.2.2 Row-based algorithms

Row-based algorithms examine pairs of tuples to determine
LHS candidates. Dep-Miner [95] and FastFDs [136] are two
examples; the FDEP algorithm [52] is also row-based, but
the way it ultimately finds FDs that hold is different.

The idea behind row-based algorithms is to compute the
so-called difference sets for each pair of tuples, which are
the columns on which the two tuples differ. Table 5 enu-
merates the difference sets in the data from Table 4. Next,
we can find candidate LHS’s from the difference sets as fol-
lows. Pick a candidate RHS, say, phone. The difference sets
that include phone, with phone removed are as follows:
{first,last,age}, {first,age}, {age}, {last} and {first,last}.
This means that there exist pairs of tuples with different val-
ues of phone and also with different values of these five
difference sets. Next, we find minimal subsets of columns
that have a non-empty intersection with each of these differ-
ence sets. Such subsets are exactly the LHS’s of minimal FDs
with phone as the RHS: If two tuples have different values
of phone, they are guaranteed to have different values of the
columns in the above minimal subsets, and therefore, they
do not cause FD violations. Here, there is only one such min-
imal subset, {last,age}, giving {last,age} — phone. If we
repeat this process for each possible RHS, and compute min-
imal subsets corresponding to the LHS’s, we obtain the set
of minimal FDs. The main difference among row-based FD
discovery algorithms is in how they find the minimal subsets.

A recent approach to FD discovery is DFD, which adapts
the column-based and row-based pruning of the unique dis-
covery approach DuCC to the problem of FD discovery [6].

Table 5 Difference sets computed from Table 4

Tuple ID pair Difference set

(1,2) first, last, age, phone
(1,3) first, age, phone
(1,4) age, phone

(2,3) last, phone

2.4 first, last, phone

3.4 first

DFD decomposes the attribute lattice into | R| lattices, con-
sidering each attribute as a possible RHS of an FD. For the
remaining |R| — 1 attributes, DFD applies a random walk
approach by pruning supersets of FD LHS’s and subsets of
non-FD LHS’s.

DFD has been experimentally compared to TANE, which
is a column-based approach, and FastFDs, which is row-
based [6]. The experiments confirm that row-based approa-
ches work well on high-dimensional tables with a relatively
small number of tuples, while column-based approaches,
such as TANE, perform better on low-dimensional tables
with a large number of rows. DFD, which benefits from
row-based and column-based pruning, performs significantly
better than TANE and FastFDs, unless the table has very
many tuples and very few columns or vice versa.

5.2.3 Partial and approximate functional dependencies

While FDs were meant for schema design and were enforced
by the database management system, there are many instan-
ces in which a database may not satisfy some FDs exactly. For
example, the application semantics may have changed over
time and FD enforcement was disabled, or the database may
have been created by integrating conflicting data sources. As
aresult, it is useful to discover partial or soft FDs, i.e., those
which “almost hold,” perhaps with a few exceptions.

A common definition of “almost holding” or “confidence”
is the relative size of the largest subset of » on which a given
FD holds exactly divided by |r| [58,85]. For example, if we
remove tuple 1 from Table 4, the FD last — phone holds
exactly, and therefore, its confidence is %. The CORDS sys-
tem for finding soft FDs uses a slightly different definition:
The confidence of X — A is lleXA((rr))“ [76]. Other definitions
involve computing the number of tuples or tuple pairs that do
not violate the FD divided by |r| or |r|?, respectively [85].

A related notion is that of approximate FD inference, in
which partial or exact FDs are generated from a sample of
a relation [76,85]. Of course, even if an FD holds exactly
on a subset of a relation, it may hold partially on the whole
relation. Approximate FD inference is appealing from a com-
putational standpoint as it requires only a sample of the data.

5.2.4 Conditional functional dependencies

Conditional functional dependencies (CFDs), proposed in
[46], encode FDs that hold only on well-defined subsets of
r. For instance, {first,last} — age does not hold on the
entire relation in Table 4, but it does hold on a subset of it
where first = Eve. Formally, a CFD consists of two parts:
an embedded FD X — A and an accompanying pattern
tuple with attributes X A. Each cell of a pattern tuple con-
tains a value from the corresponding attribute’s domain or a
wildcard symbol “_". A pattern tuple identifies a subset of a
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relation instance in a natural way: A tuple r; matches a pat-
tern tuple if it agrees on all of its non-wildcard attributes. In
the above example, we can formulate a CFD with an embed-
ded Fp {first,last} — age and a pattern tuple (Eve, _, ),
meaning that the embedded FD holds only on tuples which
match the pattern, i.e., those with first = Eve. We define the
support of a pattern tuple as the fraction of tuples in r that it
matches; for example, the support of (Eve, _, _) in Table 4
is %.

An important special case occurs when the pattern tuple
has no wildcards. For example, the following (admittedly
accidental) CFD holds on Table 4: age — phone with a
pattern tuple (32, 1234). In other words, if age = 32,
then phone = 1234. These special cases, which resemble
instance-level association rules (that have 100 % confidence),
are referred to as constant CFDs.

Additionally, as was the case with traditional FDs, we can
define approximate CFDs as those that hold on the subset
specified by the pattern tableau with some exceptions. For the
case of confidence defined as the minimum number of tuples
that must be removed to make the CFD hold, [32] gives algo-
rithms for computing summaries that allow the confidence
of a CFD to be estimated with guaranteed accuracy.

CFD discovery involves a larger search space than FD dis-
covery: In addition to detecting embedded FDs, we must
also find the pattern tuples. CFD discovery algorithms typi-
cally extend existing FD discovery algorithms: For example,
CTANE [47] and the algorithm from [24] extend TANE,
while FastCFD [47] extends FastFDs (see Fig. 3).

Additionally, two simpler problems have been studied.
The first is to discover pattern tuples given an embedded
FD [59]. The output of this technique is an (approximately)
smallest set of pattern tuples, each leading to an approximate
CrD with a confidence exceeding a user-supplied confidence
threshold, the union of which has a support that exceeds a
user-supplied support threshold. The second problem is to
report only the constant CFDs. For this problem, CFDMiner
has been proposed CFDs [47], which is based on frequent
itemset mining, as well as FACD [91], which includes more
pruning rules. Also, CFUN, an extension of FUN to gen-
erating frequent constant CFDs that exceed a given support
threshold, has been proposed in [42].

5.3 Inclusion dependencies

Aninclusion dependency (IND) between column A of relation
R and column B of relation S, written R.A € S.B,orA C B
when the relations are clear from context, asserts that each
value of A appears in B. Similarly, for two sets of columns X
and Y, we write R.X C S§.Y,or X C Y, when each distinct
combinations of values in X appearsin Y. We refer to R.A or
R.X as the left-hand side (LHS) and S.B or S.Y as the right-
hand side (RHS). INDs with a single-column LHS and RHS
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are referred to as unary and those with multiple columns in
the LHS and RHS are called n-ary.

A naive solution to IND discovery in relation instances r
and s is to try to match each possible LHS with each possible
RHS, as shown below.

For each column combination X in R
For each column combination Y in S
with |[Y ] = | X|
IfVx € mx(r) 3y € wy(s) such thatx = y
Return X C Y

Note that for any considered X and Y, we can stop as soon
as we find a value combination of X that does not appearin Y.
Still, this is not an efficient approach as it repeatedly scans r
and s when testing the possible LHS and RHS combinations.

5.3.1 Generating unary inclusion dependencies

For the special case of unary INDs, a common approach is to
preprocess the data to speed up the subsequent IND discovery.
De Marchietal. [101] propose a technique that scans the data-
base and builds value indices, which are similar to inverted
indices. Table 6 shows excerpts of two relations instances,
one with columns A and B and the other with columns C and
D, and the corresponding value index. The index contains an
entry for each value occurring in the database, followed by a
list of columns in which this value appears. It is now straight-
forward to find the INDs: For each possible LHS column, we
check if there exists another column that occurs in every row
of the value index that contains the LHS column. In Table 6,
we have A C C (whenever A appears in the value index, so
does B) and D C B.

The SPIDER algorithm [14] is another example, which
preprocesses the data by sorting the values of each column
and writing them to disk. Next, each sorted stream, corre-
sponding to the values of one particular attribute, is consumed
in parallel in a cursor-like manner, and an IND A € B can be
discarded as soon as we detect a value in A that is not present
in B.

Table 6 Excerpts of two relation instances and the corresponding value
index

A B C
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Value Columns

A, C
A, C
B,D
B,D
B
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3
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5.3.2 Generating n-ary inclusion dependencies

Once all unary INDs have been discovered, De Marchi et
al. [101] give a level-wise algorithm, similar to the TANE
algorithm for FD discovery, which constructs INDs with i
columns from those with i — 1 columns and prunes INDs that
cannot be true. Additionally, hybrid algorithms have been
proposed in [87,102] that combine bottom-up and top-down
traversal for additional pruning.

The BINDER algorithm uses divide and conquer principles
to handle larger datasets than related work [114]. In the divide
step, it splits the input dataset horizontally into partitions and
vertically into buckets with the goal to fit each partition into
main memory. In the conquer step, BINDER then validates the
set of all possible inclusion dependency candidates, which
are created in the same fashion as in [101], against the par-
titions. Processing one partition after another, the validation
constructs two indexes on each partition, a dense index and
an inverted index, and uses them to efficiently prune invalid
candidates from the result set.

5.3.3 Fartial and approximate inclusion dependencies

Similar to partial FDs, partial INDs have been defined as those
that almost hold. Using the notion of removing the fewest
tuples so that the remainder satisfies the IND exactly, we can
define the strength or confidence of a partial IND X C Y
as OO/ O] 196,101]. That s, the confidence is
the number of distinct values of X that appear in Y divided
by the number of distinct values of X. An equivalent bag-
semantics version of this definition is to divide the number
of tuples whose X-values appear in Y by the total number
of tuples [61]. According to both definitions, the confidence
of B C D in Table 6 is %. Most of the algorithms discussed
above can be extended to discover partial INDs.

5.3.4 Conditional inclusion dependencies

Similar to CFDs, conditional inclusion dependencies (CINDS)
represent INDs that hold only on well-defined subsets of
relations [19]. A CIND consists of an embedded standard
IND R.X C S.Y and an accompanying pattern tuple with
attributes R.X , and S.Y,,, where XNX, = fand YNY, = 0.
A CIND specifies that for the subset of R that matches the X -
values of the pattern tuple, all the X-values must appear in
Y, and furthermore, the Y, values of these tuples in § must
match the Y),-values of the pattern tuple.

For example, suppose a business maintains a Customers
table, keyed by cid, and including a column class indicating
the class of the customer (e.g., gold or silver). Further-
more, suppose a Services table maintains the services that
customers subscribe to, including a service id (sid), a cid
and the type of service (e.g., hardware or software). Let

Services.cid € Customers.cid be the embedded IND and
let (Services.type = software, Customers.class =
gold) be a pattern tuple. This CIND asserts that the customer
ids in the Services table must be drawn from the customer
ids in the Customers table, and moreover, gold customers can
obtain only software services. On the other hand, a pattern
tuple Services.type = software implies that only the
software services must have customer ids drawn from those
in the Customers table (e.g., perhaps hardware services are
provided to customers stored in a different table).

Given an embedded IND, the algorithm from [61], which
also applies to CFDs, finds pattern tuples that lead to partial
CINDs with a confidence satisfying a user-supplied threshold.
Similarly, Bauckmann et al. [13] start with a set of approx-
imate INDs and find pattern tuples to turn these into CINDs;
however, in contrast to [61], they are not constrained to a
single embedded IND. The authors present two algorithms:
CINDERELLA, which is based on the Apriori algorithm for
association rule mining and employs a breadth-first traversal
of the powerset lattice, and PLI, which employs a depth-first
traversal instead.

5.3.5 Generating foreign keys

IND discovery is a precursor to foreign key detection: A
foreign key must satisfy the corresponding inclusion depen-
dency but not all INDs are foreign keys. For example, multiple
tables may contain auto-increment columns that serve as sur-
rogate keys, and while inclusion dependencies among them
may exist, they are not foreign keys. Once INDs have been
discovered, additional heuristics have been proposed, which
essentially rank the discovered INDs according to their like-
lihood of being foreign keys [96,123,143]. A very simple
rule may be that if the LHS and RHS have similar names,
then A may be a foreign key. It is also useful to examine the
set of discovered INDs as a whole: For instance, foreign keys
usually are not also primary keys that serve as foreign keys
for other tables, and furthermore, a primary key is often ref-
erenced by multiple foreign keys in multiple tables, meaning
that a primary key should appear in the RHS of multiple INDs,
with the LHS’s being the foreign keys. More complex rules
may reference value distributions; for example, the values in
a foreign key column should form a random sample of the
values in the corresponding primary key column.

5.4 Other dependencies

Having outlined the algorithms for discovering traditional
dependencies and their extensions, we now discuss other
types of dependencies related to data profiling. Recently, an
extension of FastFDs called FastDC was proposed for dis-
covering denial constraints, which are universally quantified
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first-order logic formulas that subsume FDs, CFDs, INDs and
many others [29].

Also, functional dependencies have recently been gener-
alized to differential dependencies in [128]. A differential
dependency X — Y states that if two tuples have “close”
values of X (say, the edit distance between them is small),
then their A values must also be close.* For example, in
a financial database, it may be true that if two tuples have
similar values of date (e.g., within seven days), then their
price values must also be similar (e.g., within 100 dollars).
Row- and column-based approaches to discovering differen-
tial dependencies were given in [128].

Another interesting class of dependencies involve order.
For instance, it may be useful to discover that if r is sorted
on some attribute A, it is also sorted on B, which gives an
order dependency between A and B [56]. This concept was
generalized in [57], which proposed sequential dependencies
(SDs). An SD states that when sorted on A, any two consec-
utive values of B must be within a predefined range. Given
a complete SD, including the attributes A and B as well as
the range, [57] gives an algorithm for discovering ranges of
values of A in which the SD is approximately satisfied. To the
best of our knowledge, the general problem of SD discovery
from data is open.

5.5 Summary and discussion

Dependency discovery has been a popular research area in
data management. Many of the algorithms and techniques for
dependency discovery are based upon classical data mining
solutions, such as the Apriori algorithm for efficient gener-
ation of association rules. Additional technical challenges
arise in the context of conditional dependencies, and novel
search space pruning strategies have been developed based
on the properties of the given dependencies.

Data profiling results can be not only complex, but also
very large. For instance, it is not uncommon to find thousands
of functional dependencies in a given dataset. To handle this
and focus users on the most important, interesting, or surpris-
ing ones, ranking profiling results can help, as Chu et al. [29]
show for denial constraints. They suggest two functions,
namely succinctness and coverage, to assess their interest-
ingness. Similar interestingness functions for CFDs are given
by Chiang and Miller [24]. Additionally, Andritsos et al. [9]
show how to rank FDs according to their information con-
tent. Furthermore, as we discussed earlier, post-processing
methods have been proposed to determine which of the dis-
covered inclusion dependencies are likely to be foreign keys;

4 Differential dependencies also generalize matching dependencies
[49] (if two tuples have close values of X, their A values must be exactly
the same) and metric functional dependencies [89] (if two tuples have
the same values of X, their A values must be close).
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however, we are not aware of corresponding techniques for
uniques and FDs.

6 Profiling tools

Whenever data are too voluminous to fit on a screen or a sheet
of paper, data profiling is performed. Even lacking explicit
profiling tools, much can already be done with data man-
agement tools, such as spreadsheet software, SQL queries,
search capabilities of text editors or simply by “eyeballing”
the data. Such methods to become acquainted with a new
set of data are probably familiar to most readers. The simple
method of sorting the values of a column can already reveal
minimum and maximum values, and scrolling through that
sorted data intuits the value distribution, including the num-
ber of null values, which are typically sorted to the very
beginning or end, and the uniqueness of a column. Finding
the median or average values requires additional calculations,
whereas it is infeasible to detect dependencies with such sim-
ple means.

To allow a more powerful and integrated approach to data
profiling, software companies have developed data profiling
tools, mostly to profile data residing in relational databases.
Most tools discussed in this survey are part of a larger soft-
ware suite, either for data integration or for data cleansing.
We first give an overview of tools that were created in the
context of a research project (see Table 7 for a listing). Then,
we give a brief glimpse of the vast set of commercial tools
with profiling capabilities (see Table 8 for a listing).

6.1 Research tools

Inthe research literature, data profiling tools are often embed-
ded in data cleaning systems. For example, the Bellman [38]
data quality browser supports column analysis (counting the
number of rows, distinct values, and NULL values, finding
the most frequently occurring values, etc.), and key detection
(up to four columns). It also provides a column similar-
ity functionality that finds columns whose value or n-gram
distributions are similar; this is helpful for discovering poten-
tial foreign keys and join paths. Furthermore, an interesting
application of Bellman was to profile the evolution of a data-
base using value distributions and correlations [37]: Which
tables change over time and in what ways (insertions, dele-
tions, modifications), and which groups of tables tend to
change in the same way. The Potters Wheel tool [122] also
supports column analysis, in particular, detecting data types
and syntactic structures/patterns.

Data profiling functionality is also included in the
MADLIb toolkit for scalable in-database analytics [71],
including column statistics, such as count, count distinct,
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Table 7 Research tools with

data profiling capabilities Tool

Main goal

Profiling capabilities

Bellman [38]

Potters Wheel [122]
Data Auditor [58]
RuleMiner [28]
MADLIb [71]

Data quality browser

Data quality, ETL
Rule discovery
Rule discovery

Machine learning

Column statistics, column similarity, candidate key
discovery

Column statistics (including value patterns)
CFD and CIND discovery
Denial constraint discovery

Simple column statistics

Table 8 Commercial data

profiling tools/components with Vendor and product

Features — Focus

their primary capabilities and

B Attacama DQ Analyzer
application areas

IBM InfoSphere Information Analyzer

Informatica Data Quality

Microsoft SQL Server Data Profiling Task

Oracle Enterprise Data Quality

Paxata Adaptive Data Preparation

SAP Information Steward

Splunk Enterprise / Hunk
Talend Data Profiler
Trifacta

Statistics, patterns, uniques — Data exploration, ETL

Statistics, patterns, multi-column dependencies — Data
exchange, integration, cleansing

Structure, completeness, anomalies, dependencies —
Business rules, cleansing

Statistics, patterns, dependencies — ETL, cleansing

Statistics, patterns, multi-column dependencies, text
profiling — Quality assessment, business rules,
cleansing

Statistics, histograms, semantic data types —
Exploration, cleansing, sharing

Statistics, patterns, semantic data types, dependencies
— ETL, modeling, cleansing

Patterns, data mining — Search, analytics, visualization
Statistics, patterns, dependencies — ETL, cleansing

Statistics, patterns — Quality assessment, data
transformation

minimum and maximum values, quantiles, and the k most
frequently occurring values.

Recent data quality tools are dependency-driven: Clas-
sical dependencies, such as FDs and INDs, as well as their
conditional extensions, may be used to express the intended
data semantics, and dependency violations may indicate pos-
sible data quality problems. Most research systems require
users to supply data quality rules and dependencies, such
as GDR [138], Nadeef [34], Semandaq [45] and Stream-
Clean [84]. These systems focus on languages for specifying
rules and generating repairs. However, data quality rules are
not always known Apriori in unfamiliar and undocumented
datasets, in which case data profiling, and dependency dis-
covery in particular, is an important prerequisite to data
cleaning. Notably, many of these systems perform a focused
profiling of counting the number of inconsistent tuples with
respect to the given rules.

There are at least two research prototype systems that per-
form rule discovery to some degree: Data Auditor [58] and
RuleMiner [28]. Data Auditor requires an FD as input and
generates corresponding CFDs from the data. Additionally,
Data Auditor considers FDs similar to the one that is provided
by the user and generates corresponding CFDs. The idea is to

see if a slightly modified FD can generate a more suitable CFD
for the given relation instance. On the other hand, RuleMine
does not require any rules as input and instead it is designed to
generate all reasonable rules from a given dataset. RuleMiner
expresses the discovered rules as denial constraints, which
are universally quantified first-order logic formulas that sub-
sume FDs, CFDs, INDs and many others. Some of the rules
it finds are instance-specific and therefore more general than
those a typical data profiling tool would find; for example, in
a database of income tax records, RuleMiner might find that
if one person, A, has a higher salary than another, B, then
Person A must have a higher tax rate than Person B.

6.2 Commercial tools

Because data profiling is such an important capability for
many data management tasks, there are various commercial
data profiling applications. In many cases, they are a part of a
data quality / data cleansing tool suite, to support the use-case
of profiling for frequent patterns or rules and then cleaning
those records that violate them. In addition, most Extract—
Transform—Load tools have some profiling capabilities.
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Table 8 mentions prominent examples of current com-
mercial tools, together with their capabilities and application
focus, based on the respective product documentations. It is
beyond the scope of this survey to provide a market overview
or compile feature matrices. We also deliberately refrain from
providing static URLSs for the various products, because com-
mercial Web sites are too fickle.

Finally, and as mentioned before, every database man-
agement system collects and maintains base statistics about
the tables it manages. However, they do not readily expose
those metadata, the metadata are not always up-to-date and
sometimes based only on samples, and their scope is usually
limited to simple counts and cardinalities.

7 Next generation profiling

Recent trends in data management have added new chal-
lenges but also opportunities for data profiling. First, under
the big data umbrella, industry and research have turned their
attention to data that they do not own or have not made use
of yet. Data profiling can help assess which data might be
useful and reveals the yet unknown characteristics of such
new data. Second, much of the data that shall be exploited is
of non-traditional type for data profiling, i.e., non-relational,
non-structured (textual), and heterogeneous. And it is often
truly “big,” both in terms of schema and in terms of data.
Many existing profiling methods cannot adequately handle
that kind of data: Either they do not scale well, or there simply
are no methods yet. Third, different and new data manage-
ment architectures and frameworks have emerged, including
distributed systems, key-value stores, multi-core- or main-
memory-based servers, column-oriented layouts, streaming
input, etc. We discuss some of these trends and their impli-
cations toward data profiling. A more elaborate overview of
upcoming challenges of data profiling is in [108].

7.1 Profiling for integration

An important use-case of traditional data profiling methods is
data integration. Knowledge about the properties of different
data sources is important to create correct schema mappings
and data transformations, and to correctly standardize and
cleanse the data. For instance, knowledge of inclusion depen-
dencies might hint upon ways to join two yet unrelated tables.

However, data profiling can reach beyond such support-
ive tasks and assess the infegrability or ease of integration
of datasets and thus also indicate the necessary integration
effort, which is vital to project planning. Integration effort
might be expressed in terms of similarity, but also in terms
of manmonths or in terms of which tools are needed.

Like integration projects themselves, integrability has two
dimensions, namely schematic fit and data fit. Schematic fit is
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the degree to which two schemata complement and overlap
each other and can be determined using schema matching
techniques [44]. Smith et al. [127] have recognized that
schema matching techniques often play the role of profiling
tools: Rather than using them to derive schema mappings
and perform data transformation, they might assess project
feasibility. Finally, the mere matching of schema elements
might not suffice as a profiling-for-integration result: Addi-
tional column metadata can provide further details about the
integration difficulty.

Data fit is the (estimated) number of real-world objects
that are represented in both datasets, or that are represented
multiple times in a single dataset and how different they
are. Such multiple representations are typically identified
using entity matching methods (also known as record link-
age, duplicate detection, etc.) [27]. However, estimating the
number of matches without actually performing the matching
on the entire dataset is an open problem.

7.2 Profiling non-relational data

With the rapid growth of the World Wide Web, semi-
structured data, such as XML and RDF data, and non-
structured data, such as text document corpora, have become
more important. The more flexible structure of non-relational
datasets opens new challenges for profiling algorithms. So
far, most methods apply only to or were developed for rela-
tional data. Below, we give an overview of both existing work
that applies traditional profiling algorithms, as well as exist-
ing work about data-model-specific profiling approaches, to
non-relational data. We focus on the three most relevant non-
relational data formats: XML, RDF, and text documents.

7.2.1 XML

XML is the quasi-standard for exchanging data on the Web.
Many applications, especially Web services, provide their
results as XML documents. Because the XML structure
explicitly contains markup and schema information, different
profiling approaches have to be considered. Apart from that,
Web services themselves are accessible through XML docu-
ments, such as WSDL and SOAP files, which are also worth
profiling for Web service inspection and categorization.

There has already been a number of research approaches
and proposals with a focus on statistical analysis of XML-
formatted data. They concentrate either on the DTD structure,
the XSD schema structure, or the inherent structure of XML
documents. The analysis concentrates on gathering statistics
about the number of root elements, attributes, the depth of
content models, etc. [26,105,106,124].

Further approaches focus on algorithms that identify tradi-
tional relational dependencies in XML data. While Vincent
et al. extend the notion of FDs to XML data [132], Yu et



Profiling relational data: a survey

577

al.s [140] present an approach for discovering redundancies
based on identified XML FD. There have also been adapta-
tions of unique and key discovery concepts and algorithms to
XML data [22]. Due to the more relaxed structure of XML,
these approaches identify approximate keys [62] or validate
the consistency of the identified keys against XSD defini-
tions [10].

As many XML documents do not refer to a specific
schema, a relevant application of profiling approaches is to
support the process of schema extraction [17,69]. Addition-
ally, the vast amount of existing documents do not always
comply to specified syntactical rules [88], which can be iden-
tified via appropriate profiling techniques.

7.2.2 RDF

Although profiling tasks for XML data can easily be adapted
to RDF datasets and vice versa, the requirement for RDF data
to be machine readable and its important use-case Linked
Open Data (LOD) give rise to RDF-specific challenges for data
profiling. There are already some tools that generate metadata
for a given RDF dataset. For example, LODStats is a stream-
based approach for gathering comprehensive statistics about
RDF datasets [12].

ProLoD++ provides additional functionalities by applying
clustering and rule mining techniques [1]. When profiling
RDF data, there are many interesting metadata beyond simple
statistics and patterns of RDF statement elements, including
synonymously used properties [4], inverse relationships of
properties, the conformity and consistence of RDF structured
data to the corresponding ontology [2], and the distribution
of literals and de-referenceable resource URIs from different
namespaces.

Because of the heterogeneity of interlinked sources, it is
vital to identify where specific facts come from and how reli-
able they are. Therefore, another interesting task for profiling
RDF data is provenance analysis [18].

7.2.3 Text

Many text analysis approaches and applications can be
regarded as text profiling tasks. Statistical methods are used
for tasks, such as information extraction [125], part-of-
speech tagging [20], and text categorization [83].
Specifically, in the field of author attribution, there has
been research on defining interesting features, such as word-
length distributions, average number of syllables [73].
Additionally, linguistic metrics, such as distinctiveness,
type-token ratio, and Simpson’s index have been proposed
to measure the style and diversity of text documents. The
task of profiling can target single documents, such as a
paper or a book, as well as sets of documents, such as
Web document corpora, product reviews, or user comments.

More sophisticated applications that use metadata gener-
ated through profiling include sentiment analysis and opinion
mining [93,112].

7.3 Profiling dynamic data

Data profiling describes an instance of a dataset at a particular
time. Since many applications work on frequently changing
data, it is desirable to re-profile a dataset after a change,
such as a deletion, insertion, or update, in order to obtain
up-to-date metadata. Simple aggregates are easy to main-
tain incrementally, but many statistics needed for column
analysis, such as distinct value counts, cannot be maintained
exactly using limited space and time. For these aggregates,
stream sketching techniques [53] may be used to maintain
approximate answers. There are also techniques for con-
tinuously updating discovered association rules [131] and
clusters [43].

Dependency detection may be too time-consuming for
repeated execution on the entire dataset. Thus, it is necessary
to incrementally update the metadata without processing the
complete dataset again. One example is SWAN, an approach
for unique discovery on dynamic datasets with insertions
and deletions [5] as reported in Sect. 5.1.4. Also, Wang et
al. present an approach for maintaining discovered FDs after
data deletions [134]. From a data cleaning standpoint, there
are solutions for incremental detection of FD and CFD vio-
lations [50], and incremental data repairing with respect to
FDs and CFDs [30]. In general, incremental solutions for FDs,
CrDs, INDs, and CINDs on growing and changing datasets
remain challenges for future research.

7.4 Profiling on new architectures

There are at least two database architecture trends that
affect profiling. The first is column versus row storage.
Column-store systems appear to have a natural computa-
tional advantage, at least in terms of the column analysis
tasks we discussed in Sect. 3, since they can directly fetch
the column of interest and compute statistics on it. How-
ever, if all columns are to be profiled, the entire dataset must
be read and the only remaining advantage of column stores
may be their potential compression. The second trend is that
of distributed and cloud data management. This introduces
additional profiling challenges, such as combining statistics
from multiple nodes into final per-column analysis. There
has been some work on detecting FD and CFD violations in a
distributed database [48,50], but many other problems in this
space, such as efficient dependency detection in distributed
data, remain open.
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7.5 Visualization

Because data profiling mostly targets human users, effec-
tively visualizing any profiling results is of utmost impor-
tance. Only then can users interpret results and react to them.
A suggestion for a visual data profiling tool is the Profiler
system by Kandel et al. [81]. A strong cooperation between
the database community, which produces the data and meta-
data to be visualized, and the visualization community, which
enables users to understand and make use of the data, is
needed.

8 Summary

In this article, we provided a comprehensive survey of the
state of the art in data profiling: the set of activities and
processes to determine metadata about a given database. We
discussed single-column profiling tasks such as identifying
datatypes, value distributions and patterns, and multi-column
tasks such as detecting various kinds of dependencies. As
the amount of data and users who require access to data
increase, efficient and effective data profiling will continue to
be an important data management problem in research and
practice. While many data profiling algorithms have been
proposed and implemented in research prototypes and com-
mercial tools, further work is needed, especially in the context
of profiling new types of data, supporting and leveraging new
data management architectures, and interpreting and visual-
izing data profiling results.
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Abstract

Machine Learning (ML) is commonly used to automate decisions in domains as varied as credit and
lending, medical diagnosis, and hiring. These decisions are consequential, imploring us to carefully
balance the benefits of efficiency with the potential risks. Much of the conversation about the risks
centers around bias — a term that is used by the technical community ever more frequently but that
is still poorly understood. In this paper we focus on technical bias — a type of bias that has so far
received limited attention and that the data engineering community is well-equipped to address. We
discuss dimensions of technical bias that can arise through the ML lifecycle, particularly when it’s due to
preprocessing decisions or post-deployment issues. We present results of our recent work, and discuss
future research directions. Our over-all goal is to support the development of systems that expose the
knobs of responsibility to data scientists, allowing them to detect instances of technical bias and to
mitigate it when possible.

1 Introduction

Machine Learning (ML) is increasingly used to automate decisions that impact people’s lives, in domains as varied
as credit and lending, medical diagnosis, and hiring. The risks and opportunities arising from the wide-spread use
of predictive analytics are garnering much attention from policy makers, scientists, and the media. Much of this
conversation centers around bias — a term that is used by the technical community ever more frequently but that
is still poorly understood.

In their seminal 1996 paper, Friedman and Nissenbaum identified three types of bias that can arise in computer
systems: pre-existing, technical, and emergent [9]. We briefly discuss these in turn, see Stoyanovich et al. [33]
for a more comprehensive overview.

* Pre-existing bias has its origins in society. In ML applications, this type of bias often exhibits itself in the input
data; detecting and mitigating it is the subject of much research under the heading of algorithmic fairness [5].
Importantly, the presence or absence of pre-existing bias cannot be scientifically verified, but rather is postulated
based on a belief system [8, 12]. Consequently, the effectiveness — or even the validity — of a technical
attempt to mitigate pre-existing bias is predicated on that belief system.
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e Technical bias arises due to the operation of the technical system itself, and can amplify pre-existing bias.
The bad news is that, as we argue in the remainder of this paper, the risks of introducing technical bias in ML
pipelines abound. The good news is that, unlike with pre-existing bias, there is no ambiguity about whether a
technical fix should be attempted: if technical systems we develop are introducing bias, then we should be able
to instrument these systems to measure it and understand its cause. It may then be possible to mitigate this bias
and to check whether the mitigation was effective.

» Emergent bias arises in the context of use of the technical system. In Web ranking and recommendation in
e-commerce, a prominent example is “rich-get-richer”: searchers tend to trust the systems to indeed show them
the most suitable items at the top positions, which in turn shapes a searcher’s idea of a satisfactory answer.

In this paper, we focus on technical bias, — a type of bias that has so far received limited attention, particularly
when it’s due to preprocessing decisions or post-deployment issues, and that the data engineering community
is well-equipped to address. Our over-all goal is to support the development of systems that expose the knobs
of responsibility to data scientists, allowing them to detect instances of technical bias, and to mitigate it when
possible.

Running example. We illustrate the need for taming technical bias with an example from the medical domain.
Consider a data scientist who implements a Python pipeline that takes demographic and clinical history data
as input, and trains a classifier to identify patients at risk for serious complications. Further, assume that the
data scientist is under a legal obligation to ensure that the resulting ML model works equally well for patients
across different gender and age groups. This obligation is operationalized as an intersectional fairness criterion,
requiring equal false negatives rates for groups of patients identified by a combination of gender and age group.
Consider Ann, a data scientist who is developing this classifier. Following her company’s best practices,
Ann will start by splitting her dataset into training, validation, and test sets. Ann will then use pandas,
scikit-learn [19], and their accompanying data transformers to explore the data and implement data pre-
processing, model selection, tuning, and validation. Ann starts preprocessing by computing value distributions
and correlations for the features in her dataset, and by identifying missing values. She will fill these in using a
default interpolation method in scikit-learn, replacing missing values with the mode value for that feature. Finally,
following the accepted best practices at her company, Ann implements model selection and hyperparameter
tuning. As a result of this step, Ann will select a classifier that shows acceptable performance according to her
company’s standard metrics: it has sufficient accuracy, while also exhibiting sufficiently low variance. When
Ann considers the accuracy of her classifier closely, she observes a disparity: accuracy is lower for middle-aged
women. Ann is now faced with the challenge of figuring out why this is the case, whether any of her technical
choices during pipeline construction contributed to this model bias, and what she can do to mitigate this effect.
We will revisit this example, and also discuss issues that may arise after the model is deployed, in the remainder
of this paper.
Roadmap. The rest of this paper is organized as follows. In Section 2, we outline the dimensions of technical
bias as they relate to two lifecycle views of ML applications: the data lifecycle and the lifecycle of design,
development, deployment, and use. Then, in Section 3 we present our recent work on helping data scientists
responsibly develop ML pipelines, and validate them post-deployment. We conclude in Section 4 with directions
for future research.

2 Dimensions of Technical Bias

There are many different ways in which Ann (or her colleagues who deploy her model) could accidentally
introduce technical bias. Some of these relate to the view of ML model development through the lens of the data
lifecycle. As argued in Stoyanovich et al. [33], responsibility concerns, and important decision points, arise in
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data sharing, annotation, acquisition, curation, cleaning, and integration. Thus, opportunities for improving data
quality and representativeness, controlling for bias, and allowing humans to oversee the process, are missed if we
do not consider these earlier data lifecycle stages. We discuss these dimensions of technical bias in Section 2.1.
Additional challenges, and opportunities to introduce technical bias, arise after a model is deployed. We discuss
these in Section 2.2.

Note that, in contrast to Bower et al. [4] and Dwork et al. [7], who study fairness in ML pipelines in which
multiple models are composed, we focus on complex — and typical — pipelines in which bias may arise due to
the composition of data preprocessing steps, or to data distribution shifts past deployment.

2.1 Model Development Stage

There are several subtle ways in which data scientists can accidentally introduce data-related bias into their
models during the development stage. Our discussion in this section is inspired by the early influential work by
Barocas and Selbst [1], and by Lehr and Ohm [15], who highlighted the issues that we will make more concrete.

Data cleaning. Methods for missing value imputation that are based on incorrect assumptions about whether
data is missing at random may distort protected group proportions. Consider a form that gives patients a binary
choice of gender and also allows to leave gender unspecified. Suppose that about half of the users identify as
men and half as women, but that women are more likely to omit gender. Then, if mode imputation (replacing a
missing value with the most frequent value for the feature, a common choice in scikit-learn) is used, then all
(predominantly female) unspecified gender values will be set to male. More generally, multi-class classification
for missing value imputation typically only uses the most frequent classes as target variables [3], leading to a
distortion for small population groups, because membership in these groups will never be imputed. Next, suppose
that some individuals identify as non-binary. Because the system only supports male, female, and unspecified as
options, these individuals will leave gender unspecified. If mode imputation is used, then their gender will be
set to male. A more sophisticated imputation method will still use values from the active domain of the feature,
setting the missing values of gender to either male or female. This example illustrates that bias can arise from an
incomplete or incorrect choice of data representation.

Finally, consider a form that has home address as a field. A homeless person will leave this value unspecified,
and it is incorrect to attempt to impute it. While dealing with null values is known to be difficult and is already
considered among the issues in data cleaning, the needs of responsible data management introduce new problems.
Further, data quality issues often disproportionately affect members of historically disadvantaged groups [14],
and so we risk compounding technical bias due to data representation with pre-existing bias.

Data filtering. Selections and joins can arbitrarily change the proportion of protected groups (e.g., for certain
age groups) even if they do not directly use the sensitive attribute (e.g., age) as part of the predicate or of the join
key. This change in proportion may be unintended and is important to detect, particularly when this happens
during one of many preprocessing steps in the ML pipeline. During model development, Ann might have filtered
the data by zip code or county to get a sample that is easier to work with. Demographic attributes such as age and
income are highly correlated with places of residency, so such a seemingly innocent filtering operation might
have heavily biased the data.

Another potential source of technical bias is the increasingly common usage of pre-trained word embeddings.
For example, Ann’s code might replace a textual name feature with the corresponding vector from a word
embedding that is missing for rare, non-western names (due to lack of data representation in the training corpus).
If we then filter out records for which no embedding was found, we may disproportionately remove individuals
from specific ethnic groups.

Unsound experimentation. Design and evaluation of ML models is a difficult and tedious undertaking and
requires data scientists to strictly follow a set of best practices. During this process, it is unfortunately easy
to make subtle mistakes that can heavily impact the quality of the resulting model. In previous research, we
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found that even expert users violate such best practices in highly cited studies [29]. Common mistakes include
hyperparameter selection on the test set instead of the validation set, lack of hyperparameter tuning for baseline
learners, lack of proper feature normalisation, or ignoring problematic data subsets during training.

While unsound experimentation is a general issue, ignoring problematic data subsets can specifically affect
performance for minority and underrepresented groups, because their data might be prone to data quality issues,
as we already discussed under data filtering above.

2.2 Model Deployment Stage

After the design of a model is finished, the model is deployed into production and produces predictions on unseen
data. We outline a set of circumstances which can introduce technical bias at this stage.

Data errors introduced through integration. In modern information infrastructures, data is stored in different
environments (e.g., in relational databases, in ‘data lakes’ on distributed file systems, or behind REST APIs),
and it comes in many different formats. Many such data sources do not support integrity constraints and data
quality checks, and often there is not even an accompanying schema available as the data is consumed in a
‘schema-on-read’ manner, where a particular application takes care of the interpretation. Additionally, there is a
growing demand for applications consuming semi-structured data such as text, videos, and images. Due to these
circumstances, every real world ML application has to integrate data from multiple sources, and errors in the data
sources or during integration may lead to errors in downstream ML models that consume the data.

In our running example in Section 1, it may be the case that patient data is integrated from data sources of
different healthcare providers. If one of these providers accidentally changes their schema, or introduces bugs in
their data generation procedure, this may negatively impact the predictions for the corresponding patients when
their data is used as input to Ann’s model.

Distribution shifts. The maintenance of ML applications remains challenging [21], due in large part to unex-
pected shifts in the distribution of serving data. These shifts originate from changes in the data generating process
in the real world, and the problem is exacerbated in situations where different parties are involved in the provision
of the data and the training of the model. Many engineering teams, especially in smaller companies, lack ML
expert knowledge, and therefore often outsource the training of ML models to data science specialists or cloud
ML services. In such cases, the engineering team provides the input data and retrieves predictions, but might
not be familiar with details of the model. While ML experts have specialized knowledge to debug models and
predictions in such cases [16], there is a lack of automated methods for non-ML expert users to decide whether
they can rely on the predictions of an ML model on unseen data. In Ann’s case, her final deployed model might
work well until new regulations for health care providers change the shape and contents of the patient data that
they produce. If her model is not retrained on proper data, its prediction quality may quickly deteriorate.

In the following section we will introduce three software libraries that we developed in recent research to help
data scientists like Ann in detecting and mitigating technical bias during model development and deployment.

3 Taming Technical Bias during Model Development and Deployment

In Schelter et al. [29] we described FairPrep, a design and evaluation framework for fairness-enhancing
interventions in machine learning pipelines that treats data as a first-class citizen. The framework implements
a modular data lifecycle, enables re-use of existing implementations of fairness metrics and interventions, and
integration of custom feature transformations and data cleaning operations from real world use cases. FairPrep
pursues the following goals: (i) Expose a developer-centered design throughout the lifecycle, which allows
for low effort customization and composition of the framework’s components; (iz) Surface discrimination and
due process concerns, including disparate error rates, failure of a model to fit the data, and failure of a model
to generalize. (iii) Follow software engineering and machine learning best practices to reduce the technical
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Figure 1: Data life cycle in FairPrep, designed to enforce isolation of test data, and to allow for customization
through user-provided implementations of different components. An evaluation run consists of three different
phases: (1) Learn different models, and their corresponding data transformations, on the training set; (2) Compute
performance / accuracy-related metrics of the model on the validation set, and allow the user to select the ‘best’
model according to their setup; (3) Compute predictions and metrics for the user-selected best model on the
held-out test set.
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debt of incorporating fairness-enhancing interventions into an already complex development and evaluation
scenario [26, 31].
Figure 1 summarizes the architecture of FairPrep, which is based on three main principles:

1. Data isolation: to avoid target leakage, user code should only interact with the training set, and never be
able to access the held-out test set.

2. Componentization: different data transformations and learning operations should be implementable as
single, exchangeable standalone components; the framework should expose simple interfaces to users,
supporting low effort customization.

3. Explicit modeling of the data lifecycle: the framework defines an explicit, standardized data lifecycle that
applies a sequence of data transformations and model training in a predefined order.

FairPrep currently focuses on data cleaning, including different methods for data imputation, and model
selection and validation, including hyperparameter tuning, and can be extended to accommodate earlier lifecycle
stages, such as data acquisition, integration, and curation. Schelter et al. [29] measured the impact of sound
best practices, such as hyperparameter tuning and feature scaling, on the fairness and accuracy of the resulting
classifiers, and also showcased how FairPrep enables the inclusion of incomplete data into studies and helps
analyze the effects.

If Ann wants to ensure that she follows sound experimentation practices during model development, she
can use the FairPrep library as a runtime platform for experiments, for example to compute various fairness
related metrics for the predictions of her classifier. Furthermore, she can leverage the component architecture of
FairPrep to evaluate different missing value imputation techniques and fairness enhancing interventions to see
whether these help with mitigating the low accuracy that she encountered in her model for the predictions for
middle-aged women, as discussed in our running example in Section 1.

Source code. A prototype implementation of FairPrep is available at https://github.com/DataResponsibly/
FairPrep.
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3.1 Detecting Data Distribution Bugs Introduced in Preprocessing

In our recent work on the mlinspect library [10], we focus on helping data scientists diagnose and mitigate
problems to which we collectively refer as data distribution bugs. These types of bugs are often introduced
during preprocessing, for reasons we outlined in Section 2. For example, preprocessing operations that involve
filters or joins can heavily change the distribution of different groups in the training data [35], and missing value
imputation can also introduce skew [28]. Recent ML fairness research, which mostly focuses on the use of
learning algorithms on static datasets [5] is therefore insufficient, because it cannot address such technical bias
originating from the data preparation stage. In addition, we should detect and mitigate such bias as close to its
source as possible.

Unfortunately, such data distribution issues are difficult to catch. In part, this is because different pipeline
steps are implemented using different libraries and abstractions, and the data representation often changes from
relational data to matrices during data preparation. Further, preprocessing in the data science ecosystem [23]
often combines relational operations on tabular data with estimator/transformer pipelines,' a composable and
nestable abstraction for combining operations on array data, which originates from scikit-learn [19] and
has been adopted by popular libraries like SparkML [18] and Tensorflow Transform. In such cases, tracing
problematic featurised entries back to the pipeline’s initial human-readable input is tedious work. Finally, complex
estimator/transformer pipelines are hard to inspect because they often result in nested function calls not obvious
to the data scientist.

Due to time pressure in their day-to-day activities, most data scientists will not invest the necessary time and
effort to manually instrument their code or insert logging statements for tracing as required by model management
systems [34, 36]. This calls for the development of tools that support automated inspection of ML pipelines,
similar to the inspections used by modern IDEs to highlight potentially problematic parts of a program, such as
the use of deprecated code or problematic library functions calls. Once data scientists are pointed to such issues,
they can use data debuggers like Dagger [17] to drill down into the specific intermediate pipeline outputs and
explore the root cause of the issue. Furthermore, to be most beneficial, automated inspections need to work with
code natively written with popular ML library abstractions.

Lightweight inspection with mlinspect. To enable lightweight pipeline inspection, we designed and imple-
mented mlinspect [10], a library that helps data scientists automatically detect data distribution issues in their
ML pipelines, such as the accidental introduction of statistical bias, and provides linting for best practices. The
mlinspect library extracts logical query plans, modeled as directed acyclic graphs (DAGs) of preprocessing
operators from ML pipelines that use popular libraries like pandas and scikit-learn, and combine relational
operations and estimator/transformer pipelines. These plans are then used to automatically instrument the code
and trace the impact of operators on properties like the distribution of sensitive groups in the data.

Importantly, mlinspect implements a library-independent interface to propagate annotations such as the
lineage of tuples across operators from different libraries, and introduces only constant overhead per tuple flowing
through the DAG. Thereby, the library offers a general runtime for pipeline inspection, and allows us to integrate
many issue detection techniques that previously required custom code, such as automated model validation
on data slices [22], the identification of distortions with respect to protected group membership in the training
data [35], or automated sanity checking for ML datasets [13].

Identifying data distribution bugs in our running example. Figure 2 shows a preprocessing pipeline and
potential data distribution bugs for our running example from Section 1. The pipeline first reads two CSV files,
which contain patient demographics and their clinical histories, respectively. Next, these dataframes are joined on
the ssn column. This join may introduce a data distribution bug (as indicated by issue @) if a large percentage of
the records of some combination of gender and age group do not have matching entries in the clinical history
dataset. Next, the pipeline computes the average number of complications per age group and adds the binary

'https://scikit-learn.org/stable/modules/compose.html
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Figure 2: ML pipeline for our running example that predicts which patients are at a higher risk of serious
complications, under the requirement to achieve comparable false negative rates across intersectional groups by
gender and age group. On the left, we highlight potential issues identified by mlinspect. On the right, we show
the corresponding dataflow graph, extracted to instrument the code and pinpoint the issues.
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# Train-test split, model training and evaluation
train_data, test data = train_test split(data)
model = pipeline.fit(train_data, train_data.label)
print(model.score(test data, test data.label))

target label to the dataset, indicating which patients had a higher than average number of complications compared
to their age group. The data is then projected to a subset of the attributes, to be used by the classification model.
This leads to the second issue @ in the pipeline: the data scientist needs to ensure that the model achieves
comparable accuracy across different age groups, but the age group attribute is projected out here, making it
difficult to catch data distribution bugs later in the pipeline. The data scientist additionally filters the data to only
contain records from patients within a given set of counties. This may lead to issue €: a data distribution bug
may be introduced if populations of different counties systematically differ in age.

Next, the pipeline creates a feature matrix from the dataset by applying common feature encoders with
ColumnTransformer from scikit-learn, before training a neural network on the features. For the categorical
attributes smoker, county, and gender, the pipeline imputes missing values with mode imputation (using
the most frequent attribute value), and subsequently creates one-hot-encoded vectors from the data. The
last_name is replaced with a corresponding vector from a pretrained word embedding, and the numerical
attributes num_children and income are normalized. This feature encoding part of the pipeline introduces several
potential issues: @ the imputation of missing values for the categorical attributes may introduce statistical bias,
as it may associate records with a missing value in the gender attribute with the majority gender in the dataset;
@ depending on the legal context (i.e., if the disparate treatment doctrine is enforced), it may be forbidden to
use gender as an input to the classifier; @ we may not have vectors for rare non-western names in the word
embedding, which may in turn lead to lower model accuracy for such records. As illustrated by this example,
preprocessing can give rise to subtle data distribution bugs that are difficult to identify manually, motivating the
development of automatic inspection libraries such as mlinspect, which will hint the data scientist towards these
issues.

Source code. A prototype implementation of mlinspect, together with a computational notebook that shows
how mlinspect can be used to address the issues outlined in the ML pipeline in Figure 2, is available at
https://github.com/stefan-grafberger/mlinspect.
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3.2 Validating Serving Data with Data Unit Tests

Machine learning (ML) techniques are very sensitive to their input data, as the deployed models rely on strong
statistical assumptions about their inputs [32], and subtle errors introduced by changes in the data distribution can
be hard to detect [20]. At the same time, there is ample evidence that the volume of data available for training is
often a decisive factor for a model’s performance [11]. How errors in the data affect performance, and fairness of
deployed machine learning models is an open and pressing research question, especially in cases where the data
describing protected groups has a higher likelihood of containing errors or missing values [29].

Unit tests for data with Deequ. As discussed in Section 2.2, accidental errors during data integration can heavily
impact the prediction quality of downstream ML models. We therefore postulate that there is a pressing need
for increased automation of data validation. To respond to this need, Schelter et al. [30] presented Deequ, a data
unit testing library. The library centers around the vision that users should be able to write ‘unit-tests’ for data,
analogous to established testing practices in software engineering, and is built on the following principles:

1. Declarativeness: allowing data scientist to spend time on thinking about what their data should look like,
and not about how to implement the quality checks. Deequ offers a declarative API that allows users to
define checks on their data by composing a variety of available constraints.

2. Flexibility: allowing users to leverage external data and custom code for validation (e.g., call a REST
service for some data and write a complex function that compares the result to some statistic computed on
the data).

3. Continuous integration: explicitly supporting the incremental computation of quality metrics on growing
datasets [27], and allowing users to run anomaly detection algorithms on the resulting historical time series
of quality metrics.

4. Scalability: scaling seamlessly to large datasets, by translating the data metrics computations to aggregation
queries, which can be efficiently executed at scale with a distributed dataflow engine such as Apache
Spark [37].

Unit testing serving data in our running example. A prime use case of Deequ in ML deployments is to test
new data to be sent to the model for prediction. When Ann deploys her model for real world usage, she wants to
make sure that it will only consume well-formed data. She can use Deequ to write down her assumptions about
the data as a declarative data unit test, and have this test integrated into the pipeline that feeds data to the deployed
model. If any assumptions are violated, the pipeline will stop processing, the data will be quarantined, and a data
engineer will be prompted to investigate the root cause of the failure.

Listing 1 shows what a data unit test may look like. We precompute certain expected statistics for the data
such as the number patients to predict for, the valid age groups, and expected distributions by gender and age
group. Next, we write down our assumptions about the data, similar to integrity constraints in relational databases.
We declare the following checks: we assume that the size of the data corresponds to the expected number of
patients, we expect social security numbers (the ssn attribute) to be unique, and we expect no missing values for
the lastname, county, and age_group attributes. We furthermore assume that the values of the smoker attribute
are Boolean, while in the num_children attribute comprises of integers, and we expect the age_group attribute
to only contain valid age group values, as defined beforehand. We also expect values of the num_children
attribute to be non-negative. Finally, we compare the distribution of age groups and gender in serving data to their
expected distribution via the histogramSatisfies constraint. The user-defined function notDiverged compares
the categorical distributions of these columns and returns a Boolean value.

// Computed in advance
val expectedNumPatients = ...
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val validAgeGroups = ...
val expectedGenderDist = ...
val expectedAgeGroupDist = ...

// Assumptions about data to predict on
val validationResultForTestData = VerificationSuite ()
.onData(expectedNumPatients)
.addCheck()
.hasSize(numPatients)
.isUnique("ssn")
.isComplete("lastname", "county", "age_group")
.hasDataType("smoker", Boolean)
.hasDataType("num_children", Integral)
.isNonNegative("num_children")
.isContainedIn("age_group", validAgeGroups)
.histogramSatisfies("age_group", { ageGroupDist =>
notDiverged(ageGroupDist, expectedAgeGroupDist) })
.histogramSatisfies("gender", { genderDist =>
notDiverged(genderDist, expectedGenderDist) })
.run()

if (validationResultForTestData.status != Success) {
// Abort pipeline, notify data engineers
h

Listing 1: Example of a data unit test.

During the execution of the test, Deequ identifies the statistics required for evaluating the constraints and
generates queries in SparkSQL with custom designed aggregation functions to compute them. For performance
reasons, it applies multi-query optimization to enable scan-sharing for the aggregation queries, minimizing
the number of passes over the input data. Once the data statistics are computed, Deequ invokes the validation
functions and returns the evaluation results to the user.

Source code. Deequ is available under an open source license at https://github.com/awslabs/deequ. It for
example forms the basis of Amazon’s recent Model Monitor service? for concept drift detection in the SageMaker
machine learning platform.

4 Conclusions and Future Research Directions

In this paper we discussed dimensions of technical bias that can arise through the lifecycle of machine learning
applications, both during model development and after deployment. We outlined several approaches to detect
and mitigate such bias based on our recent work, and will now discuss promising directions for future research,
where the data engineering community has the potential to make significant impact. We see the overarching goal
of this line of research not in mechanically scrubbing data or algorithms of bias, but rather in equipping data
scientists with tools that can help them identify technical bias, understand any trade-offs, and thoughtfully enact
interventions.

Integrating technical bias detection into general software development tooling. Data science is rapidly
becoming an important part of the toolbox of a “general software engineer”, and so methods for detection and
mitigation of technical bias need to become part of that toolbox as well. The scope of these methods must
be extended beyond binary classification, and they must embrace human-in-the-loop elements by providing
visualisations and allowing end-users to control experiments with low effort. To achieve practical impact, it is
important to integrate these methods into common computational notebooks such as Jupyter, and into general
IDE’s such as PyCharm.

2h’c’cps ://aws.amazon.com/blogs/aws/amazon- sagemaker-model-monitor- fully-managed-automatic-monitoring- for-your-machine-learning-models/
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Automating data quality monitoring. The arising challenge of automating the operation of deployed ML
applications is gaining a lot of attention recently, especially with respect to monitoring the quality of their input
data [25]. As outlined in Sections 2 and 3, data quality issues and the choice of a data cleaning technique can be a
major source of technical bias. Existing approaches [2, 30] for this problem have not yet reached broad adoption,
in part because they rely on substantial domain knowledge needed, for example, to define “data unit tests” and the
corresponding similarity metrics, and to set thresholds for detecting data distribution shifts. Additionally, it is
very challenging to test data during the earlier pipeline stages (e.g., data integration) without explicit knowledge
of how an ML model will transform this data at the later stages.

We thus see a dire need for automated or semi-automated approaches to quantify and monitor data quality in

ML pipelines. A promising direction is to treat historical data (for which no system failures were recorded and
no negative user feedback has been received) as “positive” examples, and to explore anomaly detection-based
methods to identify future data that heavily deviates from these examples. It is important to integrate a technical
bias perspective into these approaches, for example, by measuring data quality separately for subsets of the data
that correspond to historically disadvantaged or minority groups, since these groups tend to be more heavily hit
by data quality issues [6].
Integrating technical bias detection into continuous integration systems for ML. Continuous integration
is an indispensable step of modern best practices in software engineering to control the quality of deployed
software, typically by automatically ensuring that software changes pass a set of unit and integration tests before
deployment. There is ongoing work to adapt and reinvent continuous integration for the machine learning
engineering process [24], which also exposes a lifecycle similar to the software engineering lifecycle, as discussed
in Section 2. We see the need to make detection techniques for technical bias, such as automated inspections and
data unit tests, first-class citizen in ML-specific continuous integration systems.
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Abstract

Machine learning (ML) is increasingly used to automate impactful decisions, and the risks arising from this widespread use
are garnering attention from policy makers, scientists, and the media. ML applications are often brittle with respect to their
input data, which leads to concerns about their correctness, reliability, and fairness. In this paper, we describe mlinspect, a
library that helps diagnose and mitigate technical bias that may arise during preprocessing steps in an ML pipeline. We refer
to these problems collectively as data distribution bugs. The key idea is to extract a directed acyclic graph representation of
the dataflow from a preprocessing pipeline and to use this representation to automatically instrument the code with predefined
inspections. These inspections are based on a lightweight annotation propagation approach to propagate metadata such as
lineage information from operator to operator. In contrast to existing work, m1inspect operates on declarative abstractions
of popular data science libraries like estimator/transformer pipelines and does not require manual code instrumentation.
We discuss the design and implementation of the mlinspect library and give a comprehensive end-to-end example that

illustrates its functionality.

Keywords Data debugging - Machine learning pipelines - Data preparation for machine learning

1 Introduction

Machine learning (ML) is increasingly used to automate deci-
sions that impact people’s lives, in domains as varied as credit
and lending, medical diagnosis, and hiring, with the poten-
tial to reduce costs, reduce errors, and make outcomes more
equitable. Yet, despite their potential, the risks arising from
the widespread use of ML-based tools are garnering atten-
tion from policy makers, scientists, and the media [52]. In
large part this is because the correctness, reliability, and fair-
ness of ML models critically depend on their training data.
Preexisting bias, such as under- or over-representation of par-
ticular groups in the training data [12], and technical bias,
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such as skew introduced during data preparation [49], can
heavily impact performance. In this work, we focus on help-
ing diagnose and mitigate technical bias that arises during
preprocessing steps in an ML pipeline. We refer to these
problems collectively as data distribution bugs.

Data distribution bugs are often introduced during
preprocessing Input data for ML applications come from
a variety of data sources, and it has to be preprocessed
and encoded as features before it can be used. This prepro-
cessing can introduce skew in the data, and, in particular,
it can exacerbate under-representation of historically dis-
advantaged groups. For example, preprocessing operations
that involve filters or joins can heavily change the distribu-
tion of different groups represented in the training data [58],
and missing value imputation can also introduce skew [47].
Recent ML fairness research, which mostly focuses on the
use of learning algorithms on static datasets [14], is there-
fore insufficient because it cannot address such technical bias
originating from the data preparation stage. Furthermore, it
is important to detect and mitigate bias as close to its source
as possible [52].

Data distribution bugs are difficult to catch In part, this
is because different pipeline steps are implemented using dif-
ferent libraries and abstractions, and data representation often
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changes from relational data to matrices during data prepa-
ration. Further, preprocessing in the data science ecosystem
[44] often combines relational operations on tabular data
with estimator/transformer pipelines.! These pipelines are
composable and nestable abstractions for operations on array
data. The approach originates from scikit-learn [37] and has
been adopted by libraries like SparkML [28] and TensorFlow
Transform.” Tracing problematic featurized entries that may
be the result of nested function calls back to the pipeline’s
initial human-readable input is tedious work.

We need automated inspection of ML pipelines Due to
the pressures of their day-to-day activities, most data scien-
tists will not invest the necessary time and effort to manually
instrument their code or insert logging statements for trac-
ing, as required by model management systems [53,60]. We
envision support for data scientists in the form of automated
inspections of their pipelines, similar to the inspections used
by modern IDEs to highlight potentially problematic parts
of a program, such as the use of deprecated code. Once data
scientists become aware of such issues, they can use data
debuggers like Dagger [26] to drill down into the specific
intermediate pipeline outputs and explore the root cause of
the issue. We furthermore argue that, to be most beneficial,
automated inspections need to work with code natively writ-
ten with popular ML library abstractions.

Lightweight pipeline inspection with mlinspect We
design and implement mlinspect, a library that helps
data scientists automatically detect data distribution bugs in
their ML pipelines. The m1inspect library extracts logi-
cal query plans, modeled as directed acyclic graphs (DAGs)
of preprocessing operators, from pipelines that use popular
libraries like pandas and scikit-learn [37], and that combine
estimator/transformer pipelines and relational operators. The
pipeline code is then automatically instrumented to trace the
impact of operators on properties like the distribution of sen-
sitive groups in the data. In this way, m1linspect empowers
data scientists to automatically and comfortably check their
ML pipeline code for data distribution bugs.

Importantly,mlinspect provides a library-independent
interface to propagate annotations such as the lineage of
tuples across operators from different libraries and intro-
duces only constant overhead per tuple flowing through the
DAG. Thereby, mlinspect offers a general runtime for
pipeline inspection and allows for integration of many detec-
tion techniques for data distribution bugs that previously
required custom code, such as automated model validation
of data slices [42], identification of distortions with respect
to protected group membership in the training data [58], and
automated dataset sanity checking [21].

U https://scikit-learn.org/stable/modules/compose.html.

2 https:/github.com/tensorflow/transform.
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We proposed the initial ideas for our approach in earlier
work [17]. In this paper, we give a comprehensive descrip-
tion of the approach and of the corresponding open source
library. We explain how to instrument estimator/transformer
pipelines (Sect. 3.2), provide implementation details for all
our components (Sect. 4), and add an extensive discussion of
related work (Sect. 6). We also present quantitative and qual-
itative experiments to evaluate m1inspect with respect to
its runtime overhead and usability.

In this paper, we make the following contributions:

We describe hard-to-identify issues in ML preprocessing
pipelines with respect to the fairness and correctness of
the resulting models (Sects. 2, 3.3 ).

— We discuss the design of mlinspect, which enables
lightweight lineage-based inspection of ML preprocess-
ing pipelines. The mlinspect library bases its anal-
ysis on declarative abstractions of popular data science
libraries and does not require manual code instrumenta-
tion (Sect. 3).

— We describe how to efficiently implement the instrumen-
tation and inspections of m1inspect and how to enable
support for control flow (Sect. 4).

— We experimentally show that the runtime overhead of
mlinspect is linear in the number of input and output
records of instrumented operators and highlight perfor-
mance trade-offs (Sect. 5).

— We provide a qualitative comparison of our approach to

related libraries for experiment tracking and provenance

capturing. We also conduct a user study, showing that
mlinspect is helpful to data scientists in their data

distribution debugging tasks (Sect. 5).

2 Data distribution bugs by example

We illustrate the need for assisting data scientists with the
inspection of their preprocessing pipelines with an exam-
ple from the medical domain, shown in Fig. 1. Consider a
data scientist who implements a Python pipeline that takes
demographic and clinical history data as input, and trains a
classifier to identify patients at risk for serious complications.
Further, assume that the data scientist is under a legal obliga-
tion to ensure that the resulting model works equally well for
patients across different age groups and races. This obliga-
tion is operationalized as an intersectional fairness criterion,
requiring equal false-negative rates for groups of patients
identified by a combination of age_group and race.

The pipeline first reads two CSV files, which contain
patient demographics and their clinical histories, respec-
tively. Next, the resulting dataframes are joined on the ssn
column. This join may introduce a data distribution bug (as
indicated by issue (D) if a large percentage of the records of
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Potential issues

in preprocessing with native pandas and sklearn constructs

pipeline: # load input data sources, join to single table
patients = pandas.read_csv(..)
Join nﬂght histories = pandas.read_csv(..)

change proportions
of groups in data complications = data.groupby('age group")
: ; .agg(mean_complications=('complications', 'mean'))
Column ‘age_group data = data.merge(complications, on=['age group'])
projected out, but
required for fairness data['label'] = data['complications'] >
1.2 * data['mean complications']
Selection might
change proportions

of groups in data

data = data[['smoker', 'last_name',
‘num_children', ‘'race’',

‘county',
‘income',

Imputation might
change proportions
of groups in data

impute_and_encode = sklearn.Pipeline([
(sklearn.SimpleImputer(strategy='most frequent')),
(sklearn.OneHotEncoder())]1)

_ # Define the training pipeline for the model
Embedding vectors

may not be available
for rare names!

pipeline = sklearn.Pipeline([
('features', featurisation),
('learning algorithm', neural net)])

# Train-test split, model training and evaluation
train_data, test _data = train_test_split(data)
model = pipeline.fit(train_data, train_data.label)
print(model.score(test data, test data.label))

Fig. 1 Example of an ML pipeline that predicts which patients are at a
higher risk of serious complications, under the requirement to achieve
comparable false-negative rates across intersectional groups by age and
race. The pipeline is implemented using native constructs from the pop-
ular pandas and scikit-learn libraries. On the left, we highlight potential

some combination of age group and race do not have match-
ing entries in the clinical history dataset.

Next, the pipeline computes the average number of com-
plications per age group and adds the binary target label to the
dataset, indicating which patients had a higher than average
number of complications compared to their age group. Data
is then projected to a subset of the attributes, to be used by
the classification model. This leads to the second issue ) in
the pipeline: the data scientist needs to ensure that the model
achieves comparable accuracy across different age groups,
but the age group attribute is projected out here, making it
difficult to catch this data distribution bug later in the pipeline.
The data scientist additionally filters the data to only contain
records from patients within a given set of counties. This may
lead to issue (3): a data distribution bug may be introduced
if populations of different counties systematically differ in
age.

Next, the pipeline creates a feature matrix from the
dataset by applying feature encoders with scikit-learn’s
ColumnTransformer, before training a neural network
on the features. For the categorical attributes smoker,
county, and race, the pipeline imputes missing values
with mode imputation (using the most frequent attribute
value), and subsequently creates one-hot encoded vectors
from the data. The 1last_name attribute is replaced with
a corresponding vector from a pretrained word embedding,

Python script for preprocessing, written exclusively

data = pandas.merge([patients, histories], on=['ssn'])
# compute mean complications per age group, append as column

# Target variable: people with frequent complications

# Project data to subset of attributes, filter by counties

‘label']]
data = data[data['county'].isin(counties_of_interest)]

# Define a nested feature encoding pipeline for the data

featurisation = sklearn.ColumnTransformer(transformers=[

‘race’ as a feature (impute_and_encode, ['smoker', 'county', 'race'l]),
f . | (Word2VecTransformer(), 'last name')
mlght be Illegal' (sklearn.StandardScaler(), ['num children', 'income']])

neural_net = sklearn.KerasClassifier(build_fn=create_model())

Corresponding dataflow DAG for
instrumentation, extracted by mlinspect
[ Data Source ]

[ Data Source ]

Join Aggregate
on ssn group by age_group

Join on age_group

Declarative inspection

of preprocessing pipeline
.no_illegal features() >

.no_missing_embeddings ()

.verify()
Project || Project
smoker | (lastname
6
Impute|| Embed
smoker| | lastname

[ Project comp. ][ Project mean. ]

Project label
Project

smoker, lastname, county,
n_children, race, income, label

Filter 3
county
Split
Training set
Project || Project || Project
n_child. || income || county
Impute
county

Scale
income
Encode
county

PipelineInspector

.on_pipeline('health.py')
.no_bias_introduced_for(
['age_group', ‘race'])

L]

Project
race

4
Impute
race

5
Encode|
race
Learner
Neural Network

issues identified by mlinspect. On the right, we show the corre-
sponding dataflow graph extracted by mlinspect to instrument the
code and pinpoint issues. (Operations on the test set are omitted for
readability)

and we normalize the numerical attributes num_children
and income.

This feature encoding part of the pipeline introduces sev-
eral potential issues: (@ the imputation of missing values
for the categorical attributes may introduce statistical bias
by attributing records with a missing value of race to the
majority race in the dataset; ) depending on the legal con-
text (i.e., if the disparate treatment doctrine is enforced3), it
may be forbidden to use race as an input to the classifier;
(® we may not have vectors for rare non-western names in
the word embedding, which may in turn lead to lower model
accuracy for such records. As illustrated by this example,
preprocessing can give rise to subtle data distribution bugs
that are difficult to identify manually, motivating the devel-
opment of our automatic inspection library, m1inspect.

3 Design of mlinspect

The analysis of Python code for data science pipelines is dif-
ficult because, in contrast to SQL queries, these pipelines
are not built on top of an algebraic abstraction. Further,
these pipelines operate not only on relational data but also
on tensors, when converting input data to feature matri-
ces. However, popular data science libraries expose a set of

3 https://en.wikipedia.org/wiki/Disparate_treatment.
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declarative abstractions with some algebraic properties. For
example, pandas and pyspark both operate on dataframes
with SQL-like operations, and scikit-learn, SparkML, and
TensorFlow Transform” rely on (potentially nested) estima-
tor/transformer chains.

This abstraction consists of an estimator that conducts an
aggregation over its inputs to create a reusable transformer.
The transformer applies a tuple-at-a-time transformation to
the data based on the state computed by its correspond-
ing estimator. This abstraction allows data scientists to
build nested pipelines of estimators and transformers that
combine common operations like feature transformations
(like one-hot encoding of categorical variables) with model
training and hyperparameter optimization (like £-fold cross-
validation). The estimator/transformer abstraction can be
seen as a declarative way to specify ML pipelines and has
recently been the subject of database-style research to opti-
mize execution time [50].

3.1 Overview

We propose mlinspect, a runtime for lightweight line-
age-based inspection of python scripts that uses existing
library code and does not require manual code instrumenta-
tion. In the current research prototype, we restrict ourselves
to scripts that use a combination of SQL-like operations on
dataframes and estimator/transformer pipelines, analogously
to our example in Sect. 2. This has the potential to cover a
wide range of existing ML code: According to results of a
recent analysis of several million Jupyter Notebooks, more
than 50% of these use pandas, and more than 25% use scikit-
learn [44]. The mlinspect library focuses on declarative
pipeline code, supports control flow, and has fallbacks for
when it encounters unsupported code snippets.

Themlinspect library extracts a directed acyclic graph
(DAG) representing the dataflow from ML pipelines with
logical operators like join, selection, projection, column
encoders, and missing value imputation. Based on this
extracted DAG, m1 inspect automatically instruments the
code with predefined lightweight inspections that detect data
distribution bugs in the pipeline and give hints to users.

We now give a high-level overview of how mlinspect
executes and inspects data preprocessing operations based
on the architecture shown in Fig. 2. The execution takes
place as follows: (1) Users execute their data science pipeline
implemented in native pandas/sklearn code viamlinspect
and define the inspections to apply; (2) mlinspect auto-
matically instruments relevant function calls (Sect. 3.2) and
executes the instrumented program; (3) during the execu-

4 Note that TensorFlow Transform refers to estimators and transformers
as TensorFlow Transform Analyzers and TensorFlow Ops https:/www.
tensorflow.org/tfx/tutorials/transform/simple ?hl=en.
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tion, mlinspect delegates instrumented function calls to
library-specific backends, which expose the inputs, annota-
tions, and outputs of operators to the configured inspections
(Sect. 3.3); (4) mlinspect extracts a dataflow representa-
tion of the program (Sect. 3.4) and maps the results of the
inspection to the corresponding operators. In the remainder
of this section, we detail the design of each component. We
will discuss implementation decisions in Sect. 4.

3.2 Instrumentation and annotation propagation

Instrumentation and DAG extraction at runtime We con-
duct all instrumentation necessary for inspection before the
execution of the pipeline and extract the DAG at runtime dur-
ing a single execution of the pipeline, as follows. During the
execution of each instrumented function call, corresponding
operator nodes are added to the DAG. For this,m1inspect
generates a unique identifier for each DAG node. Whenever a
dataframe object is returned from an instrumented function,
mlinspect adds a new attribute that contains the identifier
of the DAG operator that produced the dataframe. For exam-
ple, when processing the pd.merge (df_a, df_b) call,
mlinspect retrieves the DAG node identifiers for df_a
and Af_Db and adds a new DAG node, in this case a JOIN,
with nodes representing df_a and df_Db as parents. There
might be cases where a user pipeline contains operators that
mlinspect cannot recognize (e.g., custom transformers
in a scikit-learn pipeline). Such operators are ignored and
not represented in the DAG, and execution continues with
the remaining known operations. Due to this fallback, the
library does not fail for pipelines where it recognizes only
a subset of the relevant dataflow operations, but still applies
all inspections and checks on a best-effort basis.

Handling control flow Early m1 inspect versions [17]
lacked support for control flow in pipelines; they created
the DAG based on the pipeline code after execution, using
module information obtained through Python’s inspect
module. This made it difficult to deal with conditional code
such as loops, where the number of iterations depends on
runtime variables. The current DAG extraction method sup-
ports pipelines with control flow by building up the DAG
dynamically at runtime based on the actual execution of the
program. If there are branches in the user code, only oper-
ators from the executed branch are contained in the DAG.
As a consequence, mlinspect now runs and instruments
pipeline code contained in custom functions, which leverage
loops and branches. This approach enables easy instrumenta-
tion of relevant function calls, even if they happen indirectly
(as is the case with nested scikit-learn pipelines). We refer to
Sect. 4.3.2 for further details.

Annotation propagation The data flowing through the
preprocessing pipeline is further enriched with user-definable
“annotations” that propagate through operators and can be



Data distribution debugging...

Executes user pipeline with

No Bi
p instrumented function calls o Blas

Check

DataQuality

Checks evaluate
constraints on
inspection results

lllegal Features

Check Check

istogram} [Completeness Inspections analyse

Inspection intermediate results of

Lineage ||H
Inspection | | Inspection
L 1

the ML pipeline

6 A

inspections to library-

Delegates execution of '> |nStrumentati0n Layer

DAG Builder |

specific backends

Aaf"”’:?‘k\\\\~;

Backends[ -

& S~
ﬁ?: NumPyJ [ Q@ L ][ |:;| pandas ]

Creation of a DAG
representation of
the ML pipeline

Backends execute
inspections for
specific operations

AN

Fig. 2 Architecture of mlinspect. We apply checks and inspections to an instrumented ML pipeline written by the user. The instrumentation
layer delegates the execution of the inspections to library-specific backends and creates a DAG representation of the pipeline

created, read, and modified by the inspection code. This
annotation propagation mechanism offers a simple library-
independent interface to propagate annotations (e.g., for
tracking the lineage of tuples) across operators from differ-
ent libraries. We base the design of our inspections on this
annotation propagation mechanism. Each inspection retains a
fixed-size state that is reset after each operator and is invoked
only once for each DAG operator. The inspection has access
to the output tuples of the operator and the corresponding
annotated inputs. The following listing details the abstract
operations performed by such an inspection. At runtime, the
visit_op method is called for each operator invocation
and provided with information about the operator as well
as an iterator over the annotated input rows. The inspection
then produces the corresponding output annotations and can
optionally annotate the logical operator in the DAG with the
computed result (such as a histogram of the outputs) via the
op_annotation_after_ visit method.

# Abstract base class for all inspections
class Inspection:

# Inspect intermediate data at a DAG operator, based on
# operator information (op.context), and an iterator
# over annotated input rows with the corresponding
# output rows (row.iterator);
# Return computed annotations for output rows
def visit_op(self,

row_iterator)

op_context,
-> Iterable

# Persist inspection result for the current DAG node
def op_annotation_after_visit(self)

Users have to specify the inspections to apply in advance,
which allows only the state that is required for the actual
inspections configured by the user to be materialized. This
avoids materializing arbitrary information from the pipeline.

As long as each row annotation has a fixed size limit, and
each inspection only uses a fixed-size state, the overhead of
the framework is constant per inspected tuple. This approach
does not introduce additional memory overhead, as there is

only the constant overhead of a fixed number of additional
function calls per user function call.

‘We maintain a mapping between the input rows of an oper-
ator and their corresponding output rows and then expose
this mapping along with the corresponding annotated inputs
to each inspection. This input/output mapping is constructed
differently depending on operator semantics. Operators like
projection and transformers are guaranteed to have the same
number of input and output elements, listed in the same order.
For operators like selection, join, and train—test split, the map-
ping is maintained by generating an identifier column, which
is transparently pushed through the operator and removed
immediately afterward to hide it from user code. Note that
only one possible source tuple (and not all possible sources)
is tracked for aggregation operators and for duplicate elimi-
nation, as the performance overhead of detailed provenance
tracking using the full provenance semiring framework [18]
would be too significant, introducing dependencies between
all input—output pairs [3].

Function call capturing To allow inspections to access
the output of an operator such as a join, along with the cor-
responding input rows and their annotations, arguments and
return values of function calls must be efficiently captured.
For this, the abstract syntax tree (AST) from the Python
parser is modified before compiling and executing the code.
A function call is added before the user code to “monkey
patch” functions from libraries like pandas and scikit-learn
that are supported by mlinspect. Monkey patching [55]
allows mlinspect to extend or modify functionality of
third-party libraries at runtime by completely replacing
the original implementation of a function. These monkey
patched functions internally call the original, unpatched ver-
sion of the function, delegate the execution of the inspections,
and create new DAG operator nodes corresponding to the
function. mlinspect also captures the exact function call
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location and source code snippet corresponding to each DAG
operator. See Sect. 4.3.1 for implementation details.

Backends for popular Python libraries The
mlinspect library is designed based on the semantics of
preprocessing operations from popular Python frameworks
like scikit-learn and pandas. The instrumentation based on
captured function calls described so far is independent of
the specific library. Importantly, libraries differ in their data
representation choices and in what data preprocessing oper-
ations they support. So, pandas functions can be directly
mapped to DAG operators, and each operation is executed
eagerly. In contrast, scikit-learn encourages users to first
declaratively define a nested pipeline using components like
the ColumnTransformer, which allows passing specific
columns to specific transformers like one-hot encoders. Once
a pipeline is defined in a declarative way, data is passed
to the nested pipeline object in a second, separate step.
The function calls that actually process data, such as the
fit/transform calls of transformers contained in scikit-
learn pipeline objects, may not be directly visible in user
code. The user pipeline only calls the £it method once
on the final pipeline object, and the pipeline then internally
calls the £it and transform functions of the transform-
ers and estimators it contains. We introduce library-specific
backends in mlinspect to handle the operations and data
representations of popular libraries like scikit-learn.

Execution of inspections Each backend is responsible for
hiding library implementation details from the inspections.
The pandas backend, for example, is responsible for calling
the inspections as necessary whenever it is alerted of a pan-
das function call. For this, it has access to the arguments and
return values as described before. The backend then needs to
map operator output rows to operator input rows and their cor-
responding annotations. It needs to create efficient iterators to
expose the input/output rows in a specific format. Afterward,
the backend stores the resulting new annotations created by
the inspection in an efficient manner (e.g., as attributes of the
processed dataframe in the case of pandas).

This annotation propagation functionality is enough to
implement a variety of useful inspections. For example, basic
fine-grained lineage tracking on the row level can be imple-
mented with a simple inspection on top of the annotation
propagation approach as follows: unique identifier annota-
tions are generated for each row after the data source operator
and are propagated forward through the DAG. For selec-
tions, projections, and transformers, annotations are directly
forwarded through the DAG. For joins, combinations of
identifier annotations from all join inputs are created and
forwarded.

Optimizable inspections based on dataframe operators
In addition to the generic interface for inspections written in
Python, a second interface for inspections is supported. In
this interface, inspections have to be expressed in terms of
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operations on dataframes. This approach is less general than
the standard approach (which allows for arbitrary Python
code), but is much more performant, because inspections
can be jointly executed with the user code operations, and
common optimizations from query processing such as scan
sharing and projection pushdowns can be applied. We discuss
implementation details in Sect. 4.3.2. Note, this approach is
still in an experimental stage and not yet part of the open-
source release.

3.3 Automatic inspections and checks

Inspections serve as the basis for detecting data distribu-
tion bugs in ML pipelines. They annotate the extracted
DAG with information like computed histograms for dif-
ferent DAG nodes. On top of the extracted and annotated
DAG, mlinspect provides checks, a rule-based approach
to verify constraints on the DAG, for example, by com-
paring the change in a histogram to a threshold. Before
execution, mlinspect determines which inspections are
required based on the checks specified by the user. It then
instruments the pipeline and executes it using a minimal
set of inspections, based on what is required by the checks
and directly specified by the user. After the execution of the
instrumented pipeline and the DAG extraction, each check
can access the final result to evaluate its constraint.

In the following, we discuss a set of more complex auto-
matic inspections and checks for ML preprocessing pipelines
that are enabled by our lineage-based annotation propagation
approach.

Algorithmic fairness In recent years, problems with
respect to the fairness of ML-based decision-making sys-
tems have been uncovered [52]. Such problems are often
difficult to detect and are the focus of mlinspect. As dis-
cussed in the example from Sect. 2 and outlined in previous
work [58], operations like join and selection can acciden-
tally filter out records from protected groups and thereby
introduce or exacerbate under-representation of historically
disadvantaged groups in the data. The m1inspect library
provides an inspection that computes histograms of opera-
tor outputs based on protected groups, and alerts the user
if group membership proportions change drastically after an
operator. A related problem is the low coverage of some pop-
ulation groups identified by a combinations of attributes [7].
For tracing group membership in coverage-related problems,
mlinspect forward-propagates annotations identifying
the groups of interest and materializes the annotated input
and final output of the complete pipeline.

Furthermore, there are legal restrictions on the usage of
demographic features such as gender, race, or disability sta-
tus in automated decision making. One can check the operator
DAG against a list of sensitive features and alert the user
about the places in the code where such features are used.
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ML models may also perform particularly badly for spe-
cific demographic groups in the data (e.g., yielding higher
false-positive rates for recidivism predictions for African
Americans [6]). The identification of such groups is in the
focus of recent research [42]. This identification might be
difficult in cases where the attribute required to identify the
protected group is projected out early in the pipeline or is only
available as a specific dimension of the feature matrix during
feature transformation. To address this, mlinspect sup-
ports inspections that forward-propagate sensitive column
annotations and then materialize the minimum amount of
information needed for analyzing performance for different
groups: rows only containing the predicted label and the sen-
sitive columns.

Methodology and robustness Additionally, inexperi-
enced data scientists may make methodological mistakes,
such as fitting featurizers on the whole data instead of the
training set only, forgetting to scale numerical features even
though the model requires that (as in the case of L2 regular-
ization), or selecting hyperparameters on the test set instead
of the validation set. Such issues can impact fairness-related
metrics as well [47]. All of these issues can be identified by
analyzing the extracted operator DAG. Furthermore, there
may be robustness issues in the pipeline. For example, some
scikit-learn transformers cannot handle null values. One can
identify such cases from the operator DAG and recommend
that the user applies a simple imputation technique. Another
problem that can be detected by analyzing histograms of
operator outputs is class imbalance. The DAG can be ana-
lyzed to see whether the data scientist already addresses these
with resampling or reweighing and alert her otherwise.

Data quality Data quality testing in the form of unit tests
for data as offered by libraries like Deequ [48] can also be
implemented using m1linspect. Data unit tests typically
evaluate constraints based on aggregate statistics of the data
such as the completeness (ratio of non-NULL values) of a
column or the number of distinct values in a column. The
mlinspect library can compute these data quality statistics
over all intermediate results of a pipeline.

3.4 Algebraic definition of themlinspect
dataflow graph

Data preparation pipelines that use declarative abstrac-
tions such as pandas data slicing, scikit-learn’s Column
Transformer, or SparkML pipelines have a natural
directed acyclic graph (DAG) representation [46]. Data
sources in this DAG are typically comprised of tables or files
holding relational data. The data flowing through the DAG
is either collections of relational tuples or tensors. The oper-
ators are either relational operators like join, selection, and
projection (consuming relational data and producing rela-
tional data), standard feature encoders like one-hot encoders

(consuming relational data and producing vectors), or stan-
dard ML preprocessing operations like normalization or
concatenation (consuming vectors and producing vectors). In
the following, we list the operations supported by the current
implementation of mlinspect in Table 1, and discuss their
formalization. We would like to note that we focus on com-
mon operations from pandas and scikit-learn in our current
research prototype. That said, the instrumentation approach
of mlinspect is general, and extending its capabilities to
support additional functions can be done with moderate engi-
neering effort.

Dataframe algebra We introduced our operators as a
mixture of relational algebra operators with estimator/trans-
former pipelines. However, relational algebra is insufficient
to formalize mlinspect operators because it operates on
unordered collections, while typical exploratory operations
on dataframes (like printing the first or last n rows) assume
an ordered data representation [39]. Estimator/transformer
pipelines in scikit-learn also fundamentally rely on order:
transformers map over a list and transform the data without
changing the order (e.g., when converting categorical strings
to one-hot vectors). Model training methods also assume that
their inputs are ordered, by implicitly associating each fea-
turized datapoint with its corresponding label. Furthermore,
support for linear algebra is crucial for typical ML pipelines,
because many operations, especially for feature processing,
have a natural representation as matrix operations and are
internally implemented on numerical array data structures. In
addition, dataframes in libraries like pandas offer many spe-
cialized methods that do not have an equivalent in relational
algebra [39]. Examples include the TRANSPOSE operation
that interchanges rows and columns, and the TOLABELS
operation that projects a column out to use it as a row label.

Peterson et al. [39] observed that dataframes combine
operations from relational algebra, linear algebra and spread-
sheets and proposed a novel dataframe algebra to unify them.
We use this algebra as a basis for the abstract representation
of ML pipelines, in order to formalize our approach. Because
mlinspect currently focuses on ML pipelines that use
relational operations and estimator/transformer operators, we
only require a subset of the dataframe algebra.

Operator formalization Peterson et al. [39] define a
dataframe as a tuple (A,n, Ry, Cn, Dy), where Ay, is an
array of entries from the domain ¥*, R, is a vector of row
labels from X*, C, is a vector of column labels from X*,
and D, is a vector of n domains from Dom, one per column,
representing the schema of the dataframe. Each component
of the tuple can be left unspecified. Since D,, can be left
unspecified, there is a schema induction function S(-) that,
when applied to a column of A,,,,, returns its domain i. Func-
tion p(-) can be used to get the values of the column. This
definition allows to represent matrices as dataframes with a
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Table 1 Functions supported by m1inspect and their corresponding operators in the dataflow representation of the pipeline

Function call

Operator

'pandas.io.parsers’, ‘read_csv’')
'pandas.core.frame’, ’'DataFrame’)
'pandas.core.frame’, ’'__getitem__ '), arg type: strings
'pandas.core.frame’, ‘_ _getitem__ '), arg type: series
'pandas.core.frame’, ’‘dropna’)
'pandas.core.frame’, ’‘replace’)
'pandas.core.frame’, ‘'_ _setitem_ ')
'pandas.core.frame’, ’‘merge’)

'pandas.core.groupbygeneric’, ‘agg’)

'sklearn.compose._column_transformer’,

'sklearn.preprocessing._encoders’, ’‘OneHotEncoder’)
'sklearn.preprocessing._data’, ’'StandardScaler’)
'sklearn.impute._base’, ’'SimpleImputer’)

'sklearn.preprocessing._discretization’,

'sklearn.tree._classes’,

'tensorflow.python.keras.wrappers.scikit_learn’,

'sklearn.model_selection._split’,
'sklearn.preprocessing._label’,

'sklearn.pipeline’,

(

(

(

(

(

(

(

(

(

(
("sklearn.compose._column_transformer’,
(

(

(

(

(

(

(

(

( rfit’),arg: train data
(

‘sklearn.pipeline’, ’fit’), arg: train labels

'ColumnTransformer’), column selection

'ColumnTransformer’), concatenation

'KBinsDiscretizer’)

'DecisionTreeClassifier’),

‘train_test_split’)

'label_binarize’)

Data Source
Data Source
Projection
Selection
Selection
Projection (Mod)
Projection (Mod)
Join
Groupby/Agg
Projection
Concatenation
Transformer
Transformer
Transformer
Transformer
Estimator
'KerasClassifier’),...

Split (Train/Test)
Projection (Mod)
Train Data

Train Labels

homogeneous numeric schema D,,, with null labels R,, and
C,. See Figure 3 in Peterson et al. [39] for an illustration.
We detail the representation of the one-hot encoder
operator in this algebra as an example. Given a DF =
(Am.1, R, C1, D1) with a categorical string column, the
one-hot encoder is a map operator MAP(DF, f) with the
output (A;nn,, R, Cr’l,, D;l,), and the function f : D, —
D;,, where A/ . is the result of the function f as applied
to each row, C}’l, is the resulting column labels, and D;l, is
the resulting vector of domains. For a one-hot encoder, f
is a function that transforms each categorical string into an
n’-dimensional vector, where n’ is the domain cardinality of
D1, with only a single nonzero entry in the dimension corre-
sponding to the string value in a given row. The cardinality
n’ of the string column becomes the number of dimensions
of the one-hot vectors and, thus, also the number of columns
in the result dataframe. The column labels Cl’1,, in this case,
are generated by combining the attribute and string values.
In general, our operators map to this algebra as follows.
Our DAGs start with one or multiple Data Source oper-
ators. In the dataframe algebra, the initial data inputs are
not operators, rather, they are modeled as leaf nodes in their
DAG. Our operator Projection has the same semantics
as the PROJECTION operator in the dataframe algebra. The
corresponding operator for our Projection (Mod) isa
MAP because the dataframe algebra does not have extended
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projections but uses the MAP operator instead to also han-
dle that functionality. Our Selection and Join operators
work exactly like their equivalents in the dataframe alge-
bra, SELECTION and JOIN. Our Group by Agg operator
works like the GROUPBY operator in the dataframe alge-
bra that can directly apply aggregation functions. Note that
the GROUPBY operation in the data frame algebra is more
powerful than ours, in that it offers a collect aggrega-
tion function that can group rows into multiple dataframes,
which we do not support. The MAP function in the dataframe
algebra applies a function uniformly to every row. Our
Transformers have the same semantics as these MAPs.
Our Estimator can also be expressed as a MAP that does
not produce an output. The Split (Train/Test) and
its two outputs can be expressed using a MAP to add a tempo-
rary column, a SELECT to filter records using this column,
and a PROJECT to remove the temporary column afterward.
The Concatenation can be used to append the columns
of multiple dataframes that have the same number of records.
In the dataframe algebra, this can be done using TRANS-
POSE to interchange the columns and the rows, followed by
a UNION of the two dataframes, and then a TRANSPOSE
again.

Additionally, we enrich our DAG representation of ML
pipelines with other information inferred from the pipeline
code, which is potentially helpful for further analysis. Exam-



Data distribution debugging...

ples for this are the Train Data and Train Label
DAG nodes that mark the data on which estimator.fit
was called. Clearly, identifying the exact version of train
and test data used to fit the ML model greatly simplifies the
implementation of inspections. When formalizing our DAG
operators, these operators can be ignored, as they result in
no-op label nodes that do not change the semantics of the
ML pipeline query but they simplify its analysis.

Discussion As we already pointed out, the major differ-
ence between the dataframe algebra and the relational algebra
is order preservation. Relational algebra operates on sets of
tuples, while dataframes are modeled as ordered collections
of tuples, and operations on them preserve this order. This
property is a fundamental obstacle for the efficient pushdown
[23] of the execution of ML pipelines and inspections into
relational databases, as we would either need to implement
order-preserving variants of common relational operators, or
introduce artificial sort columns and always sort query results
based on them.

4 Implementation

We now discuss the salient aspects of the implementation
of mlinspect and revisit the example from Sect. 2. Our
research prototype is available at: https://github.com/stefan-
grafberger/mlinspect.

4.1 Overview

Our research prototype contains the core operator DAG
extraction functionality, and it implements instrumentation,
checks, and inspections for pandas and scikit-learn. We offer
implementations of representative inspections, including an
inspection that materializes the first row output by each oper-
ator, an inspection that tracks the detailed lineage of all rows
flowing through the DAG, data quality inspections, and an
inspection that computes histograms of operator outputs for
sensitive groups. In addition, we offer implementations of
checks, which evaluate a constraint on the outputs of our
inspections, such as a threshold comparison of the magni-
tude of change in the proportions of certain groups in the
data after a filter.

4.2 Inspections

Some checks only require the extracted DAG for analy-
sis. An example for this is the NoIllegalFeatures
check, which inspects the names of projected attributes used
as features to ensure that no illegal features, such as gen-
der or race, are used. Other checks only require simple
inspections thatinvestigate an operator inisolation. An exam-
ple is the NoMissingEmbeddings check, which simply

ssn smoke
123 Y [p1]
2] -
‘7122 $ [[53]] ssn smoke cost smoke cost
P28 v 100 kLol | v 100 %g;g;}
3, c2 )

ssn cost 789 N 200  [P3,c2] N 200

123 100 [c1]

789 200 [c2]

Fig.3 Lineage tracking by propagating identifier annotations through
operators

counts the null values in the outputs of embedding opera-
tors. Another example are inspections for data unit testing.
Data unit tests typically evaluate constraints based on aggre-
gate statistics of the data such as the completeness (ratio of
non-NULL values) of a column or the number of distinct val-
ues in a column. Often, these statistics only require a single
pass over the data and can therefore be pipelined with the
actual execution of an operator. The Completeness and
NumDistinctValues inspections compute these statis-
tics by iterating over the values of a given column and
maintaining the counts for NULL/non-NULL values (for
completeness) or a hashmap containing the number of occur-
rences per distinct value.

In general, however, inspections need to work with the
data annotations flowing through the operators at runtime,
as described in the previous sections. In the following, we
discuss two such cases in detail: lineage tracking and change
detection for proportions of protected groups.

Lineage tracking It is simple to integrate lineage track-
ing into mlinspect directly using the built-in annotation
propagation mechanisms. As part of lineage tracking, unique
identifier annotations for all input tuples are generated and
forwarded according to operator semantics (e.g., for a join, a
combination of the identifier annotations of matching tuples
are forwarded).

We implement lineage tracking (Fig. 3) via the lineage
inspection. To illustrate our approach, we use a pandas code
snippet that joins a table of patient data with a table of cost
data, and projects the result to the attributes smoke and
cost.

patient = pd.read_csv(...)

cost = pd.read_csv(...)

data = pd.merge ([patient, cost], on="ssn")
data = datal[["smoke", "cost"]]

The visit_op(self, op_context, row_

iterator) function of the inspection is called first, as
patient data is loaded on line 1. The inspection then
checks the type of the current operator. In our example, oper-
ator type, data source, is contained in the op_context.
After checking this, the inspection generates unique iden-
tifiers for each row. This process is repeated for the cost
data source on line 2. The third call to visit_op corre-
sponds to the join, which results from the pd.merge call
on line 3. There, visit_op operates on five-tuples com-
prised of the output row from the join, the corresponding
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rows from the two dataframes patient and cost, and the
annotations for the two input rows. The two input annota-
tions are then combined to create the output annotation. For
projection on smoke and cost on line 4, we only need to
forward-propagate the existing input annotations.

One notable case not shown here is lineage inspection for
the groupby operator type, where the aggregation follow-
ing the groupby is treated as a new data source. We expect
that the detailed lineage information from aggregations is not
relevant for many ML use cases, which often mostly apply
global aggregations (e.g., for normalizing features), where
each tuple depends on the whole input anyways. We leave a
more fine-grained treatment of aggregations for future work.

Change detection for proportions of protected groups
In our running example (Fig. 1 in Sect. 2), we briefly
discussed an inspection to discover the introduction of
accidental changes in the proportions of protected groups.
This refers to the issues (O, @, @ and @ from the
example and requires the histogram inspection to (i) trace
the group membership variables age_group and race
through the DAG, and handle the fact that age_group
is projected out early (issue (2)). We designed a custom
check called NoBiasIntroducedFor for such cases.
Internally, this check uses the HistogramForColumns
inspection, which we will now explain. Consider the follow-
ing selection statement:

data = datal[data.county == "CountyA"]

Figure 4 shows how this selection might affect an exam-
ple dataset flowing through it. Before the selection, the two
age_groups, 60 and 20, are distributed evenly. After the
selection, the majority of data points is in the age_group
60. This is an artifact of the strong correlation between the
attribute county and the attribute age_group. Our simple
example illustrates a common real-world trend, namely, that
geographic and demographic attributes are often correlated.

To detect such distribution changes, we apply the
HistogramForColumns ([ 'age_group’]) inspec-
tion that annotates both the DAG node before the selection
and the selection DAG node itself with an age_group his-
togram of the outputs. After inspection execution and DAG
extraction, the NoBiasIntroducedFor check can then
look at these two annotated DAG nodes. For each sensitive
attribute, it checks whether there is a significant distribution
change of group memberships, and, if so, alerts the user.

We use a simple detection strategy that is easy for users to
understand and configure. We start by calculating the group
membership ratio compared to the overall number of people
in the data. Here, this group membership ratio for people
with age_group=20 is 0.5 before the selection and 0.33
after it. We compute the relative change before and after the
selection as (0.33 — 0.5)/0.5 = —0.34. We then compare
this quotient to a test threshold, set to —0.3. If the change is
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Fig. 4 Histogram-based change detection for the proportions of pro-
tected groups in operators such as selections and joins. Here, in the
beginning, the two age groups are distributed evenly, with a drastic
change after the operator application

below that minimal threshold, as is the case in our example,
we warn the user. This approach is especially sensitive to
changes in the proportion of minority groups.

What is not encountered in this example is the removal
of a group membership attribute. If projection is used to
remove the attribute age_group, we annotate each row
with its corresponding age_group value and propagate
these row annotations forward. Subsequent operations like
join, selection, and missing value imputation, which may
change group proportions in the data, rely on these propa-
gated group membership annotations to compute a histogram
of group memberships of all inspected operator outputs, and
test them for distribution changes.

We implement additional inspections to compute his-
tograms of intersectional group membership. We also pro-
vide a check for calculating the removal probabilities of
different demographic groups in the data. This check detects
cases where filter-like operations that affect only a small
subset of the data disparately impact specific demographic
groups.

4.3 Execution of inspections, checks, and
DAG extraction

Next, we discuss the detailed execution of inspecting a pre-
processing script withmlinspect. The execution proceeds
according to the following steps (which we detail in the
remainder of this section):

1. Preparation: Determination of a minimal required set of
inspections based on the inspections and checks specified
by the user.

2. Instrumentation: Instrumentation of function calls in the
AST of the user program.

3. Execution of the instrumented program: Delegation of
the execution of inspections to library-specific backends;
joint execution with pipeline operations; creation of the
dataflow DAG.

4. Results: Evaluation of checks using the DAG and the
inspection results.
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4.3.1 Preparation

Determining a minimal required set of inspections The
first step consists of determining which inspections to exe-
cute. Users have two ways to specify inspections: they can
either use the check API or specify inspections they are inter-
ested in directly. We collect all of the required inspections
from these two sources and build a unified set with them.

Capturing relevant function calls As discussed in
Sect. 3.2, we instrument the user code via monkey patch-
ing and callback functions. It is crucial to only patch relevant
function calls, due to the high amount of additional func-
tion calls for the callback functions. Determining whether a
given function call is relevant for us (e.g., maps to an operator
in our DAG) is difficult without executing the code. Monkey
patching allows us to create specific patches for function calls
relevant for m1 inspect, while leaving other function calls
unaffected. We leverage the Python package gorilla’,
which simplifies monkey patching, while also retaining the
original unpatched version of the function. When a user
executes source code with mlinspect, AST nodes corre-
sponding to the following code before and after the original
user code are added. The two added function calls only need
to be executed once per user script and patch all functions
supported by mlinspect from libraries like pandas and
scikit-learn.

from mlinspect.instrumentation

import monkey_patch, undo_monkey_patch
monkey_patch ()

# ...original user code...
undo_monkey_patch ()

Handling indirect function calls Monkey patching affects
all calls to a patched function, even though we only want to
execute inspections for calls relevant to the user pipeline.
An example for a problematic case is the constructor
pandas.DataFrame (.. .), which is internally used by
Pandas as well. As we are only interested in the invocations
by our user program, we detect whether a certain operation is
directly called by the user program as follows: In the patched
code, we call the Python function sys._getframe to
determine the source code filename of the stack frame of
the call and check whether the source file is the root level file
executed by mlinspect.

Example We present the code for a simplified exam-
ple of our instrumentation technique, which adds support
for the sklearn function label_binarize (which cre-
ates a binary vector from a categorical column with two
distinct values). We initiate the patching of the method
label_binarize in the package sklearn.
preprocessing viagorilla’s annotations. Next, we imple-
ment a patched version of the function, which creates a new
DAG operator and retrieves the corresponding DAG parent

> https://pypi.org/project/gorilla/.

node and the input annotations required for our inspections.
Afterward, we call both the backend responsible for the oper-
ation (the SklearnBackend in this case), as well as the
original function and insert the newly created operator node
to our DAG. We would like to note that adding support for
anew API function to mlinspect only requires a similar
patching implementation, which makes it easy to extend our
library with moderate engineering efforts.

@gorilla.patches(sklearn.preprocessing)
class SklearnPreprocessingPatching:
@gorilla.name(’label _binarize’)
@gorilla.settings(allow_hit=True)
def execute_label_binarize(*args, **kwargs):
original = gorilla.get_original_attribute(
sklearn.preprocessing, label_binarize’)
# Patched function
def patched(...):
function_info = FunctionInfo(
3klearn.preprocessing. _label’,

# Operator mapping for DAG

op_ctx = OperatorContext(
OperatorType.PROJECTION_MODIFY,
function_info)

parent_info = get_parent_node_info(
args[0], ...)

# Initiate inspection execution via

# Dbackend

input_df = SklearnBackend.before_call(
op_ctx, [parent_info])

# Execute original function

result = original (input_df,
*args [1:], *xkwargs)

# Finalize inspection execution via

# Dbackend

backend_result = SklearnBackend)\
.after_call(op_ctx, input_df, result)

# Append DAG node with inspection result

add_new_operator_node_to_dag(
DagNode(...), [parent_infol,
backend_result)

# Return original result

return backend_result.updated_result_df

return execute (original, patched, *args,
*xkwargs)

Indirect data processing ML pipelines often contain
several functions calls that only lead to data processing indi-
rectly. Scikit-learn’s ColumnTransformer pipeline step
for specifying a set of feature transformations on a dataframe
is an example for this. The user code defines a nested pipeline
first and then passes the data to it in a second step by calling
fit on the final pipeline object. The resulting £it calls on
the contained transformers such as a OneHotEncoder or
the projections required by the ColumnTransformer are
only executed indirectly. Our approach identifies and han-
dles these indirect calls by patching the constructors of the
pipeline steps and using the source code location retrieved
during the constructor invocation to determine that the fit
calls originate from the user pipeline code (and must there-
fore be handled by the system).

Tracking source code locations of operators Python
stack frames only contain the line number of the corre-
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sponding operations. mlinspect can add extra function
calls to the AST to track code locations. The AST of the
user program, extracted by the Python parser, contains more
detailed information: nodes have the attributes 1ineno and
coloffset thatindicate the start of the code location, and
one can also determine where the snippet corresponding to an
operator ends (the end_lineno and end_coloffset).
These two attributes are provided by a recent addition to
the parser in Python 3.8. Instrumentation is conducted with
an ast.NodeTransformer in Python, where the code
locations are directly added as arguments to callback func-
tions. This more detailed tracking is configurable, as the
additional function calls introduce a minor overhead. We
experimentally evaluate the overheads of different instru-
mentation techniques in Sect. 5.1.4.

4.3.2 Execution of the instrumented program

After instrumenting the user pipeline code, the instrumented
AST is compiled and executed, which triggers the execu-
tion of the patched functions and the build up of the DAG
as described in Sect. 3.2. The execution of each inspection
is delegated to the corresponding backend, e.g., inspections
for a merge call on a pandas dataframe will be handled by
the pandas backend. The API for the different backends com-
prises of two functions: before_callandafter_call,
where the before_call function can modify the input
before the original function is called. In case of a pandas
merge call, for example, an index column is introduced
to later associate output rows with the corresponding input
rows. The after_call method then executes the inspec-
tions and removes metadata such as the index column.

Handling control flow We discuss the implementation
details for handling control flow (Sect. 3.2). In order to be
able to work with pipelines containing control flow, a DAG is
built from the actual execution of the program, instead of just
relying on information in the AST (as in previous versions
of mlinspect [17]). This prior approach does not allow
for the determination of which branches are executed. The
current version directly patches function calls, independently
of where they occur. Based on these function calls, the DAG
is built up dynamically at runtime. During the execution of
a patched function, the current stack frame is investigated to
determine whether the function call is relevant for the inspec-
tions, as described in Sect. 4.3.1. We carefully implemented
the corresponding logic to ensure a low overhead for repeated
function calls that are not of interest to mlinspect, and
experimentally evaluate this overhead in Sect. 5.1.4.

Efficient execution of our Python-based inspections via
scan-sharing We implement inspections to both consume
and produce iterators, based on for-comprehensions and the
yield keyword in Python.
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def visit_op(self, op_context, rows) ->Iterable
for row in rows:
annotation = annotate_and_update_state (self,b row)

yield annotation

The inspections are supplied with an iterator over their
input rows. To create the iterator, three different arguments
are needed: the output of the operator, the corresponding
input, and the annotations for the input. They all have the
same order and an equal number of rows, so one can scan
over those three list-like elements at the same time to cre-
ate the row_iterator. However, we only want to do a
single scan over this even if we have multiple inspections.
The only complication is that each inspection has its own
separate annotations for each record. The following listing
shows how scan-sharing is done with Python iterators and the
itertools library®. It starts by creating multiple iterators
over the input and output rows, one copy per inspection. For
each inspection, an iterator is constructed over the inspec-
tion’s annotations of the input rows. Finally, the functions
zip and map are used to create a single iterator that outputs
simple data class objects with the current input row, the input
row annotation, and the output row. These data class object
iterators are the input for the inspections.

# Duplicate iterators for each inspection

duplicated_inputs = itertools.tee(input_rows,
len(inspections))
duplicated_outputs = itertools.tee(output_rows,
)

len(inspections)
# Create the inspection_iterator for each inspection
for inspection_index, _ in enumerate (inspections):

inputs = duplicated_inputs[inspection_index]

outputs = duplicated_outputs[inspection_index]

annotations = iterator_for_annotation (
input_annotations, inspection_index)
row_it_for_inspection = map (

lambda input_tuple: RowUnaryOperator (*input_tuple),

zip (inputs, annotations, outputs))

The function itertools. tee internally uses one iter-
ator over the input and one over the output and buffers the
values until each duplicated iterator processed the value.
All inspections consume the iterator elements at the same
pace, so only one pass over the data is being made and
itertools.tee only needs to buffer the current input
and output row. This approach is based on the banana split
law [20] for loop fusion. When we have multiple functions
that we can express using a fold (e.g., computing the count or
the sum for a numerical column), we can build a single fold
function that combines them to conduct the same computa-
tion with a single pass over the data. Here, the visit_op
functions of each inspection work similarly to folds. There-
fore, we can apply the fusion from the banana split law, to
avoid repeated scans over the data.

Handling different types of data Backends also provide
a custom function to create datatype-specific iterators for all
datatypes that can currently be passed around in the supported
ML pipelines. For example, the following listing shows the
code to create iterators for pandas dataframes.

S https:/docs.python.org/3/library/itertools.html.
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Table 2 Overview of the internal operator types

Operator(s) Operator type

Data Source, Group by Agg Data Source

Projection (Mod), Transformer, Unary map
Train Data, Train Labels
Concatenation N-ary map

Selection, Train/Test-Split Unary resampling
Join Join

Estimator Sink

def get_df_row_iterator (dataframe) :

column_info = ColumnInfo (list (
dataframe.columns.values))
arrays = []
arrays.extend (dataframe.iloc[:, k] for k in
range (0, len(dataframe.columns)))

return column_info, map (tuple, =zip(*arrays))

We provide corresponding implementations for other
datatypes like the ndarray in numpy, the Series in pan-
das, the sparse matrix csr_matrix in scipy, and plain
Python 1ist objects. Our support for tensors is currently
restricted to two-dimensional cases where it is obvious
which dimensions correspond to the rows and columns of
a dataframe. A prime example for this is feature matrices
built from vectorized input samples. We leave support for
operations on higher-dimensional tensors (e.g., to represent
images, pixels, and channels in three dimensions) for future
work.

Instrumentation for different operator types To exe-
cute our inspections, we only need to differentiate between a
small set of different types of operators, as listed in Table 2.
We base the classification on the number of parent opera-
tors, whether the operator produces output data, and whether
the operator can change the order or number of elements. A
Data Source-type operator does not get input data from
a parent operator and does produce an arbitrary output. A
Unary map uses the data from one parent operator as input
and outputs one output row per input row without changing
the existing order of elements. The N-ary map has data
from multiple parent operators as input, each of them having
the same number of elements, and maps n-tuples of input
rows to one output row without changing the existing order
of elements. Unary resampling receives data from one
parent operator as input, and can arbitrarily reorder or drop
input elements to produce its output. A Join-type opera-
tor receives input data from multiple parent operators, and
combines and reorders them in arbitrary ways to produce its
output. A Sink-type operator gets input data from a parent
operator but does not produce any output data.

The previous examples assumed the operator type of a
unary map. In the following, we describe how to handle the
remaining types of operators. Data source operator types are

simpler because we do not have input data or input annota-
tions we need to consider. The N-ary map works analogously:
we can associate row annotations, input, and the correspond-
ing output based on them having the same order and number
of elements. The only difference is that we have multiple
input dataframes instead of a single one, each with its own
annotations. The sink also works analogously; we can asso-
ciate input and input annotations based solely on the order and
number of elements. Functions for operators of the type unary
resampling require more complex logic to associate input
rows, input annotations and the corresponding output rows.
For them, an index column to the input data using the call-
back functions like before_call needs to be added. After
execution, this column is removed during the after_call
function to hide it from the user code. We then utilize these
index columns as follows. We start by concatenating the
input and the input annotations. Next, we read the index
column and join the annotated input with the output. Subse-
quently, we create iterators over this join result, giving us the
required for input, output, and the different annotations. The
remaining execution proceeds analogously to the unary map
function. In the case of joins, we need to apply the described
indexing techniques for both join inputs. In the majority of
cases, we use pandas dataframes as data structure to store the
actual annotations. They are convenient because we can then
leverage joins and concatenation in pandas for the execution
of inspections. Once the data is inside a scikit-learn pipeline,
we switch to plain Python lists to store the annotations.

Optimizable inspections based on dataframe opera-
tors A drawback of our Python-based inspections is the high
runtime overhead inherited from Python and a lack of vec-
torization, which typically requires calling external C code.
Due to this, we design an alternative, less general but more
efficient method for executing inspections. As outlined in
Sect. 3.2, we also support the implementation of inspections
based on dataframe operators. The core idea is to model both
the inspections and the user program operations as dataframe
operators and execute them jointly. This approach is less
general than allowing users to write arbitrary python code
for inspections, but has a much lower overhead, as we can
leverage optimized operator implementations (which apply
vectorization) and common techniques from query optimiza-
tion.

For this approach, inspections are again expressed via two
functions, one for computing output annotations for each row
and one for computing the final annotations for the current
DAG operator. However, instead of relying on the Python
generator abstraction, these functions return a partial query
plan comprised of dataframe operators. For the annotation
propagation, inspections still operate on output rows of the
instrumented user operations and the corresponding anno-
tated input rows, but express the computation of the output
annotations for each row with dataflow operators.

@ Springer



S. Grafberger et al.

Lineage
Inspection

{ Projection } { Projection } [CountAgg.] { Projection ]

Inspection results
for mlinspect

Join result for Annotations
user program of join result

User output Annotations

Histogram
Inspection

Rename of columns
for histograms

Combination of
lineage annotations

Rename

Projection to required
columns, can be
pushed down

[Projection + Rename]

Join from

[Concat + Rename]

Concatenation
of inputs with
their annotations

[Concat + Rename]

Right
Annot

Join inputs (+ corresponding annotations)

Fig.5 Example for optimizable inspections: we generate and execute a
query plan to apply the histogram and the lineage annotations to a join
on two dataframes

Example We discuss how to build up a query plan to apply
the histogram and the lineage annotations to a join on two
dataframes, illustrated in Fig. 5. As shown in the figure,
we start by concatenating each of the two input dataframes
with the dataframes holding their input annotations. Next,
we apply the original user operation, the join. We use a pro-
jection on the joint results to create the result from which the
inspections compute the output annotations. This dataframe
contains all input columns from both sides and the output
columns. This dataframe offers our optimized inspection the
same logical view with separated input and output columns
as we provide for the Python-based inspections. The his-
togram inspection forwards the existing annotation column
and renames it to follow our naming conventions for inputs
and outputs; the lineage inspection combines the two lineage
annotation input columns using a map operation. Now, we
have a dataframe with the annotated output rows and their
corresponding input rows.

In our example, we compute four final outputs from the
intermediate dataframe with the annotated output rows and
the corresponding inputs. The first output is for the user
program: the original result dataframe of the join without
annotations and inputs. We use a projection on the interme-
diate result to remove the annotations and the input columns.
Subsequently, we compute the dataframe containing the new
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output annotations for each row, again using a projection to
retrieve only the annotation columns from the intermediate
result. The last two outputs correspond to the DAG node
annotations from the histogram inspection and the lineage
inspection. The histogram inspection uses a groupby opera-
tion with a count aggregation, while the lineage inspection
applies a limit operation and a projection to materialize the
first n output rows and their lineage annotations. Finally, we
can optimize and execute the query plan. We experimen-
tally evaluate the performance benefits of this approach in
Sect. 5.1.3.

Garbage collecting the annotations Once we obtain the
final data structure with the annotations, we need to decide
where to store it. One option would be to just save the anno-
tations in the different backends. For example, we could
maintain a map from specific function calls to the annota-
tions. However, this would result in unnecessary memory
overhead because we do not know when we can free the
annotation variables. We only want to remember annotations
for a variable as long as that version of the variable exists. For
this reason, we store the annotations along with the variables
themselves. We achieve this for each data representation rele-
vant to the ML pipelines by either adding the attributes to the
original class via monkey patching for pure Python classes,
or via a simple wrapper class for classes like numpy arrays
that are partially implemented directly in C. These wrapper
classes extend the original class and do not change the behav-
ior in any way observable by the original pipeline. Based on
this design, the garbage collector of the Python runtime auto-
matically takes care of freeing obsolete annotations.

4.3.3 Extraction of the dataflow graph and evaluation of
checks

As discussed in Sect. 3.2, we extract the DAG during the
execution of the instrumented user code. As a consequence,
the DAG exactly represents the actual dataflow, even if the
user code has complex control flow. After obtaining all
inspection results and the dataflow graph, we evaluate all
user-specified checks on the DAG and the inspection results.
Finally, m1 inspect returns the complete DAG, the inspec-
tion results, and the check results.

4.4 Implementation of our example

We provide an executable implementation of our example ’
from Sect. 2, along with a Jupyter Notebook 8 that details

7 https://github.com/stefan- grafberger/mlinspect/tree/
19¢a0d62ae8672249891835190c9e2d9d3c14f28f/example_pipelines.
8 https://github.com/stefan- grafberger/mlinspect/blob/
19ca0d6ae8672249891835190c9e2d9d3c14£28f/demo/
feature_overview/feature_overview.ipynb.
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and visualizes the automatically extracted DAG represen-
tation and inspection results for this example. We offer a
declarative API for users to state their expectations using the
aforementioned checks, which we will then internally con-
vert to constraints on inspection results, e.g.,

PipelineInspector
.on_pipeline_from_py_file(’'healthcare.py’)
.check (NoBiasIntroducedFor ([ 'age_group ',

‘race’']))
.check (NoIllegalFeatures ())
.check (NoMissingEmbeddings ())
.execute ()

The expectation about the lack of the introduction of tech-
nical bias refers to the issues (O, @,3), and @ from our
example and requires the aforementioned change detection
inspection from Sect. 4.2 to (i) trace the group membership
variables age_group and race through the DAG, and han-
dle the fact that the former is projected out early (issue 2)).

With this in mind, mlinspect proceeds as follows:
when we visit the projection operator that removes the
attribute, we annotate each row with its corresponding
age_group value and propagate these row annotations
forward; (ii) the join, selection, and imputation operators
might change the proportions of groups in the data. To
handle this, we use the propagated group membership anno-
tations, compute a histogram of group memberships of all
inspected operator outputs, and test them for distribution
changes afterward. To check whether illegal features have
been used (issue (3)), we simply search the list of projected
attributes that are used as features. This information is avail-
able as part of our DAG. The check for missing embeddings
(issue (®) only requires counting the null values in the out-
puts of the embedding operator.

5 Experimental evaluation

In this section, we present results of an extensive quantita-
tive and qualitative evaluation of mlinspect. In Sect. 5.1,
we measure the runtime overhead of m1 inspect for differ-
ent operators, inspections, and instrumentation techniques.
Then, in Sect. 5.2, we present results of an interview-based
user study of effectiveness of mlinspect. Finally, in
Sect. 5.3, we qualitatively compare our library to an experi-
ment tracking and workflow provenance solution.

5.1 Runtime overhead

As mlinspect operates on Python scripts and allows for
user-defined inspection functions with generic code, it natu-
rally runs in Python, inheriting its overheads. Therefore, our
experiments focus on the overhead in terms of the number
of input and output rows of the operators. We designed our
approach with a constant overhead per tuple and therefore

expect the overhead to be linear in the number of input and
output rows of an instrumented operator. This is due to the
fact that our design requires us to only conduct a single scan
over operator inputs and outputs to execute our Python-based
inspections and to only materialize intermediate results of
interest, which requires a constant overhead per processed
row for our discussed inspections. We present a set of exper-
iments to measure the runtime overhead of our mlinspect
research prototype. We evaluate the overhead of instrument-
ing operators in Sect. 5.1.1, the overhead of our Python-based
inspection execution in Sect. 5.1.2, and we show how we
can drastically reduce the inspection overhead with our opti-
mized execution of inspections in Sect. 5.1.3. Additionally,
we measure the overhead of instrumenting function calls in
the AST in Sect. 5.1.4.

5.1.1 Overhead of python-based operator instrumentation

In our first experiment, we measure the runtime overhead of
instrumenting different operators. In particular, we focus on
the selection, projection and join operators of pandas, and
on an ML-specific operator, the one-hot encoder from scikit-
learn, which transforms a categorical string column into a
sparse matrix representation. For each operator, we measure
the execution time (i) without instrumentation; (i) with
instrumentation without inspections; and (iii) with instru-
mentation and with one to three empty inspections that read
the respective inputs and outputs of operators but do not prop-
agate annotations.

We report the average runtime from 20 repetitions of the
experiment for 1000 to 1,000,000 input rows on the logarith-
mic scale. (For join, we generate the same number of rows for
both join inputs.) The results are shown in Fig. 6. We observe
the expected increase in the absolute runtime stemming from
our usage of Python. However, the overhead per tuple is con-
stant, indicated by the fact that the runtime overhead grows
linearly with the number of input and output rows for all
operators, as expected. We scale with operator output size
for operations like many-to-many joins, where the output is
potentially larger than the inputs. This is because inspections
need to scan all output rows, along with the corresponding
input rows and input annotations. Note that the runtime for
projection without instrumentation, and with instrumentation
but without inspections, is constant due to the underlying
columnar data layout.

5.1.2 Python-based inspection overhead

We repeat our experiment with the four previously chosen
operators and measure the runtime overhead of inspections.
For each instrumented operator, we compare the runtime of
an empty inspection to the runtime of the following inspec-
tions (each of which scans all processed rows): (i) materialize

@ Springer



S. Grafberger et al.

104 = 104
no inst. no inst. no inst. no inst.
5] instrum 103{ instrum = | | instrum 10%{ -~ instrum
@ 0% insp @ — linsp 7103 — 1linsp = —— linsp
£ 2insps gmz 2insps £ —— 2insps E 2 insps
0 1021 — 3insps o —— 3insps . ,| — 3insps o 10%1 — 3insps
£ £ EY g
€10t €10t < €10 -
S S S S
2 2 0= ERT 2 l=
100 of T e T e e
10 100
> > o J > > o o > > o J > > o o
NQ ,\,Q ,\,0 ,\9 ,\,0 ,\,G ,\0 NQ ,\0 ,\,Q ,\,0 ,\9 ’\9 ,\/0 ,\,Q ,\,0
# rows # rows # rows # rows
(a) Selection. (b) Projection. (C) Join. (d) One-Hot-Encoder.

Fig. 6 Instrumentation overhead for different operators. We compare
the runtime of the execution of a given operator with no instrumenta-
tion (no inst), instrumentation without inspections (instrum), and

with one to three empty inspections. We find that the overhead is linear
in the number of input and output rows of the operators
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Fig. 7 Runtime overhead for different inspections in various opera-
tors. We compare the runtime of the execution of a given instrumented
operator with an “empty” inspection (empty) to inspections for
materialization (materialize), lineage tracking (lineage) and

histogram computation for one and three columns (hist_one and
hist_three). We find that the overhead is linear in the number of
input and output rows of the operators
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Fig. 8 (a)—(c) Runtime overhead for executing inspections. Our opti-
mized execution with dataframe operators reduces the overhead by
an order of magnitude compared to the Python-based execution and
exhibits an overhead of less than 8% compared to non-instrumented exe-
cution in some cases; (d) AST instrumentation overhead for function

a sample of output rows for each operator; (ii) track the lin-
eage via annotation propagation for a sample of output rows
for each operator; (iii) compute histograms over one or three
columns of the outputs for each operator. We report the aver-
age runtime from 20 repetitions of the experiment for 1000,
10,000, 100,000, and 1,000,000 input rows.

The results are shown in Fig. 7. We again observe an over-
head for all inspections that is linear in the number of input
and output rows. We see that the overhead for the actual
inspection logic (e.g., lineage tracking via annotation prop-
agation) is low compared to the empty inspection, which

@ Springer

(C) sklearn 1-hot. (d) AST instrumentation.

calls in a loop. Our patched-based instrumentation approach outper-
forms the previous approach by up to an order of magnitude and its
runtime is within a factor of two of the uninstrumented runtime for a
large number of repetitions with disabled code location tracking

indicates that most of the overhead stems from instrumenta-
tion and data access. We also see that the overhead of running
additional inspections within one execution is a tiny fraction
of the overall instrumentation overhead. This is a validation
of the benefits of our loop fusion technique from Sect. 4.3.2.
Recall that we implement our inspections with generator-like
iterators that yield their elements, and execute the inspections
in a way that avoids multiple scans over the data by exposing
each record to all inspections during a single scan over the
data.
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5.1.3 Optimized execution of inspections

We introduced an additional approach to execute inspections
in Sect. 4.3.2, based on query plans built from dataframe
operations. This approach is less general than Python-based
inspections from Sect. 5.1.2 that allow for arbitrary Python
code, but has a much lower overhead. In the following, we
evaluate both approaches on three operators and two inspec-
tions. We implement the optimized execution for our lineage
and histogram inspections applied to the pandas functions
dropna and merge, as well as for the OneHotEncoder
from scikit-learn. We vary the number of randomly generated
input rows from 1000 to 1,000,000 on the logarithmic scale
and compare the runtime of the original operation without
instrumentation no_inst, the Python-based mlinspect
execution from Sect. 5.1 (hist and lineage), and the
optimized execution with dataframe operators (hist-opt
and 1ineage-opt).

Figure 8a—c shows the results of this experiment. We find
that the relative overhead of our optimized inspections is an
order of magnitude lower than for the Python-based execu-
tion. For the highest number of rows in this experiment, the
overhead varies between the factors of only 1.08 and 4.3,
compared to the runtime of the operation without instrumen-
tation. This is due to the fact that we can optimize data access
during the execution of the query plan corresponding to the
inspections, that is, the lineage inspection no longer needs to
scan all of the data. For the one-hot encoder, for example, it
only needs to forward-propagate the existing lineage anno-
tation column. We only materialize a small row sample from
the output dataframe with an additional lineage column, and
apply selection pushdown to optimize the computation of
the final DAG node annotation. In summary, the optimized
execution strategy drastically reduces overhead.

5.1.4 AST instrumentation overhead

In Sect. 4.3.1, we introduced an improved patch-based AST
instrumentation mechanism. In the following, we measure
the overhead of the instrumentation approach in a worst-case
scenario, where it is necessary to instrument a cheap function
that is invoked an excessive number of times. The following
code snippet is used for the experiment, where list access via
an index subscript is executed n-times in a loop.

n = ..

test_list = 1list (range(n))

for index in range (0, n):
test_list[index] = index

We execute this code snippet for different values of n with
different instrumentation mechanisms: inspect refers to
the instrumentation mechanism described in Sect. 4.3.1,
inspect-loc refers to the instrumentation mechanism
with detailed source location tracking enabled, legacy

refers to the instrumentation used in previous versions of
mlinspect [17], and no-inst refers to the execution of
the code without any instrumentation. In this experiment, we
exclude the time it takes the library gorilla to apply the
monkey patches and remove them again after execution of
the instrumented user code. This constant cost only needs to
be paid once per script and it is independent of the user code.
In our measurements, this one-time cost was lower than 7ms.

Figure 8d shows the corresponding execution times. We
find that the patch-based instrumentation approach is more
than an order of magnitude faster than the earlier legacy
approach. We also find that the instrumentation overhead
diminishes for large values of n, where inspect exhibits
less than twice the runtime of the uninstrumented execution
no-inst assoon as the number of loop repetitions is 10,000
or higher. Furthermore, we find that inspect-1oc, which
tracks the exact source code locations (e.g., not only the line
number but the character offsets in the line), introduces an
overhead proportional to the overhead of inspect. Note
that these experiments show an extreme worst-case scenario
and that code location tracking is optional.

In summary, we find that instrumentation based on mon-
key patching drastically reduces AST instrumentation over-
head.

5.2 Exploratory interview study with experts

We conduct an exploratory interview study with six expert
users to qualitatively evaluate mlinspect in an ML
pipeline debugging task. We provide the materials used in
the study”®.

Participants Six participants solicited from our profes-
sional networks were interviewed. All participants have
several years of experience in domains like data science, data
engineering, and algorithmic fairness. The group consists of
an expert data scientist from a large European retail com-
pany, a research engineer who previously worked on data
science topics at an NLP-focused startup, three PhD students
in machine learning and data management, and a data science
Masters student.

Methodology We first give a fifteen-minute presentation
about mlinspect, focused on data distribution bugs, to
the participants. Next, a demonstration of mlinspect was
given for ten-to-fifteen minutes, showing the detection of
a data distribution bug in an example pipeline. Participants
were allowed to ask questions. After this introduction, partic-
ipants were instructed to individually solve two tasks similar
to the demonstration. The first task uses a pipeline on a
dataset about recidivism [6] with two artificial data distri-
bution bugs caused by filter operations, which participants

9 https://github.com/stefan- grafberger/mlinspect-exploratory-user-
study/tree/b9546a7{f675af95811d3fe0c517093eb184e8d2.
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had to identify. In the second task, a synthetic dataset from
the healthcare domain and a pipeline with one data distri-
bution bug were used. The goal of this setting was to find
out whether ml1inspect helps participants to quickly dis-
cover data distribution bugs and understand their root cause
in complex pipelines with multiple operations, all potentially
affecting the data distribution. Once participants completed
the tasks, we studied their solutions, asked them a prede-
fined set of questions about their experience with the library
and about the technical aspects of its application, and also
gathered their unstructured verbal feedback.

Results We briefly summarize the results from the tasks
and interview questions.

Feasibility of the tasks All participants were successfully
able to perform the two tasks within half an hour, despite not
having any previous experience with the library. Most partic-
ipants solved the second task much faster than the first one,
after getting more familiar with the library. One participant
stated that she spent most of the time on understanding the
task pipeline, not on the usage of mlinspect.

Effectiveness for debugging All participants stated dur-
ing the user interview that they could complete the tasks
usingml inspect effectively. None of the participants were
aware of alternative libraries to m1inspect for debugging
ML pipelines. When asked how they would handle the tasks
without mlinspect, all participants stated that they would
repeatedly adjust the code to compute histograms of interme-
diate results and analyze the distribution changes manually.
Based on their professional experience, all of them estimated
that the alternative approach would have been more time-
intensive, tedious, and error-prone than usingmlinspect.

We highlight one quote from a participant: The fool [...]
can detect bias to the precision of which operator. That is
quite impressive. [...] The DAG representation is powerful.

Real-world applicability All participants thought that
mlinspect is useful for data scientists; one participant
commented that PySpark support is required to work with
larger datasets. All but one participant stated that they would
use mlinspect again when encountering an applicable
problem. The remaining participant said they would only
use our library again if it included additional functionality
for model debugging.

Feature requests Participants named features they would
like to see added to mlinspect, such as support for PyS-
park and support for detecting intersectional data distribution
bugs. Another suggested feature was the detection of bias
that is gradually amplified by multiple operators. The cur-
rent implementation will not detect an issue if all operator
changes are under the detection threshold, despite the over-
all change being over the threshold. Four users stated that
they would have liked a final report by mlinspect that
directly summarizes all potential issues, and includes detailed
information about the issues that triggered alerts. One of the
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participants wanted mlinspect to integrate the detection
of data quality issues like duplicate rows. Another sugges-
tion was to test the initial input distribution and not just detect
whether user code introduces new issues or amplifies exist-
ing issues. We note that the modular design of mlinspect
allows for the implementation of all of the suggested fea-
tures in future work. Indeed, we were able to already build an
inspection for intersectional group memberships in response
to a feature request.

In summary, participants confirmed the need to simplify
data distribution debugging and found m1inspect helpful
and usable.

5.3 Qualitative comparison against experiment
tracking and workflow provenance tools

We are not aware of any system that offers the functional-
ity mlinspect provides. As a consequence, we compare
it against two systems from adjacent use cases: MLFlow!?
and noWorkflow [40]. MLFlow is an open-source experi-
ment tracking solution with a rich feature set; noWorkflow is
an open-source workflow provenance system that can handle
unmodified programs. We qualitatively evaluate these tools
for detecting the issues outlined in our example pipeline from
Sect. 2.

5.3.1 MLFlow

MLFlow offers two different ways to log experiment data:
(i) users can manually add logging statements to their code to
track events and parameters of experiments with statements
like create_experiment (), start_run(), log_
param(), log_metric(), and log_ar-tifact();
(ii) the tool offers an auto-logging API, which is still in
an experimental state, to log certain parameters and metrics
for libraries like scikit-learn and Tensorflow. Auto-logging
is implemented by patching all £it methods of all esti-
mators. To enable auto-logging, users only need to add
a single function call to the beginning of the pipeline,
mlflow.sklearn.autolog (). MLFlow thenlogsdata
like sampled input rows from the train_data used as
inputto pipeline. fit, the parameters of all nested esti-
mators, the training score, as well as strings describing the
applied transformers. During execution, MLFlow saves all of
the captured data to a directory. Afterward, a Ul can be started
with the command m1 flow ui inthe browser. There, users
can get an overview of past runs and experiments and see a
summary of important information, including certain met-
rics. There is also a detailed view for runs. Based on the
information presented in the Ul, it is easy for users to find a
particular version of the experiment code, deploy the trained

10 hitps://github.com/mlflow/mlflow.
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model from that run, and obtain a file containing the initial
column names and five example rows.

However, MLFLow does not capture intermediate ver-
sions of the data between different transformers in the
pipeline. It also does not capture preprocessing operations in
pandas. For discovering data distribution bugs like the shown
in Fig. 1, users will still have to debug the pipeline on their
own; the only help they would get from MLFLow would be
artifact logging, to save CSV-versions of dataframes. To add
detailed logging to scikit-learn pipelines, users still have to
modify the pipeline code, for example, by adding transform-
ers with the sole purpose of logging the data flowing through
them!!.

Revisiting our running example in Fig. 1: we could detect
issue (D with the help of straightforward artifact logging to
the pandas part of the code. However, we would still need to
directly load the CSV-files created by MLFlow and manually
compute histograms. We could also deal with issue 2) and
® in a similar way, but we would have to build a custom
mechanism to track group membership through the selection.
For detecting issues (@) and (6), we would have to implement
scikit-learn debug transformers using CSV logging provided
by MLFlow. For issue (5), we would have to manually inspect
the code to discover columns used as features.

In summary, we find that MLFlow is designed for record-
ing experiment metadata, but it does not provide strong
support for debugging data-related issues in the user code.
Using MLFlow does not make it significantly more con-
venient to identify data distribution bugs in our running
example. However, for other use cases, the auto-logging
approach is very convenient.

5.3.2 noWorkflow

The noWorkflow!2 tool runs unmodified Python files, col-
lects provenance information, and optionally other informa-
tion such as variable usage and dependencies. It allows users
to browse the data of past executions and investigate details
such as module dependencies, function activations, and file
accesses. Furthermore, it can generate a dataflow graph with
fine-grained provenance data for the function call graph. (Fig-
ure 9 shows this call graph for our example pipeline.)

How can noWorkflow help us detect the data distribution
bugs outlined in Sect. 2? We can list all function activations,
including their parameters and return values. For these cap-
tured function calls, noworkflow stores and can display all
intermediate dataframes and tensors passed around. We could
use this to detect issue (1), but we would have to implement
custom code to compute histograms of the data before and

' hitps://stackoverflow.com/questions/34802465/sklearn-is-there-
any-way-to-debug-pipelines.

12 hitps://github.com/gems-uff/noworkflow.

after the join. Issues @ and (3) are more problematic: once
the projection removes important columns, the intermedi-
ate results stored by noWorkflow will not help us anymore;
we would have to write custom debugging code to trace the
group membership attributes. For detecting issues (¥ and
®, noWorkflow provides no help. Unfortunately, the tool
only captures function calls related to user-defined functions.
Because of this, noWorkflow cannot capture the intermedi-
ate data of nested scikit-learn pipelines: a pipeline. fit
call lead to many . £it calls on child transformers. These
indirect calls are not captured. To detect issue (), we would
also have to identify it manually, by looking at the code.

In addition to not providing the required support for detect-
ing these issues, noWorkflow also slows down the pipeline’s
execution: its execution time for our example pipeline is
about an order of magnitude longer thanml inspect’s exe-
cution time. For its detailed tracking, noWorkflow saves all
inputs and outputs of captured function calls to disk, leading
to a considerable overhead compared tomlinspect, which
only stores histograms and group membership information
in-memory. Overall, modifying the pipeline code directly
instead of using noWorkflow would likely be easier for data
distribution debugging. This is because working with the
original pipeline code is more straightforward in this case
than implementing custom code that uses the data captured
by noWorkflow.

Internally, noWorkflows captures function calls via the
Python profiling API'3, where it registers itself as a lis-
tener. During pipeline execution, the Python profiler informs
noWorkflow of all function activations. However, even a sim-
ple test script provided by the noWorklow authors leads to
156,086 function activations [33]. This is because the pro-
filing API itself also considered function activations that
were called indirectly. To avoid overloading users with large
volumes of information (and likely to avoid performance
problems), the authors decided to let noWorkflow only reg-
ister function activations related to user-defined functions.
This decision, in turn, leads to noWorkflow ignoring indirect
scikit-learn calls.

In summary, we find that noWorkflow is designed for
provenance tracking at a lower level (function calls) than
mlinspect, and, as a consequence, it does not appropri-
ately capture the semantics of relational and ML operations
in the code, which greatly reduces its utility as a data distri-
bution debugger, the issue of the interest of our work.

13 https://github.com/gems-uff/noworkflow/blob/
cbb8964eba7d58a5e87f96fb5bb9 1ac452b80763/capture/noworkflow/
now/collection/prov_execution/profiler.py.
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Fig.9 Simplified illustration of the call graph for our example pipeline
produced by noWorkflow. Unfortunately, it is difficult to understand
the dataflow of ML pipelines using pandas and scikit-learn. The graph

6 Related work

The challenges of data management for end-to-end ML
pipelines [41] and the Python-based data science ecosystem
[44,45] are coming into the focus of the data manage-
ment community in recent years. Proposed approaches often
borrow ideas from provenance for relational workloads, a
well-studied subject [13].

6.1 Provenance for relational workloads

There have been different notions of provenance for rela-
tional workloads, and there are several surveys of the field
[13,19]. In the rest of this section, we will highlight a few
important notions and use examples and explanations, mainly
taken from the survey by Cheney et al. [13]. For more infor-
mation, we refer to that survey and other papers cited in this
section.

Provenance information is sometimes also called lineage.
Three forms of provenance we want to discuss here briefly
are why-, how-, and where-provenance. However, a lot of
existing work does not fall into one of these categories. The
idea behind why-provenance is to collect a set of all witness
tuples that contributed to the existence of a tuple in the output
of a query. However, for example, when the distinct keyword
isused in a query, multiple tuples can result in the same output
tuple while not needing to coexist. In contrast, the results
of a natural join require multiple tuples to coexist. Why-
provenance does not capture these distinctions as precisely
as necessary for some purposes. Further, because the number
of witnesses for each output tuple can be exponential in the
size of the input database, the focus is usually on subsets of
witnesses.

The precision issues mentioned just now are addressed by
how-provenance, which aims to capture how a query out-
put was derived. Important work in this area are provenance
semirings [18]. The idea behind this is to use polynomials to
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directly reflects each function call in the user code and does not provide
an abstract representation of the dataflow of the ML components

capture how a query output was derived. Suppose two iden-
tical tuples 71 and 7, are present in a dataset, and we use the
distinct keyword to only get one of the two in the result. In
that case, we can represent the provenance information of
the output tuple as #1 + t2: the existence of one of the two is
enough to produce that output tuple. If we join #; and ,, we
can represent the output’s provenance as 1 *f,, because both
tuples need to coexist to produce that output. If a tuple can be
the output of joining #; with either #, or #3, then we can rep-
resent the provenance of the tuple as #; * (2 +3). Extensions
of this approach to aggregate queries [4] and linear algebra
operators [57] also exist. In practice, however, it is not easy
to use this approach due to performance reasons. It requires
a lot of metadata to be captured, as the polynomial for one
single output tuple can be arbitrarily complex depending on
the query and the data.

Where-provenance captures the relationship between
source and output locations. In a relation, the location refers
to the cell. For example, where-provenance can capture that
the Smith cell in the tuple #1: (123, Jane, Smith) was
copied from the name cell of some tuple r,. However, where-
provenance would not capture that #; is only present in the
output because a join partner #3 existed at some point during
query execution.

There are many applications and implementations of the
different notions of provenance. When using provenance in
practice, paying attention to performance is crucial. Psallidas
et al. [43], for example, present many tricks to implement
provenance capturing efficiently. The authors implement
core database operators with fine-grained lineage support
baked-in. They list many optimization techniques that can
be used when considering lineage support from the start.

6.2 Workflow provenance

There exist a large number of approaches for tracking
provenance more broadly [31] and specifically in general
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data processing workflows [3,5,22,24,27,35,40,61]. How-
ever, none of these approaches can leverage the semantics of
ML-specific operators such as the components of estimator/-
transformer pipelines. NoWorkflow [40] is such an approach.
It extracts provenance from function calls in Python scripts
in three different levels: definition, deployment, and execu-
tion. It also uses the AST and extracts a dependency graph
of the variables and directly handles unmodified programs.
However, it considers functions as black boxes and does
not capture fine-grained provenance inside called functions.
Their system has many technical similarities with ours. How-
ever, their focus is on general Python scripts containing
arbitrary functions. Because of that, they do not know of,
e.g., the semantics of declarative pipeline operators and can-
not track finer-grained lineage. For more information, we
refer to Sect. 5.3.2. YesWorkflow [27] is a system that aims
to bring the advantages of workflow analysis and modeling
features to scripts written in languages like Python and R
that define workflows. However, they heavily rely on users
annotating their code. StarFlow is similar to YesWorkflow,
but offers features like automatic parallelization [5]. It com-
bines dynamic runtime analysis, static code analysis, and
user annotations. It enables workflow abstraction, and it was
implemented in the cloud. Lipstick [3] is a system that mar-
ries database-style and workflow-style provenance. While
typical workflow provenance systems treat different mod-
ules as black box, they expose the functionality of modules
using Pig Latin. This way, they can generate a detailed prove-
nance graph with fine-grained provenance information. They
use a provenance formalization that is based on the prove-
nance semiring framework. Further, Inspector Gadget [35]
is a framework for custom monitoring and debugging of dis-
tributed dataflows. They implemented it in Pig and called
the implementation Penny. They exploit forward processing
only, do not require dataflow engine modifications, and do
not rely on injecting paint columns that may be observed by
the operators. They allow users to insert monitoring agents
that observe edges in the dataflow graph and propagate anno-
tations through the execution. Their system is technically
similar to our system in some aspects but does not consider
ML-specific operators or applications. Titian [22] is another
system using provenance to support users with debugging.
It enables fine-grained data provenance capturing in Apache
Spark. When implementing Spark support for our system
in future work, the implementation described in their paper
will likely be a great reference. Logothetis et al. [24] present
Newt, a scalable architecture for capturing and using record-
level data lineage to discover and resolve errors in analytics.
As case studies, Newt is used to instrument two DISC sys-
tems, Hadoop and Hyracks. Zhang et al. [61] propose a
system to capture lineage for distributed machine learn-
ing pipelines. Their focus is on how to efficiently encode
the lineage information, especially in scenarios with image

features. It records input and output datasets and cell-level
mapping between the two. They do this by defining differ-
ent mapping types for operators, e.g., a geometric mapping
that can map regions of pixels to other regions of pixels.
They built their system to support KeystoneML, which runs
over Spark and HDFS. They expose this mapping interface
to users, who need to decide which information they want to
capture with it. Users can then ask provenance queries after
executing the pipeline with lineage capturing. Not knowing
the types of queries before pipeline execution requires a lot
of metadata capturing, so they use these mapping types to
reduce this overhead.

6.3 Experiment tracking and model management

Capturing high-level provenance, hyperparameters, and eval-
uation results is in the focus of model management systems
such as ModelDB [53], mlflow [60], and ExperimentTracker
[46], where the latter proposed the analysis of declarative
abstractions like estimator/transformer pipelines. In contrast
to our work, these systems only capture basic metadata and
mainly require users to instrument their code with system-
specific logging statements manually. ModelDB automati-
cally tracks ML models in their native environment [53].
It tracks metadata about models and allows visual explo-
ration of this metadata. To capture this metadata, it requires
users to modify their script and add logging statements. Mod-
elHub [29] focuses on deep neural networks and captures
used parameters and hyperparameters like neural network
weights across different versions of a model. It also logs
information like loss values during the training of the model
and performance metrics. Then, it allows users to query this
captured information. In 2017, ExperimentTracker was pro-
posed, a system for tracking metadata and provenance of
ML experiments [46]. It tracks data provenance for SparkML
and scikit-learn pipelines. For this, it also relies on abstrac-
tions like transformers and estimators. However, it relies on
the user to expose certain data structures and integrate their
code with their system’s API. To our knowledge, this sys-
tem was the first to use logical abstractions of SparkML and
scikit-learn pipelines. ProvDB [30] stores metadata and some
provenance information as well. It focuses on collaborative
model development and offers a command-line interface for
users to commit their changes. It uses a graph-model inter-
nally to store this provenance information. Node types in this
graph are agents (e.g., team members or system components),
activities (train, git commit, cron), and entities (project arti-
facts like files, datasets, and scripts). It then allows users to
query this information. As a lot of information is being pro-
duced, they carefully consider how to store and efficiently
query it. Overall, the tool requires users to organize their
whole workflow around this system and use their command-
line interface tools. Another system from 2018 is MLFlow
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that also aims to address challenges like experimentation and
reproducibility [60]. They offer an API to support experi-
ment tracking, reproducible runs, and model packaging and
deployment. They again rely on users to provide additional
metadata and integrate their pipelines with MLFlow. They
then help in tasks like production deployment and reproduc-
ing, e.g., parameter settings of previous experiment runs. As
MLFlow is currently one of the most successful tools in this
area, we decided to try it out in practice and discovered that
they recently added a still experimental option to log certain
predefined metadata for libraries like scikit-learn automati-
cally. For this, MLFlow requires users to add an auto-logging
statement to their code. For more information, we refer to
Sect. 5.3.1.

While systems like MLFlow rely on users to explicitly
mark operations in their ML pipeline that should be saved
in their metadata store, Ormenisan et al. [36] try to move
from explicit provenance capturing to implicit provenance
capturing. To achieve this, the authors rely on change cap-
ture APIs that capture events such as the usage or creation of
files. In addition to this, they rely on file naming conventions
and tagging of files. This way, they can capture the rela-
tion between different ML artifacts. However, only capturing
events like the creation of files is not fine-grained enough
for many use-cases. While these experiment-tracking tools
mostly focus on particular experiments by particular teams,
there also is the need to communicate information like how
a particular dataset or model was created across different
teams. For datasets, Gebru et al. [16,32] propose manually
curated information in the form of datasheets and model
cards to accompany them. The FAIR data principles [56] also
propose guidelines to improve the findability, accessibility,
interoperability, and reuse of digital assets but emphasize
machine-actionability. Stoyanovich et al. [51] go one step
further and propose nutritional labels for data and models,
analogous to nutritional labels for the food industry. The goal
is to provide simple, standard labels to evaluate the “fitness
for use” of a model or dataset. The authors discuss these
labels’ desired properties and describe Ranking Facts [59], a
system that can automatically derive labels for rankings.

6.4 Debugging for ML pipelines and data

Dagger [26] is a data-centric debugger that allows users
to set data-breakpoints and store and query intermediate
results from Python-based data pipelines. It requires users
to mark code blocks in their Python pipelines, becoming
nodes in their Dagger pipeline. It logs the data and provides
its own query language for users to post queries through
a command-line interface. Data breakpoints allow users to
write assertions for the data between the different user-
defined blocks. We see our system, m1 inspect, as a com-
plementary solution to Dagger: m1inspect can point users
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to hard-to-identify issues in their pipeline; Dagger will then
enable them to drill-down and explore the data and identify
the root causes of the problems. Vamsa [34] is a provenance-
based analysis approach for data science scripts in Python
that is technically close to ours. Like, m1inspect, Vamsa
does not require changes to user code and uses a knowl-
edge base about different ML libraries. However, Vamsa has
a much narrower focus, as it only aims to identify which
columns of the input contributed to a particular feature used
for an ML model. Their system also aims to work for general
Python code using various libraries and leverages the AST
and intermediate representations. Vizier [9] is a notebook
environment integrating Python, SQL, and data debugging
and exploration techniques. It requires a tight integration
into the user’s development process and offers support for
fine-grained provenance capture for SQL queries only.

Deequ [48] is another approach for the validation of
ML data. It enables users to write “unit tests for data”
using a declarative APIL. Breck et al. propose another data
validation system [10]. It was integrated into TensorFlow
Extended (TFX) to detect anomalies specifically in data
fed into machine learning pipelines. However, these tools
mostly focus on detecting data issues, not debugging them.
There is also MISTIQUE, a system from 2018 to store and
query model intermediates from ML pipelines and hidden
representations from deep learning [54]. BugDoc [25] is a
framework that implements and combines methods to select
pipeline instances to try out to find root causes of problems
in pipelines. However, it can only identify the root causes of
problems related to the input parameter space, which has to
be manually specified by the user.

There has been a large-scale study of the usage of different
data science tools [44]. Many of their findings support our
research direction, despite our restriction to specific libraries.
Besides confirming assumptions that Python is by far the
most used language for these types of problems, they also find
that most data science code is linear and a mere orchestration
of different libraries. This makes projects like ours feasible.
They also confirm that most work relies on a handful of core
libraries, such as scikit-learn, numpy, matplotlib and pan-
das. Another important finding is that in the last few years,
declarative specification of data science logic is becoming
increasingly common. Polyzotis et al. [41] wrote a survey
of data lifecycle challenges in production ML. They identify
data-related open challenges in areas such as data under-
standing, data validation and cleaning, and data preparation.
An interesting tool inspired by various best practices in ML
data preparation is DataLinter [21]. They propose data linting
for deep neural networks, based on predefined linting rules
applied to the training data and the outputs of the model, but
they cannot inspect pipeline code. DeepXplore [38] is a sys-
tem for automated white-box testing of ML models. It can
find corner cases in application areas like self-driving cars.
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They measure neuron coverage, which they describe as mea-
suring the part of the neurons that are exercised in test inputs.
Then they try to generate test cases that produce errors. Their
test inputs can also be used to train the model to improve its
performance.

6.5 Fairness-specific analysis of ML pipelines and
predictions

In recent years, a set of specialized analysis tools with
respect to the fairness and accountability of ML-based
decision-making systems has been developed. Examples
include SliceFinder [42], Coverage [7], and fairDags [58].
mlinspect provide a general runtime for implementing
and integrating these and similar approaches into a com-
mon inspection platform. In our work on FairDags [58], we
initially proposed extracting a DAG from ML pipelines to
check for data distribution issues that result in bad model
performance for sensitive demographic groups. Asudeh et
al. [7] propose techniques to assess the coverage of a dataset
over multiple categorical variables. The authors present an
efficient strategy for traversing the combinatorial explosion
of value combinations to identify problematic regions of
the attribute space. Even with their optimized approach, the
number of attributes to consider has a high impact on the
performance. Slice finder [42] is a system to assist with find-
ing slices of data an ML model performs particularly bad on.
Al Fairness 360 (AIF360) [8] is a Python toolkit to calculate
many fairness metrics and different algorithms to mitigate
bias in datasets and models. Fairlearn [1] is another Python
package to assess the fairness of Al systems and mitigate
observed unfairness issues. Fairlearn also contains different
mitigation algorithms and a Jupyter widget for model assess-
ment.

Fairness issues in software are not just limited to issues
specific to ML pipelines. Brun et al. [11] discuss how soft-
ware engineering as a discipline needs to consider fairness
from the start when building software systems (e.g., with fair-
ness annotations like in Fairness-Aware Programming [2]),
and Galhotra et al. [15] propose to test software for discrim-
ination issues based on a schema of valid system inputs.

7 Conclusion and future work

We discussed several hard-to-identify data issues in ML
pipelines that have the potential to impact correctness, reli-
ability, and fairness. We proposed mlinspect, a library
that enables lightweight lineage-based inspection of ML pre-
processing pipelines. The mlinspect library extracts a
directed acyclic graph representation of the dataflow from
a pipeline and automatically instruments the code with pre-
defined inspections based on a lightweight annotation prop-

agation approach. We describe several custom inspections
that data scientists can use to detect data distribution bugs
in their pipelines. In contrast to existing work, mlinspect
operates on declarative abstractions of popular data science
libraries like estimator/transformer pipelines and does not
require manual code instrumentation. We discuss the design
and implementation of mlinspect and give a comprehen-
sive end-to-end example that illustrates its functionality.

A future challenge is to assist data scientists in the anal-
ysis of the outputs of mlinspect. Complex pipelines
can produce a variety of inspection results, and it may be
helpful to explore anomaly detection techniques to point
data scientists to potentially problematic cases or to suggest
thresholds for checks. We also plan to incorporate additional
backends for popular ML libraries intomlinspect, includ-
ing Tensorflow Transform and Apache SparkML [28]. For
these libraries, it will be challenging to find efficient ways
to include inspections during the distributed execution of
Beam and Spark operators. As discussed in Sect. 4.3.2, a
future challenge is to support complex ML pipelines on high-
dimensional tensors; it is still unclear whether such tensor
operations are sufficiently captured by the dataframe alge-
bra (Sect. 3.4) onto which mlinspect is built. As also
outlined in Sect. 4.3.2, we intend to explore query optimiza-
tion techniques for more efficient execution of inspections
based on dataframe operations as a means to reduce the run-
time overhead induced by Python.
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