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Motivation




Fairness Metrics — composed of group-specific error metrics*

Equal opportunity = True Positive Rate (dis) - True Positive Rate (priv)
Statistical Parity Difference = Positive Rate (dis) - Positive Rate (priv)
Disparate Impact = Positive Rate (dis) / Positive Rate (priv)

Accuracy Parity = Accuracy (dis) - Accuracy (priv)

*Ratio or difference between a base measure computed on priv and dis groups



Estimating variance — “Sampling during Inference”

The Bootstrap
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Variance Metrics
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[1] Towards Uncertainty Quantification for Supervised Classification (Darling et al, 2018)

[2] Model Stability with Continuous Data Updates (Liu et al, 2022)




Variance Metrics

2.2.1 Label Stability. Label Stability [8] is defined as the normalized absolute difference between the number of times a
sample is classified as positive or negative:

Standard deviation [1] |22 1[pg, (x) == 1] - Z&, 1[p, (x) == 0]|
b

where x is an unseen test sample, and py, (x) is the prediction of the i'" model in the ensemble that has b estimators.

Label Stability =

Inter-quantile range [1]

ili 2.2.2 Jitter. Jitter [21] is a measure of the disparities of the model’s predictions for each individual test example. It
[21] f the disp f th del’s predi f h individual pl
reuses a notion of Churn [24] to define a "pairwise jitter™:
i poi(x) # poj(x)
J Itter [2] ]i,j (PG) = Chul‘ni,]‘ (PO) — | : le" |x€X

where x is an unseen test sample, and pg; (x), pg;(x) are the predictions of the ith and jt! estimator in the ensemble
for x, respectively.

To compute the variability over all models in the ensemble, we need to average pairwise jitters over all pairs of
models. This more general definition is called Fitter:

_ 2vijen Jij (Po)

,wherei < j

[1] Towards Uncertainty Quantification for Supervised Classification (Darling et al, 2018)
[2] Model Stability with Continuous Data Updates (Liu et al, 2022)



The Virny software library
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Reconciling error-based and variance-based analysis

(folktables)
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Table 3. Statistical bias-based and variance-based fairness metrics on folktables, averaged over 6 runs. RF is Random Forest, DT is
Decision Tree, XGB is XGBoost, MLP is Multi-Layer Perceptron, LR is Logistic Regression and kNN is k-Nearest Neighbors

RF DT XGB MLP LR kNN |
Accuracy Parity (sex) -0.0793 -0.0662 -0.0656 -0.0634 -0.0618 -0.0588
Accuracy Parity (race) -0.0057 0.0076 -0.0013 0.0015 -0.0010 0.0069
Accuracy Parity (sex&race) -0.0756  -0.0545 -0.0597 -0.0560  -0.0587 -0.0508
Equalized Odds FPR (sex) 0.1047 0.0991 0.0592 0.0487 0.0124 0.0244
Equalized Odds FPR (race) 0.0238 0.0152 0.0135 -0.0154  -0.0069  -0.0086
Equalized Odds FPR (sex&race) 0.1278 0.1176 0.0716 0.0323 0.0056 0.0246
Statistical Parity Difference (sex) 0.1450 0.1678 0.0474 0.0293 -0.0328 0.0086
Statistical Parity Difference (race) 0.1048 0.0992 0.0596 0.0105 0.0246 0.0644
Statistical Parity Difference (sex&race) 0.1998 0.2316 0.0785 0.0205  -0.0268 0.0682
Disparate Impact (sex) 1.1351 1.1644 1.0436 1.0274 0.9705 1.0071
Disparate Impact (race) 1.0942 1.0928 1.0546 1.0097 1.0227 1.0536
Disparate Impact (sex&race) 1.1944 1.2350 1.0746 1.0195 0.9753 1.0568
IQR Parity (sex) 0.0027 -0.0045 0.0029 0.0210 0.0017 0.0110
IQR Parity (race) -0.0016 -0.0032 0.0037 0.0109 0.0068 -0.0066
IQR Parity (sex&race) 0.0021 -0.0065 0.0072 0.0312 0.0091 0.0044
Jitter Parity (sex) 0.0153 0.0242 0.0126 0.0374 0.0035 0.0418
Jitter Parity (race) 0.0017 0.0083 0.0085 0.0158 0.0034 -0.0093
Jitter Parity (sex&race) 0.0168 0.0335 0.0213 0.0498 0.0085 0.0272
Std Parity (sex) 0.0016 -0.0028 0.0026 0.0165 0.0013 0.0091
Std Parity (race) -0.0013 0.0008 0.0034 0.0086 0.0051 -0.0046
Std Parity (sex&race) 0.0009 -0.0014 0.0065 0.0246 0.0069 0.0047
Label Stability Ratio (sex) 0.9770 0.9641 0.9810 0.9448 0.9964 0.9394
Label Stability Ratio (race) 0.9977 0.9884 0.9880 0.9746 0.9952 1.0141
Label Stability Ratio (sex&race) 0.9754 0.9512 0.9688 0.9262 0.9892 0.9609




Revisiting Bias-Variance Trade-offs
in the Context of Fair Prediction

Preprint (work in progress): https:/arxiv.ora/abs/2302.08704
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Motivation:

1. Decomposition of model error [1]
Error = Statistical bias + Variance + Noise

2. Randomness is neutral — variance could be more
morally acceptable than statistical bias.

ldea: Can disparity in variance across groups be exploited
to design fairness-enhancing interventions?

[1] Domingos, PM. A Unified Bias-Variance Decomposition.



Conditional-lID
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IID and WYSIWYG
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What you see is what you get (WYSIWYG): there exists a mapping from CS to OS

that has low distortion. That is, we believe that OS faithfully represents CS. This is
the individual fairness world view.

[1] Friedler et al. On the (im)possibility of fairness



Conditional-1ID and WAE

construct space observed space decision space
(CS) (0S) (DS)
g /:\ * |\ admit o}
WAE j><€ —
e \U decline @
Q N\

intelligence SAT score performance in
grit GPA \::> college

We are all equal (WAE): the mapping from CS to OS introduces structural

bias - there is a distortion that aligns with the group structure of CS. This is
the group fairness world view.

[1] Friedler et al. On the (im)possibility of fairness



(iid)

(conditional-iid)

foveratt(D) = argminge 7By [£(f(X), V)] (7)

Jiid (X) = foverall Xrelevant: Xprotected ) (8)

forio(D) = argmingc gB o [£(f(XPT), YPTI0)] ©)
fais(D) = argminse FBp [£(f(XUE), YI5)] (10)
Yeiid (X) = f‘;f’riv(Xrelevam‘)-11 [Xprotected =x7]

+fdis(Xrelevant)-1 [Xprotected #x]

We will also look at these models in isolation, i.e., if we
applied a single conditional model to the entire population:

gpriv(x) = foriv(xrelevant) (12)
gdis (X) - fdis (Xrelevant) (13)

(11)



Theoretical Analysis
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Table 1. Summary of bias-variance trade-offs of different mean estimators

Model Bias on priv | Bias ondis Variance
overall (i.i.d.) Pdis-E[Aﬂ] Ppriv-E[Aﬂ] % [ "p':iv Uzrw + n‘rilis ‘O—Zis]
ensemble 1E[Ap] 1E[Ap] 1 ,,’;:: ,,jg )
disprivileged E[Au] 0 ¥ Jis/Ndis
conditional-i.i.d. 0 0 0'12)”-0 /npriv (on priv), o(zﬁs /nais (on dis)




Empirical Results
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Figure 5: Conditioning on sensitive attributes, folktables: Test performance of different models broken down by test subgroup.



Next Steps

e Large-scale empirical evaluation of proposed variance metrics and conditional
models
o Accuracy-fairness-stability tradeoff
o Benefits of using conditional models

e (Good ways to combine group-specific models?

e Blind conditional models —- without conditioning on sensitive attributes



