Automated Data Cleaning Can Hurt Fairness in **ML-based Decision Making**

Shubha Guha UvA

Joint work with

Falaah Arif Khan NYU

Julia Stoyanovich NYU

Sebastian Schelter UvA

ML in the Real World

- Used in critical decision-making processes.
 - Can reproduce or amplify pre-existing bias.
 - Bias can lead to unlawful discrimination. [1]
- Most ML applications in production are data-intensive, and require data cleaning.
 [2]
 - Large data size and short redeployment intervals mean that data quality issues are often addressed with automated cleaning techniques.

Data Quality and Fairness

- quality. [7]
 - ML model fairness. [8]

• Evidence that data from historically disadvantaged groups may have poorer data

Systematic differences in data quality can potentially have negative impact on

• Evidence that data quality issues hurt predictive accuracy of ML models. [5]

Impact of Automated Data Cleaning on Fair Decision-Making

- RQ1: Does the incidence of data errors track demographic group membership in ML fairness datasets?
- RQ2: Do common automated data cleaning techniques impact the fairness of ML models trained on the cleaned datasets?

Sensitive Attributes

- Identified from occurrence [1] of unlawful discrimination according to US labor law [19] or European non-discrimination law [20].
- All datasets partitioned into privileged group and disadvantaged group.
 - Depends on the ML task which group is considered privileged vs. disadvantaged.

Benchmark Datasets

name	source	number of tuples	number of attributes	sensitive attribute(s)
adult	census	48,844	12	sex, race
folk	census	378,817	10	sex, race
credit	finance	150,000	8	age
german	finance	1,000	18	age
heart	healthcare	70,000	11	sex
TABLE I				
RENCHMARK DATASETS USED IN MU FAIRNESS RESEARCH				

DENCHMARK DAIASEIS USED IN ML FAIRNESS RESEARCH.

Error Detection Strategies

- Missing values
- Outliers lacksquare
 - Standard deviation
 - Interquartile range
 - Isolation Forest
- Label errors

Data Cleaning Methods

- Missing value imputation
 - Column mean or mode (numerical)
 - Column mode or constant "dummy" value (categorical)
- Outlier repair
 - Replace detected outliers with mean or mode of column (numerical)
- Label error repair
 - Flip labels of flagged tuples

RQ1: Demographically Disparate Data Quality Issues

- Counted corrupt exemplars from privileged vs. disadvantaged groups.
- Reported only cases that pass significance test.

RQ1: Higher Rates of Missing Values for Disadvantaged Groups

RQ2: Impact of Automated Data Cleaning on Fairness

- Adapted existing CleanML benchmark for joint data cleaning and model training. [5]
- For each configuration:
 - One of the 5 datasets: adult, folk, credit, german, heart.
 - One of 3 ML model types: logistic regression, nearest neighbors, gradient-boosted decision trees.
 - One error detection strategy and one repair method.
 - 20 different train/test splits, 5 random seeds for hyperparameter search.
- In total, 26,400 models trained and evaluated.

Evaluation

• Predictive parity

• Equal precision

• Equal opportunity

• Equal recall

Impact on Fairness of Automatic Cleaning of Missing Values

RQ2: Negative Impact More Likely Than Positive Impact

Future Work

- Additional empirical evaluation with
 - Ground truth clean data
 - Data integrity constraints
 - More advanced data detection
 - More advanced data cleaning
 - Fairness-aware data cleaning methods
 - Intersectional formulations of demographic characteristics
 - Additional datasets from non-US sources

Thanks!

- Paper: <u>https://ssc.io/pdf/demodq.pdf</u>
- Code: <u>https://github.com/amsterdata/demodq</u>
- Find me on LinkedIn: <u>https://www.linkedin.com/in/shubhaguha/</u>

