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Three types of algorithmic bias

[Friedman, Nissenbaum 1996], [Stoyanovich, Howe, Jagadish 2020]


• Pre-existing bias 

-  Originates in society and exists independently of an algorithm


• Technical bias 

-  Introduced or exacerbated by the technical properties of an algorithm


• Emergent bias 

- Arises in the context of an algorithm’s use
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Problem definition



The “impact remediation problem”
Formalizing pre-existing bias

1.     We observe an existing disparity. We consider it undesired.


2.     We have the ability to perform an intervention.


3.     We want to decrease the measured disparity.

1. Gender imbalance in a job applicant pool


2. Hosting booths at different career fairs


3. Rebalance our applicant pool
Example:



Causal inference and social 
categories



Structural causal models (SCMs)
[Pearl 2009], [Peters et al. 2017]

• An SCM is a four-tuple 


- : a set of exogenous background 
variables


- : a set of endogenous observed variables


- : a set of functions (structural equations) 
for each 


- : a distribution over the exogenous 
variables 


• Each SCM entails a directed acyclic graph 
(DAG)

(U, V, F, PU)

U

V

F
Vi ∈ V

PU
U

X = ϵX

Z = − 1 + X + ϵZ

Y = 2 ⋅ Z + X + ϵY

ϵX, ϵY, ϵZ ∼ 𝒩(0,1)



Social categories and constitutive features
[Benthall and Haynes 2019], [Hanna et al. 2020], [Sen and Wasow 2016], [Hu and Kohler-Hausmann 2020], [Jacobs and Wallach 
2021], [Kasirzadeh and Smart 2021]

• Inequality involves social categories (e.g. race, gender)


• Two types of features:


- Regular feature: causal, diachronic


‣ Unfolding over time via cause-and-effect


‣ “If A then B then C…”


- Constitutive feature: a feature that defines a social category


‣ Synchronous, definitional [Hu and Kohler-Hausmann 2020]


‣ “If A then the definition of B has changed…”


• How to write down a DAG? —> instantaneous constitutive cycle


• Examples:


- Intuition: water + number of hydrogen atoms


- Racial categorization + socioeconomic history


- Simple variables (e.g., race + net worth), complex constructs
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Fig. 1. Two debated cases of the use of social categories in causal DAGs ((a) and (b)) compared to two potential DAGs in impact
remediation ((c) and (d)). We use circular arrowheads in DAG notation to denote constitutive rather than causal relationships. (a) In
this DAG, we see that constitutive features are defining features of social categories. Rather than cause each other, they synchronously
define each other, rendering the concept of modular cause-and-e�ect inapplicable if we choose to include two such variables in a
causal model at the same time. (b) This DAG exemplifies encoding a social category as a variable and modeling it as a cause for an
arbitrary outcome. This model is debated depending on beliefs about whether an intervention on the social category in question can
be modeled and/or is well-defined. (c) In this DAG we have two constitutive features that can synchronously a�ect or define each
other due to their connection to a social category, again rendering the concept of modular cause-and-e�ect inapplicable if we choose
to include both in our causal model at the same time. We would not be able to proceed with impact remediation given such a DAG.
(d) This DAG demonstrates that avoiding social categories as variables and using at most one constitutive feature (on which we
believe interventions can be modeled) allows us to avoid constitutive arrows as well as interventions on social categories as causes.

discussed in the context of racial categories. Sen and Wasow [33] outline three issues in the context of causal modeling
with racial categories as potential treatments: (1) an inability to manipulate race; (2) technical issues of post-treatment
bias, common support, and multicollinearity; and (3) fundamental instability in what the construct race means across
treatments, observations, and time. As potential paths forward, Sen and Wasow suggest (a) using exposure to a racial
cue as treatment when looking for evidence of the e�ects of racial perception on behavior, or (b) measuring the e�ect
of some manipulable constitutive feature of race in a within-racial-group study when looking for mechanisms behind
disparate outcomes. More recent work by Hanna et al. [12] similarly discusses the multidimensionality of a concept
like race and the limitations for algorithms on conceptualizing and modeling race if a multidimensional perspective is
taken. Other recent work, such as [16, 20], points out that unspeci�ed assumptions about or oversimpli�cation of social
categories can lead to incoherent counterfactuals, arguing that perhaps the inherent complexity of social categories
ultimately cannot be reduced in a way that makes them compatible with causal intervention.

Our Approach: Social Categories as Partitions. We take dealing with the above issues for causal modeling with social
categories as inspiration for an alternate modeling framework that avoids the sticking points — including multiple
constitutive features and encoding social categories as causal variables — in the debate outlined above but still addresses
a central and longstanding concern relevant to algorithmic fairness research: pre-existing bias [9, 35]. The underlying
conceptual shift in specifying this framework is a shift in focus away frommodeling the e�ects of demographic attributes
and towards the e�ects of real-world interventions for each demographic group in a disaggregated manner.

The idea of disaggregation is also often discussed in connection with race (see Hanna et al. [12] for an overview from
the perspective of algorithmic fairness). Disaggregation in the context of social categories can refer to disaggregation of
the social categories themselves (e.g., picking apart the di�erent dimensions of a category). De�ning a social category
and specifying its constitutive features could be considered part of this process. Disaggregation can also refer to the
consideration of di�erent groups of a social category separately rather than interchangeably. Although these two
meanings relate to each other, it is the second use of the term ‘disaggregated’ that we primarily refer to when we
say ‘disaggregated intervention design’ in this work. Inspired by the within-racial-group design proposed by Sen and
Wasow [33], the fact that our outcome is disaggregated across social categories allows us to consider intervention
e�ects within each category and attempt to re-balance the outcome of interest across categories.
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Interventions on social categories
[Benthall and Haynes 2019], [Hanna et al. 2020], [Sen and Wasow 2016], [Hu and Kohler-Hausmann 2020], [Jacobs and Wallach 
2021], [Kasirzadeh and Smart 2021]

• Questions for interventions on race:


- Are manipulations defined?


- Post-treatment bias


- Is the social category well-defined? Stable?


• Simplified positions: 

1. Defining counterfactuals via exposure to a 
racial cue 


vs. 


2. Not using causal models with race at all


• Unavoidable problem: racial disparities still exist 
(and other social category disparities)
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Social categories in impact remediation
Disaggregation to the rescue!

• Approach: measure a disparity across 
groups of people


- Racial categories, genders, disabilities


• Our required assumption about social 
categories:


- “A social category consists of a group of 
people” — no shared attributes necessary


• Takeaway: we don’t need to resolve the 
philosophical debate to tackle pre-existing 
disparities [Our approach]

[Common approach]



Social categories in impact remediation
Nuance: one constitutive feature at a time
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Framework formalization



Impact remediation — toy example
A multi-level, nested intervention structure

Framework Example

n individuals 425 potential job applicants

m sub-populations on which we 
can intervene (“intervention 

sets”)
2 universities

r sub-populations across which 
we see disparity

Female (A) and Male (B) gender 
groups

outcome of interest Y, 
disaggregated across r groups

Y = fraction of students who 
applied for the job

real-world features X X = number of career 
counselors

possible intervention Z Z = whether or not we hosted a 
booth at the career fair

Causal graph relating X, Y, Z

extension of [Kusner et al. 2019] + disaggregation 



Finding optimal interventions to decrease disparity
Example: outreach in a job applicant pool

n(1)
A = 100, n(2)

A = 75, n(1)
B = 150, n(2)

B = 100

𝔼[Y(1)
A ([z(1) = 1, z(2) = 0])] = 0.20

𝔼[Y(2)
A ([z(1) = 1, z(2) = 0])] = 0.10

𝔼[Y(1)
B ([z(1) = 1, z(2) = 0])] = 0.30

𝔼[Y(2)
B ([z(1) = 1, z(2) = 0])] = 0.15

𝔼[Y(1)
A ([z(1) = 0, z(2) = 1])] = 0.15

𝔼[Y(2)
A ([z(1) = 0, z(2) = 1])] = 0.15

𝔼[Y(1)
B ([z(1) = 0, z(2) = 1])] = 0.25

𝔼[Y(2)
B ([z(1) = 0, z(2) = 1])] = 0.15

δ ≈ 0.08

(Y(1)
A , Y(1)

B ) = (0.10, 0.20) (Y(2)
A , Y(2)

B ) = (0.05, 0.10)

δ(z) =
1
nA

2

∑
i=1

n(i)
A 𝔼[Y(i)

A (z)] −
1
nB

2

∑
i=1

n(i)
B 𝔼[Y(i)

B (z)]

• Disparity after intervention: δ([z(1) = 1, z(2) = 0]) ≈ 0.08 δ([z(1) = 0, z(2) = 1]) = 0.06

no intervention university one university two

• Students in each gender group:

• Estimated application rates after intervention:

• Observed application rates:

• Measure of disparity:



Impact remediation (IR) overview

Process overview:


1. Social categorization + data collection


2. Fit causal model to estimate intervention effects


3. Define our objective (how to mitigate disparity)


4. Find optimal interventions subject to constraints (budget, etc.)

min
z∈{0,1}m

1
nA

2

∑
i=1

n(i)
A 𝔼[Y(i)

A (z)] −
1
nB

2

∑
i=1

n(i)
B 𝔼[Y(i)

B (z)]

s.t.
m

∑
i=1

z(i) ≤ b



Case study



Stylized NYC schools example
An IR case-study

• An example with realistic data:


- Setup: The US DOE giving funding to NYC public schools to hire Calculus teachers


- Goal: increase college attendance


- Subgroups: racial and gender categories


Causal Fairness  
[Kusner et al. 2019] vs. Focus on Inequality 

(disaggregation)



Stylized NYC schools example
Takeaways from a case-study

• Social categorization (i.e., which 
partition) changes results


• Measuring subgroup outcomes better 
allows for focus on inequality


• With a focus on utility, inequality can 
increase


- Even with strict fairness constraints


- Even if group membership is 
known


- Even if aggregate impact is larger



Counterfactuals for the Future



Motivating toy example
Treatment choice in a fixed sample

• Individualized treatment choice focused on entire distribution 
of outcomes 

• Allocating tutoring to students 

- We want to allocate tutoring to students at a school in order 
to improve test performance


‣ One time-step of past data on every student of interest


‣ No confounding


‣ We have a model of the data generating process


- Unobserved external factors about the students (e.g., family 
income, encouragement from parents) explain at least some 
of the variation in the outcome across units



Two approaches to the same problem
Which approach is better?

• Approach 1: 

- Use our model to identify which students to treat based on their covariate 
values only


• Approach 2: 

- Use our model to identify which students to treat based on their covariate 
values and modeled exogenous variables (i.e., noise)



Two approaches to the same problem
Which approach is better?

Interventional

Counterfactual

• Approach 1: 

- Use our model to identify which students to treat based on their covariate 
values only


• Approach 2: 

- Use our model to identify which students to treat based on their covariate 
values and modeled exogenous variables (i.e., noise)



Two approaches to the same problem
Which approach is better?

• Approach 1: 

- Use our model to identify which students to treat based on their covariate 
values only


• Approach 2: 

- Use our model to identify which students to treat based on their covariate 
values and modeled exogenous variables (i.e., noise) 

• Takeaway: These two approaches can lead us to tutor a different set of 
students —> two different policies

Interventional

Counterfactual



Motivating toy example
Treatment choice in a fixed sample

• Individualized treatment choice focused on entire distribution 
of outcomes 

• Allocating tutoring to students 

- We want to allocate tutoring to students at a school in order 
to improve test performance


‣ One time-step of past data on every student of interest


‣ No confounding


‣ We have a model of the data generating process


- Unobserved external factors about the students (e.g., family 
income, encouragement from parents) explain at least some 
of the variation in the outcome across units



What do we assume about family income and encouragement from 
parents year-to-year?

Key question



Interventional distributions
Notation

• Intuition: 


- “What will the distribution of test score  be for a student described by SCM 
 if they are enrolled in tutoring ?”

Y
ℭ Z

Image adapted from: [Peters et al. 2017]

Pℭ;do(Z:=1)
Y

the SCM  we start withℭ

the intervention do(Z := 1)

the variable  we are interested inY



Counterfactual distributions
Notation

• Intuition:


- “What would the distribution of test score  have been for a student 
described by SCM  if they had been enrolled in tutoring ?”

Y
ℭ Z

Image recreated from: [Peters et al. 2017]

Pℭ∣X=x;do(Z:=1)
Y

the SCM  we start withℭ

the intervention do(Z := 1)

the variable  we are interested inY

the observed data X = x



Counterfactuals
The retrospective view

• Counterfactuals are typically described as *retrospective*


- We condition on *observed circumstances* before simulating an 
intervention


- Use posterior  instead of prior  to obtain 


• Our work: When can (or should) counterfactuals be forward-looking?

PU∣X=x PU Pℭ∣X=x;do(⋯)
Y



Why would we use past noise to make future decisions?
Assumptions about what we haven’t observed

• Common for data with multiple time steps


- “There are unobserved variables that play an important role in our model”


- Large literature: time-series cross sectional data, mixed effects models, latent variable 
models, etc.


- Can use repeated observations for estimation


• Our setting: data with one time-step


- Noise decomposition is no longer an estimation problem


‣ No repeated observations


- Accounting for unobserved variables is instead based on assumptions



Forward-looking counterfactuals (FLCs)
An alternate view

• The ‘retrospective’ view is connected to assumptions about the structure and 
stability of exogenous variables (noise)


- Structure:


‣How does a unit look exogenously compared to other units?


- Stability:


‣How does a unit look exogenously compared to itself over time?


• Spoiler: FLCs useful when units’ exogenous factors are (1) sufficiently stable 
over time OR (2) sufficiently dissimilar to other units



• Outcome Y, treatment Z, exogenous factors U, 
observed data 


• Intervention on unit  will increase  by amount 


• Goal: recover distribution  after intervention on 
those for whom 

{Z(i)
0 , Y(i)

0 }n
i=1

i Z δ

PY1

Y0 < 0

Exploring FLCs empirically
An illustrative parameterization

(t = 0) :
Z(i)

0 ∼ 𝒩(μZ, σ2
Z)

Y(i)
0 = Z(i)

0 + U(i)
0

(t = 1) :
Z(i)

1 = Z(i)
0 + δ ⋅ w(i)

Y(i)
1 = Z(i)

1 + U(i)
1 Treatment 

choice



Exploring FLCs empirically
Model for exogenous noise terms

(t = 0) :
Z(i)

0 ∼ 𝒩(μZ, σ2
Z)

Y(i)
0 = Z(i)

0 + U(i)
0

(t = 1) :
Z(i)

1 = Z(i)
0 + δ ⋅ w(i)

Y(i)
1 = Z(i)

1 + U(i)
1

U(i)
0 , U(i)

1
iid∼ 𝒩(μ(i)

U , σ2
U)

μ(i)
U ∼ 𝒩(0,σ2

μ)



Exploring FLCs empirically
Model for exogenous noise terms

(t = 0) :
Z(i)

0 ∼ 𝒩(μZ, σ2
Z)

Y(i)
0 = Z(i)

0 + U(i)
0

(t = 1) :
Z(i)

1 = Z(i)
0 + δ ⋅ w(i)

Y(i)
1 = Z(i)

1 + U(i)
1

We can now explore structure 
( ) and stability ( )σμ σU

U(i)
0 , U(i)

1
iid∼ 𝒩(μ(i)

U , σ2
U)

μ(i)
U ∼ 𝒩(0,σ2

μ)



Parameterizing exogenous structure and stability
Connecting assumptions to parameters

U(i)
0 , U(i)

1
iid∼ 𝒩(μ(i)

U , σ2
U)

μ(i)
U ∼ 𝒩(0,σ2

μ)



Counterfactual vs. interventional distributions
What happens with a ‘correct’ model?

Truth (t = 0) :

Z(i)
0 ∼ 𝒩(μZ, σ2

Z)
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0 ∼ 𝒩(μ(i)
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0

Truth (t = 1) :

Z(i)
1 = Z(i)
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1 + U(i)
1

μ(i)
U ∼ 𝒩(0,σ2

μ)

Model (t = 0) =

Z(i)
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μ + σ2
U)

Y(i)
0 = Z(i)

0 + U(i)
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Interventional (t = 1) =

Z(i)
1 = Z(i)
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1

Counterfactual (t = 1) =

Z(i)
1 = Z(i)

0 + δ ⋅ w(i)

Ũ(i)
1 = U(i)

0

Y(i)
1 = Z(i)

1 + Ũ(i)
1



Counterfactual vs. interventional distributions
What happens with a ‘correct’ model?

Truth (t = 0) :

Z(i)
0 ∼ 𝒩(μZ, σ2

Z)

U(i)
0 ∼ 𝒩(μ(i)

U , σ2
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Y(i)
0 = Z(i)

0 + U(i)
0

Truth (t = 1) :

Z(i)
1 = Z(i)

0 + δ ⋅ w(i)

U(i)
1 ∼ 𝒩(μ(i)
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Y(i)
1 = Z(i)

1 + U(i)
1

μ(i)
U ∼ 𝒩(0,σ2

μ)

Model (t = 0) =

Z(i)
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Y(i)
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0
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1 = Z(i)
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Y(i)
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1
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1 = Z(i)

0 + δ ⋅ w(i)

Ũ(i)
1 = U(i)

0

Y(i)
1 = Z(i)

1 + Ũ(i)
1

pℭ;do(⋯)
Y1

pℭ∣X=x;do(⋯)
Y1

pY1





Takeaways
Unit-specific structure OR stability over time —> FLCs



Why do we care?
Back to motivation

• We often can’t measure every relevant variable


• We might not be able to collect lots of data over time


• Our assumptions can lead to different policies and incorrect conclusions

What if we want to decrease variance?
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Thank you! Questions?


