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Reading for weeks 7 & 8

Robust De-anonymization of Large Sparse Datasets

Arvind Narayanan and Vitaly Shmatikov
‘Ihe University of ‘Iexas at Austin

Abstract

We present a new class of statistical  de-
anonymization  attacks  against  high-dimensional
micm-data, such as individual preferences, recommen-
dations, transaction records and so on. Our technigues
are robust to perturbation in the data and tolerate some
misiakes in the adversary’s background knowledge.

We apply our de-anonymization methodology to the
Netflix I'rize dataset, which contains anonymous movie
ratings of SON,000 subscribers of Netflix, the world's
largest online movie rental service. We demonstrate
that an adversary who knows only a litile bit about
an individual subscriber can easily identify this sub-
scriber’s record in the dataset.  Using the Internet
Movie Database as the source of background know!
edge, we successfully identified the Neiflix records of
known users, uncovering their apparent political pref-
erences and other potentially sensitive information.

1 Introduction

Datascts containing micro-data, that is, information
about specific individuals, arc incrcasingly becoming
public in response to “open government” laws and to
support data mining research. Some datasets include
legally protected information such as health histories;
others contain individual preferences and transactions,
which many people may view as private or sensitive.

Privacy risks of publishing micro-data arc wcll-
known. Even if identifiers such as names and Social
Security numbers have been removed, the adversary can
use background knowledge and cross correlation with
other databases to re-identify individual data records.
Famous attacks include de anonymization of a Mas
sachusetts hospital discharge database by joining it with
a public voter database [25] and privacy breaches caused
by (ostensibly anonymized) AOL search data [16].

Micro-data are characterized by high dimensionality

and sparsity. Each rccord contains many attributcs (i.e.,
columns in a database schema), which can be viewed as
dimensions. Sparsity means that for the average record,
there are no “similar” records in the multi-dimensional
space defined by the attributes. This sparsity is empir-
ically well-established [7, 4, 19] and related to the “fat
tail” phenomenon: individual transaction and preference
records tend to include statistically rare attribures.

Our contributions. Our first contribution is a formal
maodcl for privacy breaches in anonymized micro-data
(section 3). We present two definitions, one based on the
probability of successful de-anonymization, the other on
thc amount of information rccovered about the target.
Unlike previous work [25], we do not assume a pri
ori that the adversary's knowledge is limited to a fixed
set of “quasi-identifier” attributes. Our model thus en-
compasses a much broader class of de-anonymization
attacks than simple cross-database correlation.

Our second contribution is a very general class of
de-anonymization algorithms, demonstrating the funda-
mental limits of privacy in public micro-data (section 4).
Under very mild assumptions about the distribution from
which the records are drawn, the adversary with a small
amount of backpround knowledge about an individual
can use il o wentily, with high probability, this individ-
ual’s record n the anonymized dataset and (o leam all
anonymously released mlormation about hun or her, in-
cluding sensitive attributes. For sparye datasets, such as
most real-world datasets of individual transactions, pref-
crences, and recommendations, very little background
knowledge i1s needed (as few as 5-10 attrihutes in our
case study). Our de-anonymization algorithm is mbust
to the imprecision of the adversary’s background knowl-
cdge and to perturbation that may have been applicd to
thc data prior to rclcasc. It works cven if only a subset
of the ariginal datasct has been published.

Qur third contribution is a practical analysis of
the Netflix Prize dataset, containing anonymized
movie ratings of 500,000 Netflix subscribers (sec
tion 5). Netflix—the world's largest online DVD rental
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What does it mean to preserve privacy?

BY CYNTHIA DWORK
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IN THE INFORMATION realm, loss of privacyis usually
associated with failure to control access (o
information, to control the flow of information, or

to control the purposes for which information is
employed. Differential privacy arose in a context

in which ensuring privacy is a challenge even if all
these control problems are solved: privacy-preserving

statistical analysis of data.

The problem of statistical disclosure control

revealing accurate statistics about a set of respondents
while preserving the privacy of individuals

has

avenerable history, with an extensive literature

spanning statistics, theoretical computer science,
security, databases, and cryptography (see,

for example, the excellent survey of Adam and

Wortmann,' the discussion of related work in Blum et
al.,>and the journal of Official Statistics dedicated to

confidentiality and disclosure control).
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This long history is a testament to
the importance of the problem. Sta-
tistical databases can be of enormous
social value; they are used for appor-
tioning resources, evaluating medical
therapies, understanding the spread
of disease, improving economic util
ity, and informing us zbout ourselves
as aspecies.

The data may be obtained in diverse
ways. Some data, such as census,
tax, and other sorts of official data,
is compelled; other data is collected
opportunistically, for example, from
traffic on the Internet, transactions
on Amazon, and search engine query
logs; other data is provided altruisti-
cally, by respondents who hope that
sharing their information will help
others to avoid a specific misfortune,
or more generally, to increase the
public good. Altruistic data donors
are typically promised their individ-
ual data will be kept confidential—in
short, they are promised “privacy.”
Similarly, medical data and legally
compelled data, such as census data
and tax return data, have legal privacy

key insights

B Inanalyzing private data, only
by focusing on rigorous privacy
guarantees can we convert the cycle
of “propose-break-propose again”
into a path of progress.

B Anatural approach to defining privacy is
to require that accessing the database
teaches the lyst nothing about any
individual. But this is problematic: the
whole point of a statistical database is to
teach general truths, for example, that
smoking causes cancer. Learning this
fact hes the data ly hing
about the likelihoed with which
certainindividuals, not necessarily
inthe database, will develop cancer.

We therefore need a definition that
separates the utility ot the database
(learning that smoking causes cancer)
from the increased risk of harm due to
joining the datab This is the intuiti
behind differential privacy.

B This can be achieved, often with low
distortion. The key ideals to randomize
resp so as teo effectively hide the
presence or absence of the data of any
individual over the course of the lifetime
of the databese.
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Understanding

DATABASE
RECONSTRUCTION
ATTACKS

on Public Data THESE ATTACKS
ON STATISTICAL
DATABASES ARE
NO LONGER A
THEORETICAL
DANGER.

B n 2020 the U.S. Census Bureau will conduct the
§ Constitutionally mandated decennial Census of
i Population and Housing. Because a census involves
collecting large amounts of private data under the
V promise of confidentiality, traditionally statistics are
published only at high levels of aggregation. Published
statistical tables are vulnerable to DRAs [database
reconstruction attacks],in which the underlying microdata
is recovered merely by finding a set of microdata that is
consistent with the published statistical tabulations. A
DRA can be performed by using the tables to create a set
of mathematical constraints and then solving the resulting
set of simultaneous equations. This article shows how
such an attack can be addressed by adding noise to the
published tabulations, so that the reconstruction no longer
results in the original data. This has implications for the
2020 Census.

The goal of the census is to count every person once,
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Can a set of equations keep U.S. census data private?

By Jefirey Mervis | Jan 4,201, 2:50 PM

The .S, Census Bureau is making waves among social scientists with what it calls a “sea
change” in how it nlans to safequard the confidentiality of data it releases from the decennial
census.

The agency anncunced in September 2018 that it will apply a mathematical concept called
diffarential privacy to its release of 2020 census data after conducting expariments that suggest
current approaches can't assure confidentiality. But critics of the new policy believe the Census
Bureau is moving tco quickly to fix a system that isn't broken. They also fear the changes will
degrade the quality of the information used by thousands of researchers, businesses, and
government agencies

The move has implications that extend far beyond the research community. Froponents of
diffarential privacy say a fierce, ongaing legal battle over plans to add a citizenship question te
the 2020 census has only underscored the need ta assure people that the government will
protect their privacy.

A noisy conflict

The Census Bureau's joh is to collect, analyze, and disseminate useful information about the
LS. population. And there's a lot of it: The agency generated some 7.8 hillion statistics about
the 308 million peeple counted in the 2070 census, for example.

At the same time, the bureau is prehibited by law from releasing any infermaticn for which “the
data furnished by any particular establishment or individual .. can be identified.”

Once upon a time, meeting that requiremant meant simply rameving the names and addresses
of respondents. Over the past several decades, however, census officials have developed a bag
of statistical tricks aimed at providing additional protection without undermining the quality of
the data
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DataSynthesizer: Privacy-Preserving Synthetic Datasets

Haoyue Ping Julia Stovanovich”® Bill Howe't
Drexel University, USA Drexel University, USA University of Washington, USA
hp354@drexel.edn stovanovich@drexeledu billhowe@es.washinglon.edu
ABSTRACT ACM Reference format:

‘To facilitate collaboration over sensitive data, we present DataSyn-
thesizer, a taol that takes a sensitive dataset as input and generates
a structurally and statistically similar synthetic dataset with strong
privacy guarantees. The data owners need naot release their data,
while potential collaborators can begin developing models and
methods with some confidence that their results will work similarly
on the real datasel. The dislinguishing [eature ol DataSynthesizer is
its nsahility — the data awner does not have to specify any parame-
Lers Lo slarl generating and sharing dala salcly and ellectively.

DataSynthesizer consists of three high-level modules — DataDe-
seriber, DataGenerator and ModelInspector. The first, DataDescriber,
investigates the data types, correlations and distributions of the at-
Lribules in the private datascl, and produces a dala summary, adding
noise to the distributions to preserve privacy. DataGenerator sam-
ples from the summary computed by DataDescriber and outputs
synthelic data. Modellnspector shows an intuilive deseription of the
data summary that was computed hy DataDescriber, allowing the
data owner to evaluate the accuracy of the summarization process
and adjust any parameters, if desired.

We deseribe DataSy nthesizer and llustrate ils use in an urban
sclence context, where sharing sensitive, legally encumbered data
between agencies and with vutside collaborators is reporled as the
primary obstacle to data-driven governance.

The code implementing all parts of this work is publicly available

Haoyue Ping, Julia Stoyanovich, and Bill Howe, 2017, DalaSynthesizer:
Privacy Preserving Synthelic Dalasels. In Proceedings of SSDEM “17, Chicago,
T, 1ISA, June 27-29, 2017, 5 pages.

DOL: htpeesdx.dai.org/ 10.1145/308501.5001117

1 INTRODUCTION

Collaborative projects in the social and health sciences increasingly
require sharing sensitive, privacy-encumbered data. Social scien-
Lisls, government agencies, health workers, and non-prolils are
eager to collaborate with data scientists, but formal data sharing
agreements are o slow and expensive o ereale in ad hoe silua
tions — onr colleagues report that 18 months is a typical timeframe
Lo eslablish such agreements! As a resull, many promising collab
orations can fail before they even begin. Data scientists require
aceess Lo the data belore they can understand the problem or even
determine whether they can help. But data owners cannot share
data without significant legal protections in place. Reyond legal
concerns, there is a general reluctance to share sensitive data with
nan-experts hefore they have “proven themselves.” since they do
not understand the context in which the data was collected and
may be distracted by spurious resulls.

To boolstrap these colluborations withoul incurring the cost
of formal data sharing agreements, we saw a need to generate
dalascls thal are structurally und statistically similar W the real data
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WINNING THE NIST CONTEST: A SCALABLE AND GENERAL
APPROACII TO DIFFERENTIALLY PRIVATE SYNTIIETIC DATA

RYAN MCKENNA, CEROME MIKLAU, AND DANIEL SHELDON

College of Information & Compnter Sciences, The University of Massachusers, Amherst, MA 10002
e-mail address: rmckenna@es.umass.adn

College of Information & Computer Sciences, The University of Massachusets, Amherst, MA 10002
e-mail address: miklau@cs.umass.edu

College ol Inforation & Copuler Sciences, The University of Massachusets, Amberst, MA 10002
e-matl address: sheldontics.uuss.edu

ADSTRACT. We propose s generul approach [or dillerentianlly private synthelic dula gener-
ation. that comsists of threa steps: (1) select a collection of low-dimensional marginals,
(2) measure those marginals with a neise addition mechanism, and (3) generate syn-
thetic data that preserves the measured marginals well. Central to this approach is
Private-PGM |12], a post-processing method that is nsed to estimate a high-dimensional
data distribution from noisy measurcments of its marginals. We present two mechanisms,
NTST-MST and MST. that arc instances of this general approach. NTST=-MST was the winning
mechanism in the 2018 NIST differential privacy synthetic data competition, and MST is a
new mechanism that can work in more general settings, while still performing comparahly
ta NIST-MST. We helieve anr general approach should be of hroad interest, and can he
wdopted in [uture mechunisis or synthetic data generntion.

at https://github.com/DataResponsibly/DataSynthesizer. hut that are 1) olwim?sl_v synthetic to put the data mxmersv at ease, "f: 1. INTRODUCTION
and 2) offer strong privacy guarantees Lo prevent adversaries lrom —_
CCS CONCEI'IS extracting any sensitive information. ‘These two requirements are

- Security and privacy — Data ananymization and sanitiza-
tion; Privacy prolections; Usabilily in sceurily and privacy;

KEYWORDS
Data Sharing; Synthetic Data: Differential Privacy

" I'his work was supported in part by NSF Crants No. 1464327 and 1539856, and BSF
Grant No. 2014391,

| This work was supported by the University of Washington Information School,
Microsoft, the Gordon and Detty Moore Foundation (Award £2013-10-29) and the
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nol redundant: strong privacy guaranlees are nol always suflicient
to convince data owners to release data, and even seemingly random
dalascls may nol prevent sublle privacy allacks, With this approach,
data scientists can begin to develop models and methods with
synthetic data, but maintain some degree of confidence that their
work will remain relevant when applied to the real data once proper
data sharing agreements are in place.

We proposce a Lool named DataSynthesizer Lo address this prob
lem. Assume that the private dataset contains one table with m
allribules and n luples, and that the values in cach allribule are
homogeneous, that is, they are all of the same data type. We are
interesled in producing a synthelic datasel such thal summary sla
tistics of all numerical, categorical, string, and datetime attributes
Hre

ilar Lo the [)rivnlv datnsel. Whal stalislios we preserve de
pends on the data type, as we will discuss in Section 3.

DataSy nthesizer inlers the domain of cach atiribule and derives
a deseriplion of the distribution of attribute values in the private
dataset. This information is saved in a dataset description file, to
which we refer as data summary. Then DataSynthesizer is able to
generate synthetic datasets of arhitrary size hy sampling from the
probabilistic model in the datasel deseriplion [ile,

1v:21(

irX

v
C

Data sharing within the modern enterprise is extremely constrained by privacy concerns.
DPrivacy-preserving synthetic data is an appealing solution: it allows existing analytics work-
llows and machine learning melthods Lo be used while the oripinal data remains protected. But
recent research has shown that unless a formal privacy standard is adopted, synthetie data
can violale privacy in subtle ways [18,25]. Dillerential privacy offers such a formalism, and the
problem of differentially private synthetic data generation has therefore received considerable
research allenlion in recent years [3,6,9,13, 14,26,31,32,39,10,52-55,59,60,66,68,70,71].
In 2018, the National Tnstitute of Standards and Technology (NTST) highlighted the
importance of this problem by organizing the Differential ’rivacy Synthetic Data Competition
56). This competition was the first of its kind for the privacy rescarch community, and it
encouraged privacy researchers and practitioners to develop novel practical mechanisms for
this task. The competition consisted of three rounds of increasing complexity. Tn this paper
we describe NIST-MST, the winning entry in the third and final round of the competition.
OQur algorithm is an instance of a general template for differentially privale synthetic data,
generation that we believe will simplify design of future mechanisms for synthetic data.
Our approach to differentially private synthetic data generation consists of three high-
level steps, as show in Iigure 1: (1) query selection, (2) query measurement and (3) synthetic

Key wards and phmses: differential privacy, syntheric dara, graphical madels.







Truth or dare?

Did you go out drinking over the weekend?

let’s call this property P (Truth=Yes) and Google  fipacain
estimate p, the fraction of the class for

Wh O m P h O | d S About 245,000,000 results (0.45 seconds)

1.flip a coin C1
1.if C1 is tails, then respond truthfully

2.1t C1 is heads, then flip another coin C2 w ¥
1.if C2 is heads then Yes Heads
2.else C2 is tails then respond No

FLIP AGAIN

v

the expected number of Yes answers is:
3 1 p

thus, we estimate p as:

1

1
A=2pr=(1-p)=-+2L ~
2Py =gty p=24-7




Truth or dare?

Did you go out drinking over the weekend?

100 students; p =0.2

50H T50

@ . Yes =10

25 H T 25
/ \ p=2(0.1 +0.25)- 0.5

p=0.2

Yes =25




Truth or dare?

Did you go out drinking over the weekend?

Student Response ’ @ .
A no ‘/ \

o) Torhr ()
° Y N

NoO

.

yes or HH?

NnoO

Nno

— T OO m m O O W

Nno



Randomized response

Did you go out drinking over the weekend?

let’s call this property P (Truth=Yes) and
estimate p, the fraction of the class for

whom P holds

1.flip a coin C1
1.if C1 is tails, then respond truthfully
2.if C1 is heads, then flip another coin C2 randomization - adding noise - is
1.if €2 is heads then Yes what gives plausible deniability
2.else C2 is tails then respond No a process privacy method

the expected number of Yes answers is:

3 1 1 p
A=—p+—(1-p)=—+=—
4p 4( P) 4 2

privacy comes from plausible deniability




Privacy: two sides of the coin

protecting an individual learning about the population

plausible deniability noisy estimates
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Some other options

e Data release approaches that fail to protect privacy (these are
orominent classes of methods, there are others):

sampling (“just a few”) - release a small subset of the
database

aggregation (e.g., k-anonymity - each record in the release is
indistinguishable from at least k-1 other records)

de-identification - mask or drop personal identifiers

query auditing - stop answering queries when they become
unsafe




Sampling (“just a few”)

Suppose that we take a random small sample D’ of D and release it without
any modification

It D”is much smaller than D, then every respondent is unlikely to appear in D’

This technique provides protection for “the typical” (or for “most”) members of
the dataset

But it may be argued that atypical individuals are the ones needing stronger
protection!

In any case, this method is problematic because a respondent who does
appear has no plausible deniability!

Suppose next that appearing in the sample D’ has terrible consequences.
Then, every time subsampling occurs - some individual suffers horribly!




Aggregation without randomization

e Alice and Bob are professors at State University.

e |n March, Alice publishes an article: “.... the current freshman class at
State U is 3,005 students, 202 of whom are from families earning over
$1M per year.”

e In April, Bob publishes an article: “... 201 families in State U’s freshman
class of 3,004 have household incomes exceeding $1M per year.”

e Neither statement discloses the income of the family of any one student.
But, taken together, they state that John, a student who dropped out
at the end of March, comes from a family that earns $1M. Anyone who
has this auxiliary information — that John dropped out at the end of
March — will be able to learn about the income of John’s family.

this is known as a problem of composition, and can be
seen as a kind of a differencing attack




A basic differencing attack

e X: count the number of HIV-positive people in D
e Y:countthe number of HIV-positive people in D not named Freddie;

e X-Y tells you whether Freddie is HIV-positive

what if X-Y > 1, do we still have a problem?




Reconstruction: death by a 1000 cuts

Another serious issue for aggregation without randomization, or with an insufficient
amount of randomization: reconstruction attacks

The Fundamental Law of Information Recovery (starting with the seminal results by
Irit Dinur & Kobbi Nissim, PODS 2003): overly accurate estimates of too many statistics
can completely destroy privacy

Under what conditions can an adversary reconstruct a candidate database D’ that agrees with
the real database D in 99% of the entries?

Suppose that D has ntuples, and that noise is bounded by some quantity E. Then there exists
an adversary that can reconstruct D to within 4E positions, issuing all possible 2n queries

AF — 4n - n
401 100

Put another way: if the magnitude of the noise is less than n/401, then 99% of D can be
reconstructed by the adversary. Really, any number higher than 401 will work

There are also reconstruction results under a limited number of queries




Reconstruction: death by a 1000 cuts

Privacy-Preserving Data Analysis for the
Federal Statistical Agencies

CCC

Computing Community Consortium
Catalyst

John Abowd, Lorenzo Alvisi, Cynthia Dwork, Sampath Kannan, Ashwin Machanavajjhala, and
Jerome Reiter

January 2017

The Fundamental Law of Information Recovery has troubling
implications for the publication of large numbers of statistics by
a statistical agency: it says that the confidential data may be
vulnerable to database reconstruction attacks based entirely on

we'll discuss the use the data published by the agency itself. Left unattended, such

of differential privacy risks threaten to undermine, or even eliminate, the societal
by the 2020 US benefits inherent in the rich data collected by the nation's
Census later today statistical agencies. The most pressing immediate problem for

any statistical agency is how to modernize its disclosure
limitation methods in light of the Fundamental Law.




De-identification

Also known as anonymization

Mask or drop identitying attribute or attributes, such as social security
number (SSN), name, mailing address

Turns out that this also doesn’t work because auxiliary information is
available

Fundamentally, this is due to the curse of dimensionality: high-
dimensional data is sparse, the more you know about individuals, the
less likely it Is that two individuals will look alike

de-identified data can be re-identified with a linkage attack




A linkage attack: Governor Weld

In 1997, Massachusetts Group Insurance
Commission released "anonymized" data
on state employees that showed every
single hospital visit! Latanya Sweeney, a grad student,
sought to show the ineffectiveness
of this “anonymization.”

She knew that Governor Weld
resided in Cambridge,
Massachusetts, a city of 54,000

melieris ardl sevien 212 corEe. For twenty dollars, she purchased the

complete voter rolls from the city of
Cambridge, a database containing, among
other things, the name, address, ZIP code,

Only six people in Cambridge shared birth date, and sex of every voter.
his birth date, only three of them men,
and of them, only he lived in his ZIP

STeS Follow up: ZIP code, birthdate, and sex

sufficient to identify 87% of Americans!

https://arstechnica.com/tech-policy/2009/09/your-secrets-live-online-in-
databases-of-ruin/



https://arstechnica.com/tech-policy/2009/09/your-secrets-live-online-in-databases-of-ruin/

The Nettflix prize linkage attack

e |n 2006, Netflix released a dataset containing ~100M movie ratings by ~500K
users (about 1/8 of the Nexflix user base at the time)

e FAQ: “Is there any customer information in the dataset that should be kept private?”

“No, all customer identifying information has been removed; all that remains are ratings
and dates. This follows our privacy policy, which you can review here. Even if, for
example, you knew all your own ratings and their dates you probably couldn’t identify
them reliably in the data because only a small sample was included (less than one-tenth
of our complete dataset) and that data was subject to perturbation. Of course, since
you know all your own ratings that really isn't a privacy problem is it?”

The real question: How much does the adversary need to know about a Netflix
subscriber to identify her record in the dataset, and thus learn her complete movie
viewing history?

[Narayanan and Shmatikov, IEEE S&P 2008]




The Nettflix prize linkage attack

e \Very little auxiliary information is needed to de-anonymize an average subscriber
record from the Nettlix Prize dataset

e Perturbation, you say? \With 8 movie ratings (of which 2 may be completely
wrong) and dates that may have a 14-day error, 99% of records be uniquely
identified in the dataset

e [or68%, two ratings and dates (with a 3-day error) are sufficient

e Even without any dates, a substantial privacy breach occurs, especially
when the auxiliary information consists of movies that are not blockbusters:
Two movies are no longer sufficient, but 84% of subscribers can be uniquely
identified if the adversary knows 6 out of 8 moves outside the top 500

We cannot assume a priori that any data is harmless!

[Narayanan and Shmatikov, IEEE S&P 2008]




The Nettflix prize linkage attack

d44
2 MIGE
|

NETFLIX SPILLED YOUR
An in-the-closet lesbian mother is suing Netflix for privacy BROHEB ACH MOUNT AIN SEC‘RET9

invasion, alleging the movie rental company made it
possible for her to be outed when it disclosed insufficiently LA‘NSUIT CLA]MS
anonymous information about nearly half-a-million
customers as part of its $1 million contest to improve its
recommendation system.

The suit known as Doe v. Netflix (.pdf) was filed in federal
court in California on Thursday, alleging that Netflix
violated fair-trade laws and a federal privacy law protecting
video rental records, when it launched its popular contest in
September 2006.

The suit seeks more than $2,500 in damages for each of more .+ S

than 2 million Netflix customers. i’ﬁ{’% ik
N Vo Smro il o b




The Nettflix prize linkage attack

NETFLIX CANCELS
RECOMMENDATION CONTEST
AFTER PRIVAGY LAWSUIT

Netflix is canceling its second $1 million Netflix Prize to
settle a legal challenge that it breached customer privacy as
part of the first contest’s race for a better movie-
recommendation engine.




Query auditing

e Monitor queries: each query is granted or denied depending on
what other queries were answered In the past

e |f this method were to work, it could be used to detect that a
differencing attack is about to take place

e Unfortunately, it doesn’t work:
e Query auditing is computationally infeasible

e Refusal to respond to a query may itself be disclosive

e Ve refuse to execute a query, then what”? No information
access at all?




Query auditing

e \We have a set of (secret) Boolean variables X and the result of some
statistical queries over this set

e A statistical query Q specifies a subset S of the variables in X, and returns
the sum of the values of all variables in §

Example:

Relation Employees (name, age, salary)

Query select sum(salary) from Employees where age > 35

Suppose that Employees (name, age) is public, but salary is confidential

[Kleinberg, Papadimitriou, Raghavan, PODS 2000]




Query auditing

e \We have a set of (secret) Boolean variables X and the result of some
statistical queries over this set

o A statistical query Q specities a subset S of the variables in X, and returns
the sum of the values of all variables in S

e The auditing problem: Decide whether the value of any Boolean variable is
determined by the results of the queries

e Main result: The Boolean auditing problem is coNP-complete

e coNP-complete is the hardest class of problems in coNP: all coNP

problems can be formulated as a special case of any coNP-complete
problem

e |f P does not equal NP, then there does not exist a polynomial time
algorithm that solves this problem

[Kleinberg, Papadimitriou, Raghavan, PODS 2000]
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Privacy: two sides of the coin

protecting an individual learning about the population

plausible deniability noisy estimates




Privacy-preserving data analysis

rustea] urustea

pme

respondents contribute  the curator is untrusted, the analyst is untrusted,
their personal data collects data, releases itto  extracts value from data
analysts

slide by Gerome Miklau



Privacy-preserving data analysis

trusted | urusted

RESPONDENTS CURATOR
respondents in the the curator is trusted to the analyst is untrusted
population seek collect data and is and wants to gain the
protection of their responsible for safely most accurate insights
personal data releasing it Into the population

slide by Gerome Miklau



Privacy-preserving data analysis

RESPONDENTS (trusted) CURATOR (untrusted) ANALYST

Ll

. population
q/ properties

IT.':D “134 students from

: families earning $1M”

sensitive
* personal
—=>  facts
“Bob Smith’s family
earns $1M”

W/

sensitive data items sensitive database
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Example: US Census

COLLECTOR ANALYST
‘/ global properties
:f : “Increasing automobile efficiency will
Commuting : save workers $A on average”
patterns in the US “Public transportation should be built at
E location B.”
collected by the _ ocation
Census o’ sensitive facts

—> “Alice lives at address X”

“Bob worked for Y, but now works for Z2”

sensitive data set

slide by Gerome Miklau



Example: Social networks

COLLECTOR ANALYST

global properties
“How rapidly do rumors spread in
this network?”
“Are people most likely to form

friendships with those who share
their attributes?”

sensitive facts

“Alice is present in this network”
“Alice and Bob are connected”

sensitive data set

slide by Gerome Miklau




Defining private data analysis

Take 1: If nothing is learned about any individual in the dataset, then no
individual can be harmed by analysis.

e Dalenius’ Desideratum: an ad omnia (Latin: “tor all”) privacy goal for
statistical databases, as opposed to ad hoc (Latin: “for this”). Anything that
can be learned about a respondent from the statistical database should be
learnable without access to the database.

e Put another way, the adversary’s prior and posterior views about an individual
should not be different.

e This objective is unachievable because of auxiliary information.

e Example: Alice knows that John smokes. She read a medical research study
that found a causal relationship between smoking and lung cancer. Alice
concludes, based on study results and her prior knowledge about John, that
he has a heightened risk of developing lung cancer.

e Further, the risk is to everyone in a particular group (smokers, in this example),
irrespective of whether they participated in the study.




Defining private data analysis

e Take 1: If nothing is learned about any individual in the dataset, then no
individual can be harmed by analysis.

e Dalenius’ Desideratum: an “ad omnia” (opposed to ad hoc) privacy goal for
statistical databases: Anything that can be learned about a respondent from
the statistical database should be learnable without access to the database.

e Put another way, the adversary’s prior and posterior views about an
individual should not be different.

e TJake 2: The information released about the sensitive dataset is virtually
indistinguishable whether or not a respondent’s data is in the dataset. This

Is an informal statement of differential privacy: that no information specific to
an individual is revealed.




Defining private data analysis

D01:10.1145/1866739.1866758
This long history is a testament to

What does it mean to preserve privacy? the importance of the problem. Sta-

tistical databases can be of enormous “A natural approaCh to deflnlng pr|Vacy IS to

BY CYNTHIA DWORK social value; they are used for appor-

tioning resources, evaluating medical
therapies, understanding the spread

A Firn1 require that accessing the database teaches the

ity, and informing us zbout ourselves
as aspecies.
The data may be obtained in diverse

ways Some data, such as_census, analyst nothing about any individual. But this is

m
tax, and other sorts of official data,
is compelled; other data is collected

opportunistically, for example, from

for Private on Amauon, and seateh engine query problematic: the whole point of a statistical
logs; other data is prmidcfllzrlrlulil:xri

thaving thes informarion wil hep database is to teach general truths, for

o
others to avoid a specific misfortune,
y I or more generally, (o increase the
public good. Altruistic data donors 1 1
e tpically promised their indiid example, that smoking causes cancer. Learning

ual data will be kept confidential—in
short, they are promised “privacy.”

compeled dita, such s censu data this fact teaches the data analyst something

and tax return data, have legal privacy

IN THE INFORMATION realm, loss of privacy is usually key insights about the ||ke||hOOd W|th Wh|Ch Certa|n |nd|V|dua|S’

associated with failure to control access to B Inanalyzing private data, only

s form ats > . " wxr nF 3 Eariv okl . by focusing on rigerous privacy
information, to control the flow of information, or guarantees can we convert the cycle

to control the purposes for which information is ek Propose again” ﬂOt necessarl |y N the database, Wi ” deve|0p
.cm])ll(.)\'lul. l)l“.('l‘clll 1;.11 privacy ;ll r\:)ch ina context | ® Anatural approach to defining privacy I
in which ensuring privacy is a challenge even if a torequire that accessing the database Y
< v < X teaches the analyst nothing about any W h '|: d d f h

these control problems are solved: privacy-preserving individual. But this is problematic: the cancetr. e t erertore neead a de |n|t|0n t at

. . . ) ¢ whole point of a statistical database is to
statistical analysis of data. teach general truths, for example, that

smoking causes cancer. Learning this

The problem of statistical disclosure control— faot tesches the date analyst something Sepal‘ates the utility of the database (learnlng

revealing accurate statistics about a set of respondents | aboutthe likelihood with which
< certainindividuals, not necessarily

while preserving the privacy of individuals—has inthe database, will develop cancer.

ble history, with an extensive literatu aaparates the iRy of e artabas I 1
avenerable his /s W : xtensive Té e tes the utility of the datab h k f h d
 venerable history, with an " e s o that smoking causes cancer) from the increase
spanning statistics, theoretical computer science, from the increased risk of harm due to

o111 ate ace . - hey e joining the database. This is the intuition
security, databases, and cryptography (see, Dol cgrorsntiol petvocy:
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Wortmann,' the discussion of related work in Blum et distortion. The key ideals to randomize
responses so as to effectively hide the

al.,>and the journal of Official Statistics dedicated to presence or absence of the data of any

confidentiality and disclosure control). e iy is the intuition behind differential privacy. “
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Differential privacy: the formalism

We will define privacy with respect to a database D that is made up of rows

(equivalently, tuples) representing individuals. Tuples come from some universe
of datatypes (the set of all possible tuples).

The [, norm of a database D, denoted HDH1 Is the number of tuples in D.
The [, distance between databases Dy and D2 represents the number of

tuples on which they differ. HD1 — D2H1

We reter to a pair of databases that differ in at most 1 tuple as
neighboring databases H D, - DzH <1

Of these Dy and Dg, one, say Dy, is a subset of the other, and, when a
proper subset, the larger database D2contains 1 extra tuple.




Differential privacy: the formalism

The information released about the sensitive dataset is virtually
iIndistinguishable whether or not a respondent’s data is in the dataset.
This is an informal statement of differential privacy. That is, no information
specific to an individual is revealed.

A randomized algorithm M provides e-differential privacy if, for all
neighboring databases Dt and D2, and for any set of outputs S:

Pr{M(D)eS]<ef Pr{M(D,)eS]

€ (epsilon) is a privacy parameter

* lower € = stronger privacyf

The notion of neighboring databases is integral to plausible deniability:
D: can represent a database with a particular respondent’s data, D2 can
represent a neighboring database but without that respondent’s data




Differential privacy: the formalism

A

1) '

A

4 4

local random coins 3 local random coins

—>M(D,)

A3

A randomized algorithm M provides e-differential privacy if, for all
neighboring databases Dt and D2, and for any set of outputs S:

Pr{M (D )eS]<e Pr[M(D,)€S]

Think of database of respondents D=(x1, .., Xn) as fixed (not random),
M(D) is a random variable distributed over possible outputs

Neighboring databases induce close distributions on outputs

based on a slide by Adam Smith



Back to randomized response

Did you go out drinking over the weekend?

1.flip a coin C1 Denote:
1.if C1 is tails, then respond truthfully e Truth=Yes by P
2.if C1 is heads, then flip another coin C2 e Response=Yes by A
1.if C2 is heads then Yes e Cl=tailsby T
2.else C2 is tails then respond No e C1=heads and C2=tails by HT

e C1=heads and C2=heads by HH

A randomized algorithm M provides e-differential privacy if, for all
neighboring databases Dt and D2, and for any set of outputs S:

P{M(D,) e S|< e Pr[M(D,) € S]

3 Prl4| P]=3Pr[A| =P
Pr[A| P]=Pt{T]+Pr{HH] =~ 4| P]= 3P A[=P]
4 = £=1n3
1 our version of randomized response is

Pr{A|—P]=Pr[HH]|= Z (In 3)-differentially private




Local differential privacy

rustea] urustea

respondents contribute  the curator is untrusted, the analyst is untrusted,
their personal data collects data, releases itto  extracts value from data
analysts
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Differential privacy in the field

s s

RESPONDENTS : CURATOR
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Example: What’s your favorite emoji?

A privacy-preserving system

Apple has adopted and further developed a technique known in the academic world
as local differential privacy to do something really exciting: gain insight into what many
Apple users are doing, while helping to preserve the privacy of individual users. It is a
technique that enables Apple to learn about the user community without learning
about individuals in the community. Differential privacy transforms the information
shared with Apple before it ever leaves the user’s device such that Apple can never
reproduce the true data.

)

BV O BYWY O

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf




Example: What’s your favorite emoji?

Apple uses local differential privacy to help protect the privacy of user activity in a
given time period, while still gaining insight that improves the intelligence and
usability of such features as:

* Quicklype suggestions

- Emoji suggestions

+ Lookup Hints

« Safari Energy Draining Domains

« Safari Autoplay Intent Detection (macOS High Sierra)
+ Safari Crashing Domains (iOS 11)

- Health Type Usage (iOS 10.2)

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf




Example: What’s your favorite emoji?

Privacy budget

The Apple differential privacy implementation incorporates the concept of a per-
donation privacy budget (quantified by the parameter epsilon), and sets a strict limit on
the number of contributions from a user in order to preserve their privacy. The reason
is that the slightly-biased noise used in differential privacy tends to average out over a
large numbers of contributions, making it theoretically possible to determine
information about a user’s activity over a large number of observations from a single

user (though it's important to note that Apple doesn't associate any identifiers with
information collected using differential privacy).

)

BV O BYWY O

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf




Example: What’s your favorite emoji?

Count Mean Sketch

In our use of the Count Mean Sketch technique for differential privacy, the original
information being processed for sharing with Apple is encoded using a series of
mathematical functions known as hash functions, making it easy to represent data of
varying sizes in a matrix of fixed size.

The data is encoded using variations of a SHA-256 hash followed by a privatization step
and then written into the sketch matrix with its values initialized to zero.

The noise injection step works as follows: After encoding the input as a vector using a
hash function, each coordinate of the vector is then flipped (written as an incorrect
value) with a probability of 1/(1 + ¢/%), where € is the privacy parameter. This assures
that analysis of the collected data cannot distinguish actual values from flipped values,
helping to assure the privacy of the shared information.

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf




Transparency iIs important!

ANDY GREENBERG SECURITY B8.15.2817 B9:28 AM

How One of Apple's Key Privacy
Safeguards Falls Short

Apple has boasted of its use of a cutting-edge data science known as EpS'IOn, Ep$I|0n
"differential privacy." Researchers say they're doing it wrong.

= WIREDR

“...[Researchers] examined how Apple's software injects random noise into personal information—
ranging from emoji usage to your browsing history to HealthKit data to search queries—before
your iPhone or MacBook upload that data to Apple's servers.

|deally, that obfuscation helps protect your private data from any hacker or government agency that
accesses Apple's databases, advertisers Apple might someday sell it to, or even Apple's own staff.
But differential privacy's effectiveness depends on a variable known as the "privacy loss
parameter,” or "epsilon," which determines just how much specificity a data collector is willing to
sacrifice for the sake of protecting its users' secrets. By taking apart Apple's software to determine
the epsilon the company chose, the researchers found that MacOS uploads significantly more
specific data than the typical differential privacy researcher might consider private. iOS 10
uploads even more. And perhaps most troubling, according to the study's authors, is that Apple
keeps both its code and epsilon values secret, allowing the company to potentially change those
critical variables and erode their privacy protections with little oversight....”

https://www.wired.com/story/apple-differential-privacy-shortcomings/



https://www.wired.com/story/apple-differential-privacy-shortcomings/

A closer look at differential privacy

A randomized algorithm M provides e-differential privacy if, for all
neighboring databases Dt and D2, and for any set of outputs S:

Pr{M (D) eS]<e Pr{M(D,) € S]

* lower € = stronger privacy *

e T[he state-of-the-art in privacy technology, first proposed in 2006

e Has precise mathematical properties, captures cumulative privacy loss over
multiple uses with the concept of a privacy budget

* Privacy guarantee encourages participation by respondents

e Robust against strong adversaries, with auxiliary information, including also
future auxiliary information!

e Precise error bounds that can be made public




A closer look at differential privacy

A randomized algorithm M provides e-differential privacy if, for all
neighboring databases Dt and D2, and for any set of outputs S:

Pr{M (D) eS]<e Pr{M(D,) € S]

* lower € = stronger privacy *

e (epsilon) cannot be too small: think 1/10, not 1/2%0

Difterential privacy is a condition on the algorithm M (process privacy).
Saying simply that “the output is safe” does not take into account how it
was computed, and is insufficient.
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Query sensitivity

The [, sensitivity of a query q, denoted Aq, is the maximum difference
in the result of that query on a pair of neighborinT databases

Ag =max , ,|¢(D)—g(D")

* lower € = stronger privacy *

e Example 1: counting queries

e “How many elements in D satisfy property P?” What’s Aq ?
e “What fraction of the elements in D satisty property P ?”

e Example 2: max / min
e “What is the maximum employee salary in D7?” What’s Aq ?

Intuition: for a given g, the higher the sensitivity, the more noise
we heed to add to meet the privacy guarantee




Query sensitivity

The [, sensitivity of a query q, denoted Aq, is the maximum difference
in the result of that query on a pair of neighborinT databases

Ag =max , ,|¢(D)—q(D")

query q query sensitivity Aq
select count(*) from D 1
select count(*) from D )

where sex = Male and age > 30




Query sensitivity

The [, sensitivity of a query q, denoted Aq, is the maximum difference
in the result of that query on a pair of neighborinT databases

Ag =max , ,|¢(D)—q(D")

query q query sensitivity Aq

select count(*) from D 1

select count(*) from D
where sex = Male and age > 30

select MAX(salary) from D /




Query sensitivity

The [, sensitivity of a query q, denoted Aq, is the maximum difference
in the result of that query on a pair of neighborinT databases

Ag =max , ,|¢(D)—g(D")

query q query sensitivity Aq
select count(*) from D 1
select count(*) from D :
where sex = Male and age > 30
select MAX(salary) from D MAX(salary)-MIN(salary)
select gender, count(*) )

from D group by gender




Query sensitivity

The [, sensitivity of a query q, denoted Aq, is the maximum difference
in the result of that query on a pair of neighborinT databases

Ag =max , ,|¢(D)—g(D")

query q query sensitivity Aq
select count(*) from D 1
select count(*) from D :

where sex = Male and age > 30

select MAX(salary) from D MAX(salary)-MIN(salary)

1 (disjoint groups, presence or
absence of one tuple impacts only one
of the counts)

select gender, count(™)
from D group by gender




Query sensitivity

The [, sensitivity of a query q, denoted Aq, is the maximum difference
in the result of that query on a pair of neighborinT databases

Ag =max , ,|¢(D)—g(D")

query q query sensitivity Aq

1 (disjoint groups, presence or
absence of one tuple impacts only one
of the counts)

select gender, count(™)
from D group by gender

an arbitrary list of m counting )
queries .




Query sensitivity

The [, sensitivity of a query q, denoted Aq, is the maximum difference
in the result of that query on a pair of neighborinT databases

Ag =max , ,|¢(D)—g(D")

query q query sensitivity Aq

1 (disjoint groups, presence or
absence of one tuple impacts only one
of the counts)

select gender, count(™)
from D group by gender

m (no assumptions about the queries,
and so a single individual may change
the answer of every query by 1)

an arbitrary list of m counting
queries




Adding noise

RESPONDENTS (trusted) CURATOR  (untrusted) ANALYST

Privacy parameter €

Queries /

T Analysis
~— A/ Task
> ./le g
I, %

“safe” answers:
/ true answers + noise

sensitive data items sensitive database
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Adding noise

Use the Laplace mechanism to answer g in a way that's
e-differentially private Aq
M(e):q(D)+ Lap| —
E

The Laplace distribution, centered at O with scale b, denoted
Lap(b), is the distribution with probability density function:

o5 T T T 1 |IJ=0, o -
u=0, b=2 —
0.4 |- ” u=0, b=4 — __
lJ: 5’ b=4 . M . " M
03 |- . fix sensitivity Aq, verify that more
noise Iis added for lower &

0.2

0.1

* lower € = stronger privacy*

0
10 8 6 -4 2 0 2 4 6 8 10
https://en.wikipedia.org/wiki/Laplace_distribution




Adding noise

0.5

(trusted) CURATOR (untrusted) ANALYST

0.4
s — 1 0.3
0.2

0.1

0

e=1
{—= Count(sex=Male, age=18) " * s+ 20z 4 ¢ s 1w

Ase

> true answer + noise(-3,3)

Laplace noise centered at 0,
in interval (-3,3) with 95% prob.

sensitive database
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Query sensitivity

The [, sensitivity of a query q, denoted Aq, is the maximum difference
in the result of that query on a pair of neighborinT databases

Ag =max , ,|¢(D)—q(D")

query q query sensitivity Aq

parallel composition
1 (disjoint groups, presence or
absence of one tuple impacts only one
of the counts)

select gender, count(™)
from D group by gender

sequential composition

m (no assumptions about the queries,
and so a single individual may change
the answer of every query by 1)

an arbitrary list of m counting
queries




Sequential composition

e (Consider 4 queries executed in sequence
e (Q1: select count(*) from D under £€1=0.5
e (Q2: select count(*) from D where sex = Male under €2=0.2
e (Q3: select count(*) from D where sex = Female under £3= 0.25

e (Q4: select count(*) from D where age > 20 under £4=0.25

o cg=¢g1+ &2+ &3+ &4=1.2 That is: all queries together are e-differentially
private for € =1.2. Can we make a stronger guarantee?

e This works because Laplace noise is additive

More generally: set a cumulative privacy budget, and split it between
all queries, pre-processing, other data manipulation steps of the pipeline




Parallel composition

e |[f the inputs are disjoint, then the result is e-differentially private for €
=max(&, ..., &)

e Q1:select count(*) from D under €1=0.5

Q2: select count(*) from D where sex = Male under 2= 0.2

()
()
()
()

Q3: select count(*) from D where sex = Female under €3=0.25

e (Q4: select count(*) from D where age > 20 under &4= 0.25

® g =¢g1+ max(ez e3)+ €4=1 That is: all queries together are ¢-
differentially private for € =1.




Composition and consistency

e (Consider again 4 queries executed in sequence
e Q1: select count(*) from D under g7 = 0.5 returns 2005
e (Q2: select count(*) from D where sex = Male under €2= 0.2 returns 1001
e (3: select count(™) from D where sex = Female under €3= 0.25 returns 995

e (4. select count(*) from D where age > 20 under £4= 0.25 returns 1789

Assuming that there are 2 genders in D, Male and Female, there is no
database consistent with these statistics!

Also don’t want any negative counts + may want to impose datatype
checks, e.g., no working adults with age = 5 etc.




Entire workflow must be DP

(trusted) CURATOR (untrusted) ANALYST

e=1

<:I Data cleaning
<{——3 Feature selection

<{—3 Regression

[——> Regression coefficients

sensitive database

slide by Gerome Miklau



Privacy-preserving synthetic data

(trusted) CURATOR (untrusted) ANALYST

=1

e1=1 Give me
: the data!

<:I Cleaning
':> <::] Feature

selection

noisy table <_———1 Regression

sensitive database or “synthetic data”
or (at Census): “public-use microdata”™

slide by Gerome Miklau



