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Truth or dare?

Did you go out drinking over the weekend?

let’s call this property P (Truth=Yes) and Google  fipacon
estimate p, the fraction of the class for
whom P holds

1.flip a coin C1
1.if C1 is tails, then respond truthfully

2.1t C1 is heads, then flip another coin C2
1.if C2 is heads then Yes
2.else C2 is tails then respond No

the expected number of Yes answers is:
3 1 p

thus, we estimate p as:
1

1
A=2pr=(1-p)=-+2L ~
2Py =gty p=24-7




Randomized response

Did you go out drinking over the weekend?

let’s call this property P (Truth=Yes) and
estimate p, the fraction of the class for

whom P holds

1.flip a coin C1
1.if C1 is tails, then respond truthfully
2.it C1 is heads, then flip another coin C2 randomization - adding noise - is
1.if €2 is heads then Yes what gives plausible deniability
2.else C2 is tails then respond No a process privacy method

the expected number of Yes answers is:
3 1 1 p

A=—p+—-(1-p)=—+—
g Pryd=p)=g s

privacy comes from plausible deniability




Privacy: two sides of the coin

protecting an individual learning about the population

plausible deniability noisy estimates




[ al



Some other options

e Data release approaches that fail to protect privacy (these are
orominent classes of methods, there are others):

e sampling (“just a few”) - release a small subset of the
database

e aggregation (e.g., k-anonymity - each record in the release is
indistinguishable from at least k-1 other records)

e de-identification - mask or drop personal identifiers

® query auditing - stop answering queries when they become
unsafe



Sampling (“just a few”)

Suppose that we take a random small sample D’ of D and release it without
any modification

It D”is much smaller than D, then every respondent is unlikely to appear in D’

This technigque provides protection for “the typical” (or for “most”) members of
the dataset

But it may be argued that atypical individuals are the ones needing stronger
protection!

In any case, this method is problematic because a respondent who does
appear has no plausible deniability!

Suppose next that appearing in the sample D’ has terrible consequences.
Then, every time subsampling occurs - some individual suffers horribly!




Aggregation without randomization

e Alice and Bob are professors at State University.

e |n March, Alice publishes an article: “.... the current freshman class at
State U is 3,005 students, 202 of whom are from families earning over
$1M per year.”

e In April, Bob publishes an article: “... 201 families in State U’s freshman
class of 3,004 have household incomes exceeding $1M per year.”

e Neither statement discloses the income of the family of any one student.
But, taken together, they state that John, a student who dropped out
at the end of March, comes from a family that earns $1M. Anyone who
has this auxiliary information — that John dropped out at the end of
March — will be able to learn about the income of John's family.

this is known as a problem of composition, and can be
seen as a kind of a differencing attack




A basic differencing attack

e X: count the number of HIV-positive people in D
e Y:countthe number of HIV-positive people in D not named Freddie;

e X -Y tells you whether Freddie is HIV-positive

what if X-Y > 1, do we still have a problem?




Reconstruction: death by a 1000 cuts

Another serious issue for aggregation without randomization, or with an insufficient
amount of randomization: reconstruction attacks

The Fundamental Law of Information Recovery (starting with the seminal results by
Irit Dinur & Kobbi Nissim, PODS 2003): overly accurate estimates of too many statistics
can completely destroy privacy

Under what conditions can an adversary reconstruct a candidate database D’ that agrees with
the real database D in 99% of the entries?

Suppose that D has ntuples, and that noise is bounded by some quantity E. Then there exists
an adversary that can reconstruct D to within 4E positions, issuing all possible 2n queries

AF — 4n - n
401 100

Put another way: if the magnitude of the noise is less than n/401, then 99% of D can be
reconstructed by the adversary. Really, any number higher than 401 will work

There are also reconstruction results under a limited number of queries




Reconstruction: death by a 1000 cuts

Privacy-Preserving Data Analysis for the
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Jerome Reiter _ _
The Fundamental Law of Information Recovery has troubling

implications for the publication of large numbers of statistics by
a statistical agency: it says that the confidential data may be
vulnerable to database reconstruction attacks based entirely on

we'll discuss the use the data published by the agency itself. Left unattended, such

of differential privacy risks threaten to undermine, or even eliminate, the societal
by the 2020 US benefits inherent in the rich data collected by the nation's
Census later today statistical agencies. The most pressing immediate problem for

any statistical agency is how to modernize its disclosure
limitation methods in light of the Fundamental Law.




De-identification

Also known as anonymization

Mask or drop identitying attribute or attributes, such as social security
number (SSN), name, mailing address

Turns out that this also doesn’t work because auxiliary information is
available

Fundamentally, this is due to the curse of dimensionality: high-
dimensional data is sparse, the more you know about individuals, the
less likely it Is that two individuals will look alike

de-identified data can be re-identified with a linkage attack




A linkage attack: Governor Weld

In 1997, Massachusetts Group Insurance
Commission released "anonymized" data
on state employees that showed every
single hospital visit! Latanya Sweeney, a grad student,
sought to show the ineffectiveness
of this “anonymization.”

She knew that Governor Weld
resided in Cambridge,
Massachusetts, a city of 54,000

melieris ardl sevien 212 coiEe For twenty dollars, she purchased the

complete voter rolls from the city of
Cambridge, a database containing, among
other things, the name, address, ZIP code,

Only six people in Cambridge shared birth date, and sex of every voter.
his birth date, only three of them men,
and of them, only he lived in his ZIP

e Follow up: ZIP code, birthdate, and sex

sufficient to identify 87% of Americans!

https://arstechnica.com/tech-policy/2009/09/your-secrets-live-online-in-
databases-of-ruin/



https://arstechnica.com/tech-policy/2009/09/your-secrets-live-online-in-databases-of-ruin/

The Nettflix prize linkage attack

e |n 2006, Netflix released a dataset containing ~100M movie ratings by ~500K
users (about 1/8 of the Nexflix user base at the time)

e FAQ: “Is there any customer information in the dataset that should be kept private?”

“No, all customer identifying information has been removed; all that remains are ratings
and dates. This follows our privacy policy, which you can review here. Even if, for
example, you knew all your own ratings and their dates you probably couldn’t identify
them reliably in the data because only a small sample was included (less than one-tenth
of our complete dataset) and that data was subject to perturbation. Of course, since
you know all your own ratings that really isn’t a privacy problem is it?”

The real question: How much does the adversary need to know about a Netflix
subscriber to identify her record in the dataset, and thus learn her complete movie
viewing history?

[Narayanan and Shmatikov, I[EEE S&P 2008]




The Nettflix prize linkage attack

e \Very little auxiliary information is needed to de-anonymize an average subscriber
record from the Nettlix Prize dataset

e Perturbation, you say? \With 8 movie ratings (of which 2 may be completely
wrong) and dates that may have a 14-day error, 99% of records be uniquely
identified in the dataset

e [or68%, two ratings and dates (with a 3-day error) are sufficient

e Even without any dates, a substantial privacy breach occurs, especially
when the auxiliary information consists of movies that are not blockbusters:
Two movies are no longer sufficient, but 84% of subscribers can be uniguely
identified if the adversary knows 6 out of 8 moves outside the top 500

We cannot assume a priori that any data is harmless!

[Narayanan and Shmatikov, I[EEE S&P 2008]




The Nettflix prize linkage attack

Add4
2 MIGE
A

NETFLIX SPILLED YOUR
An in-the-closet lesbian mother is suing Netflix for privacy BI{OHEB ACH MOU\T I‘AIN SECI{E’R

invasion, alleging the movie rental company made it —
possible for her to be outed when it disclosed insufficiently 'J'“VS[‘ IT CIJAIMS
anonymous information about nearly half-a-million
customers as part of its $1 million contest to improve its
recommendation system.

The suit known as Doe v. Netflix (.pdf) was filed in federal
court in California on Thursday, alleging that Netflix
violated fair-trade laws and a federal privacy law protecting
video rental records, when it launched its popular contest in
September 2006.

The suit seeks more than $2,500 in damages for each of more . {"‘.‘_'.5 R
than 2 million Netflix customers. k. s




The Nettflix prize linkage attack

# WNIGREDR

NETFLIX CANCELS
RECOMMENDATION CONTEST
ATER PRIVACY LAWSUIT

Netflix is canceling its second $1 million Netflix Prize to
settle a legal challenge that it breached customer privacy as
part of the first contest’s race far a hetter movie-
recommendation engine.



Query auditing

e Monitor queries: each query is granted or denied depending on
what other queries were answered In the past

e |[fthis method were to work, It could be used to detect that a
differencing attack is about to take place

e Unfortunately, it doesn’t work:
e Query auditing is computationally infeasible
e Refusal to respond to a query may itself be disclosive

e Ve refuse to execute a query, then what”? No information
access at all?



Query auditing

e \We have a set of (secret) Boolean variables X and the result of some
statistical queries over this set

e A statistical query Q specifies a subset S of the variables in X, and returns
the sum of the values of all variables in §

Example:

Relation Employees (name, age, salary)

Query select sum(salary) from Employees where age > 35

Suppose that Employees (name, age) is public, but salary is confidential

[Kleinberg, Papadimitriou, Raghavan, PODS 2000]




Query auditing

e \We have a set of (secret) Boolean variables X and the result of some
statistical queries over this set

o A statistical query Q specifies a subset S of the variables in X, and returns
the sum of the values of all variables in S

e The auditing problem: Decide whether the value of any Boolean variable is
determined by the results of the queries

e Main result: The Boolean auditing problem is coNP-complete

e coNP-complete is the hardest class of problems in coNP: all coNP

problems can be formulated as a special case of any coNP-complete
problem

e |f P does not equal NP, then there does not exist a polynomial time
algorithm that solves this problem

[Kleinberg, Papadimitriou, Raghavan, PODS 2000]
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Privacy: two sides of the coin

protecting an individual learning about the population

plausible deniability noisy estimates




Privacy-preserving data analysis

wusted | rivusted

. RESPONDENTS | CURATOR

bl ]

i

respondents contribute  the curator is untrusted, the analyst is untrusted,
their personal data collects data, releases itto  extracts value from data
analysts

slide by Gerome Miklau



Privacy-preserving data analysis

irusted] unrusted

Ll S

-

-

=

respondents in the the curator is trusted to the analyst is untrusted
population seek collect data and is and wants to gain the
protection of their responsible for safely most accurate insights
personal data releasing it Into the population

slide by Gerome Miklau



Privacy-preserving data analysis

RESPONDENTS (trusted) CURATOR

i

-
A

==

Ll

: population
q/ properties

:i:> “134 students from

5 families earning $1M”

sensitive
* personal
—=>  facts
“Bob Smith’s family
earns $1M”

W/

sensitive data items sensitive database

slide by Gerome Miklau



Example: US Census

COLLECTOR ANALYST

lobal properties
v .

B ——> " cove workers SAon average
patterns in the US . “Public transportation should be built at
collected by the aeaton 2.°
Census X sensitive facts

[:f‘(} “Alice lives at address X”

“Bob worked for Y, but now works for Z”

sensitive data set

slide by Gerome Miklau



Example: Social networks

COLLECTOR ANALYST

global properties

“How rapidly do rumors spread in
this network?”
“Are people most likely to form
friendships with those who share
their attributes?”

sensitive facts

“Alice is present in this network”
“Alice and Bob are connected”

sensitive data set

slide by Gerome Miklau




Defining private data analysis

Take 1: If nothing is learned about any individual in the dataset, then no
individual can be harmed by analysis.

Dalenius’ Desideratum: an ad omnia (Latin: “for all”) privacy goal for
statistical databases, as opposed to ad hoc (Latin: “for this”). Anything that
can be learned about a respondent from the statistical database should be
learnable without access to the database.

Put another way, the adversary’s prior and posterior views about an individual
should not be different.

This objective is unachievable because of auxiliary information.

Example: Alice knows that John smokes. She read a medical research study
that found a causal relationship between smoking and lung cancer. Alice
concludes, based on study results and her prior knowledge about John, that
he has a heightened risk of developing lung cancer.

Further, the risk is to everyone in a particular group (smokers, in this example),
irrespective of whether they participated in the study.




Defining private data analysis

e Take 1: If nothing is learned about any individual in the dataset, then no
individual can be harmed by analysis.

e Dalenius’ Desideratum: an “ad omnia” (opposed to ad hoc) privacy goal for
statistical databases: Anything that can be learned about a respondent from
the statistical database should be learnable without access to the database.

e Put another way, the adversary’s prior and posterior views about an
individual should not be different.

e TJake 2: The information released about the sensitive dataset is virtually
indistinguishable whether or not a respondent’s data is in the dataset. This

Is an informal statement of differential privacy: that no information specific to
an individual is revealed.




Defining private data analysis
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“A natural approach to defining privacy is to
require that accessing the database teaches the
analyst nothing about any individual. But this is
problematic: the whole point of a statistical
database is to teach general truths, for
example, that smoking causes cancer. Learning
this fact teaches the data analyst something
about the likelihood with which certain individuals,
not necessarily in the database, will develop
cancer. We therefore need a definition that
separates the utility of the database (learning
that smoking causes cancer) from the increased

risk of harm due to joining the database. This

is the intuition behind differential privacy. *
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Differential privacy: the formalism

We will define privacy with respect to a database D that is made up of rows

(equivalently, tuples) representing individuals. Tuples come from some universe
of datatypes (the set of all possible tuples).

The [, norm of a database D, denoted HDH1 Is the number of tuples in D.
The [, distance between databases Dy and D represents the number of

tuples on which they differ. HD1 — D2H1

We reter to a pair of databases that differ in at most 1 tuple as
neighboring databases H D, - DzH <1

Of these Dy and Dg, one, say Dg, is a subset of the other, and, when a
proper subset, the larger database D2contains 1 extra tuple.




Differential privacy: the formalism

The information released about the sensitive dataset is virtually
iIndistinguishable whether or not a respondent’s data is in the dataset.
This is an informal statement of differential privacy. That is, no information
specific to an individual is revealed.

A randomized algorithm M provides e-differential privacy if, for all
neighboring databases Dt and D2, and for any set of outputs S:

Pr{M (D )eS]<e Pr[M(D,)€S]

€ (epsilon) is a privacy parameter

* lower € = stronger privacyf

The notion of neighboring databases is integral to plausible deniability:
D: can represent a database with a particular respondent’s data, D2 can
represent a neighboring database but without that respondent’s data




Differential privacy: the formalism

A

1) '

A

1+ 4

local random coins 3 local random coins

—>M(D,)

A3

A randomized algorithm M provides e-differential privacy if, for all
neighboring databases Dt and D2, and for any set of outputs S:

Pr{M (D )eS]<e Pr[M(D,)€S]

Think of database of respondents D=(x1, .., Xn) as fixed (not random),
M(D) is a random variable distributed over possible outputs

Neighboring databases induce close distributions on outputs

based on a slide by Adam Smith



Back to randomized response

Did you go out drinking over the weekend?
1.flip a coin C1

Denote:
1.if C1 is tails, then respond truthfully e Truth=Yes by P
2.if C1 is heads, then flip another coin C2 e Response=Yes by A
1.if C2 is heads then Yes e Cl=tailsby T
2.else C2 is tails then respond No e C1=heads and C2=tails by HT

e C1=heads and C2=heads by HH

A randomized algorithm M provides e-differential privacy if, for all
neighboring databases Dt and D2, and for any set of outputs S:

P{M(D,) e S|< e Pr[M(D,) € S]

3 Prl4| P]=3Pr[A| =P
Pr[A| P]=Pt{T]+Pr{HH] == 4| P]= 3P A[=P]
4 = £=1n3
1 our version of randomized response is

Pr{A|—=P]=Pr[HH|= Z (In 3)-differentially private




Local differential privacy

wusted | rivusted
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respondents contribute  the curator is untrusted, the analyst is untrusted,
their personal data collects data, releases itto  extracts value from data
analysts
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Differential privacy in the field
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Example: What’s your favorite emoji?

A privacy-preserving system

Apple has adopted and further developed a technique known in the academic world
as local differential privacy to do something really exciting: gain insight into what many
Apple users are doing, while helping to preserve the privacy of individual users. It is a
technique that enables Apple to learn about the user community without learning
about individuals in the community. Differential privacy transforms the information

shared with Apple before it ever leaves the user’s device such that Apple can never
reproduce the true data.

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf




Example: What’s your favorite emoji?

Apple uses local differential privacy to help protect the privacy of user activity in a
given time period, while still gaining insight that improves the intelligence and
usability of such features as:

= QuicklType suggestions

Emoji suggestions

Lookup Hints

Safari Energy Draining Domains

Safari Autoplay Intent Detection (macQS High Sierra)
Safari Crashing Domains (iOS 11)
Health Type Usage (iOS 10.2)

-

, _ o - ' /N -
VOV OLVBOYOOD

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf




Example: What’s your favorite emoji?

Privacy budget

The Apple differential privacy implementation incorporates the concept of a per-
donation privacy budget (quantified by the parameter epsilon), and sets a strict limit on
the number of contributions from a user in order to preserve their privacy. The reason
is that the slightly-biased noise used in differential privacy tends to average out over a
large numbers of contributions, making it theoretically possible to determine
information about a user’s activity over a large number of observations from a single

user (though it's important to note that Apple doesn’t associate any identifiers with
information collected using differential privacy).

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf




Example: What’s your favorite emoji?

Count Mean Sketch

In our use of the Count Mean Sketch technique for differential privacy, the original
information being processed for sharing with Apple is encoded using a series of
mathematical functions known as hash functions, making it easy to represent data of
varying sizes in a matrix of fixed size.

The data is encoded using variations of a SHA-256 hash followed by a privatization step
and then written into the sketch matrix with its values initialized to zero.

The noise injection step works as follows: After encoding the input as a vector using a
hash function, each coordinate of the vector is then flipped (written as an incorrect
value) with a probability of 1/(1 + %), where ¢ is the privacy parameter. This assures
that analysis of the collected data cannot distinguish actual values from flipped values,
helping to assure the privacy of the shared information.

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf




Transparency is important!

ANDY GREEZNZERG SECLRITY B8..5.2817 28:28 AM

How One of Apple's Key Privacy
Safeguards Falls Short

Apple has boasted of its use of a cutting-edge data science known as Ep$|lon, Ep$|lon
"differential privacy.” Researchers say they're doing it wrong.

= WIREDR

“...[Researchers] examined how Apple's software injects random noise into personal information—
ranging from emoji usage to your browsing history to HealthKit data to search queries—before
your iPhone or MacBook upload that data to Apple's servers.

|deally, that obfuscation helps protect your private data from any hacker or government agency that
accesses Apple's databases, advertisers Apple might someday sell it to, or even Apple's own staff.
But differential privacy's effectiveness depends on a variable known as the "privacy loss
parameter,” or "epsilon," which determines just how much specificity a data collector is willing to
sacrifice for the sake of protecting its users' secrets. By taking apart Apple's software to determine
the epsilon the company chose, the researchers found that MacOS uploads significantly more
specific data than the typical differential privacy researcher might consider private. iOS 10
uploads even more. And perhaps most troubling, according to the study's authors, is that Apple
keeps both its code and epsilon values secret, allowing the company to potentially change those
critical variables and erode their privacy protections with little oversight....”

https://www.wired.com/story/apple-differential-privacy-shortcomings/



https://www.wired.com/story/apple-differential-privacy-shortcomings/

A closer look at differential privacy

A randomized algorithm M provides e-differential privacy if, for all
neighboring databases Dy and D2, and for any set of outputs S:

Pr{M (D) eS]<e Pr{M(D,) € S]

* lower € = stronger privacy *

e T[he state-of-the-art in privacy technology, first proposed in 2006

e Has precise mathematical properties, captures cumulative privacy loss over
multiple uses with the concept of a privacy budget

* Privacy guarantee encourages participation by respondents

e Robust against strong adversaries, with auxiliary information, including also
future auxiliary information!

e Precise error bounds that can be made public




A closer look at differential privacy

A randomized algorithm M provides e-differential privacy if, for all
neighboring databases Dy and D2, and for any set of outputs S:

Pr{M (D) eS]<e Pr{M(D,) € S]

* lower € = stronger privacy *

€ (epsilon) cannot be too small: think 1/10, not 1/2%0

Difterential privacy is a condition on the algorithm M (process privacy).
Saying simply that “the output is safe” does not take into account how it
was computed, and is insufficient.
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Query sensitivity

The [, sensitivity of a query q, denoted Aq, is the maximum difference
in the result of that query on a pair of neighborinT databases

Ag =max , ,|¢(D)—g(D")

* lower € = stronger privacy *

e Example 1: counting queries

e “How many elements in D satisty property P7?” What’s Aq ?
e “What fraction of the elements in D satisty property P ?”

e Example 2: max / min
e “What is the maximum employee salary in D7?” What’s Aq ?

Intuition: for a given g, the higher the sensitivity, the more noise
we need to add to meet the privacy guarantee




Query sensitivity

The [, sensitivity of a query q, denoted Aq, is the maximum difference
in the result of that query on a pair of neighborinT databases

Ag =max , ,|¢(D)—g(D")

query q query sensitivity Aq
select count(*) from D 1
select count(*) from D )

where sex = Male and age > 30




Query sensitivity

The [, sensitivity of a query q, denoted Aq, is the maximum difference
in the result of that query on a pair of neighborinT databases

Ag =max , ,|¢(D)—g(D")

query q query sensitivity Aq
select count(*) from D 1

select count(*) from D
where sex = Male and age > 30

select MAX(salary) from D /




Query sensitivity

The [, sensitivity of a query q, denoted Aq, is the maximum difference
in the result of that query on a pair of neighborinT databases

Ag =max , ,|¢(D)—g(D")

query q query sensitivity Aq
select count(*) from D 1
select count(*) from D :
where sex = Male and age > 30
select MAX(salary) from D MAX(salary)-MIN(salary)
select gender, count(*) )

from D group by gender




Query sensitivity

The [, sensitivity of a query q, denoted Aq, is the maximum difference
in the result of that query on a pair of neighborinT databases

Ag =max , ,|¢(D)—g(D")

query q query sensitivity Aq
select count(*) from D 1
select count(*) from D :

where sex = Male and age > 30

select MAX(salary) from D MAX(salary)-MIN(salary)

1 (disjoint groups, presence or
absence of one tuple impacts only one
of the counts)

select gender, count(™)
from D group by gender




Query sensitivity

The [, sensitivity of a query q, denoted Aq, is the maximum difference
in the result of that query on a pair of neighborinT databases

Ag =max , ,|¢(D)—g(D")

query q query sensitivity Aq

1 (disjoint groups, presence or
absence of one tuple impacts only one
of the counts)

select gender, count(™)
from D group by gender

an arbitrary list of m counting )
queries




Query sensitivity

The [, sensitivity of a query q, denoted Aq, is the maximum difference
in the result of that query on a pair of neighborinT databases

Ag =max , ,|¢(D)—g(D")

query q query sensitivity Aq

1 (disjoint groups, presence or
absence of one tuple impacts only one
of the counts)

select gender, count(™)
from D group by gender

m (no assumptions about the queries,
and so a single individual may change
the answer of every query by 1)

an arbitrary list of m counting
queries




Adding noise

RESPONDENTS (trusted) CURATOR  (untrusted) ANALYST

Privacy parameter €

Queries /

T Analysis
~— ﬁ/ Task
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I, N

“safe” answers:
/ true answers + noise

sensitive data items sensitive database
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Adding noise

Use the Laplace mechanism to answer g in a way that's
e-differentially private Ag
M(e):q(D)+ Lap| —
E

The Laplace distribution, centered at O with scale b, denoted
Lap(b), is the distribution with probability density function:

|

05 | | | u=0, Ib=1 :
H p:O’ D=2 —
0.4 p=0, b=4 =— _
p= 5, b=4 . M . " M
03 fix sensitivity Aq, verify that more
noise Is added for lower &
0.2 —
0.1 ' .
f : lower € = stronger privac *
0 41 J — ‘ * gerp y

-0 8 6 4 -2 0 2 4 6 8 10

https://en.wikipedia.org/wiki/Laplace_distribution m



Adding noise
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{—— Count(sex=Male, age=18) ©* s+ 202 45 8w

Ase

> true answer + noise(-3,3)

. Laplace noise centered at 0,
sensitive database in interval (-3,3) with 95% prob.

slide by Gerome Miklau




Query sensitivity

The [, sensitivity of a query q, denoted Aq, is the maximum difference
in the result of that query on a pair of neighborinT databases

Ag =max , ,|¢(D)—g(D")

query q query sensitivity Aq

parallel composition
1 (disjoint groups, presence or
absence of one tuple impacts only one
of the counts)

select gender, count(™)
from D group by gender

sequential composition

m (no assumptions about the queries,
and so a single individual may change
the answer of every query by 1)

an arbitrary list of m counting
queries




Sequential composition

e (Consider 4 queries executed in sequence
e (Q1: select count(*) from D under €1= 0.5
e (Q2: select count(*) from D where sex = Male under €2=0.2
e (Q3: select count(*) from D where sex = Female under £3= 0.25

e (Q4: select count(*) from D where age > 20 under £4=0.25

o c=¢g1+ &2+ &3+ &4=1.2 That is: all queries together are e-differentially
private for € =1.2. Can we make a stronger guarantee?

e This works because Laplace noise is additive

More generally: set a cumulative privacy budget, and split it between
all queries, pre-processing, other data manipulation steps of the pipeline




Parallel composition

e |[f the inputs are disjoint, then the result is e-differentially private for €
=max(&, ..., &)

e Q1:select count(*) from D under €1=0.5

Q2: select count(*) from D where sex = Male under 2= 0.2

()
()
()
()

Q3: select count(*) from D where sex = Female under €3=0.25

e (Q4: select count(*) from D where age > 20 under &4= 0.25

g =¢g1+ max(ez e3)+ £4=1 That is: all queries together are ¢-
differentially private for € =1.




Composition and consistency

e (Consider again 4 queries executed in sequence
e Q1:select count(*) from D under g7 = 0.5 returns 2005
e (Q2: select count(*) from D where sex = Male under €2= 0.2 returns 1001
e (3: select count(™) from D where sex = Female under €3= 0.25 returns 995

e (4. select count(*) from D where age > 20 under £4= 0.25 returns 1789

Assuming that there are 2 genders in D, Male and Female, there is no
database consistent with these statistics!

Also don’t want any negative counts + may want to impose datatype
checks, e.g., no working adults with age = 5 etc.




Entire workflow must be DP

(trusted) CURATOR (untrusted) ANALYST

e=1

<{—3 Data cleaning
<:I Feature selection

<{——— Regression

Me

——> Regression coefficients

sensitive database

slide by Gerome Miklau



Privacy-preserving synthetic data

(trusted) CURATOR  (untrusted) ANALYST

=1

e =1 :
: Give me
: the data!

<{— Cleaning
—> ¢ , Feature

selection

noisy table <1 Regression

sensitive database or “synthetic data”
or (at Census): “public-use microdata™

slide by Gerome Miklau
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DP synthetic data

Lots of advantages

e (Consistency is not an issue

e Analysts can treat synthetic data as a regular dataset, run existing tools
e No need to worry about the privacy budget

e (Can answer as many queries as they want, and any kind of a query
they want, including record-level queries

What’s the catch?

Recall the Fundamental Law of Information Recovery. It tells us that we
cannot answer all these queries accurately and still preserve privacy!

Therefore, when releasing synthetic data, we need to document it with which
queries it supports well




summary
Data | [&
Describer 9 max=60 mis , BOTE
length no
s B 10t0 98 mis
o
10% L e
sex strcat g 30 S
0
Data
before after
n=03 30940
. min= 020 ________ .
age Nt ox=60 mis , HEN E =
{ length  no Model £ =
str ) I —
AN 10t0 98 mis { Inspector =
B0 o O | o
10% o, | —— —ate—a
sex str cat mis s - - 30w &=
{ 0 0 i
| comparison | output

Data Synthesizer

[Ping, Stoyanovich, Howe 20717] http://demo.dataresponsibly.com/synthesizer/ r al



http://demo.dataresponsibly.com/synthesizer/

Data Synthesizer

e Main goal: usability first

e yser is the data owner |S+

e the tool picks up data types from the input file: categorical / string /
numerical (integer, float) / date-time

e the tool computes the frequency of missing values per attribute

e yser can then inspect the result, over-ride what was learned about an
attribute, e.g., whether it's categorical, or what its datatype Is

e The tool generates an output dataset of a specified size, in one of three modes
e random - type-consistent random output
e independent attribute - learn a noisy histogram for each attribute

e correlated attribute - learn a noisy Bayesian network (BN)

[Ping, Stoyanovich, Howe 20717] http://demo.dataresponsibly.com/synthesizer/ r al
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Data Synthesizer: Independent attributes

Given the over-all privacy budget €, and an input dataset of size n.
Allocate &/d of the budget to each attribute Aiin {Ay, .., Aa}. Then for

each attribute: d S+

e (Compute the ith histogram with t bins (=20 by default), with query qi

e The sensitivity Ag;of this (or any other) histogram query is 2/n Why?
2d
* 50, each bin’s noisy probability is computed by adding Lap(—j
En

£g6 In ongina dats a38 In synthabic oeta

Cist-h Son of age in onigira data = Mistribution of ace in synthatic. data =

[Ping, Stoyanovich, Howe 20717] http://demo.dataresponsibly.com/synthesizer/ r al
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Data Synthesizer: Correlated attributes

- Learn a differentially private Bayesian network (BN) | +

- Use the method called PrivBayes [Zhang, Cormode, Procopiuc, Srivastava, Xiao, 2016] |

* Privacy budget is split equally between (a) network structure computation and (b) S
populating the conditional probability tables of each BN node

« User inputs privacy budget € and the maximum number of parents for a BN node k - you'll
play with these settings as part of HW?2

* The tool treats a missing attribute value as one of the values in the attribute’s domain (not
shown in the examples in the next two slides)

Origiral dots Synkelic doka

Fainwiss Core alio Paiwise Corredationrs

[Ping, Stoyanovich, Howe 20717] http://demo.dataresponsibly.com/synthesizer/ r al



http://demo.dataresponsibly.com/synthesizer/

Data Synthesizer: Correlated attributes

K=1 not a causal DAG, a regular Bayesian network!

college non-college
[ edu J
0.23 0.77

edu female male

edu <30 30~50 >50 college | 0.30 0.70

college | 0.24  0.56  0.20 [ age J [ SeX J Cgﬁrelg_e 0.34  0.66

non-= 1 435  0.45 0.20 l

college

age <50K >50K

[income} <30 0.94 0.07
30~50 | 0.67 0.33

>50 | 0.68 0.32

[Ping, Stoyanovich, Howe 20717] http://demo.dataresponsibly.com/synthesizer/ r al
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Data Synthesizer: Correlated attributes

not a causal DAG, a regular Bayesian network! | +

K= 2 age sex college non-college S +

<30 female 0.18 0.82

female  male <30 male 0.16 0.84

033 067 [ Sex } 30~50  female 0.25 0.75

30~50 male 0.28 0.72

>50 female 0.17 0.83

>50 male 0.25 0.75

{ age H edu J

sex <30 30~50 >50 edu age <50K >50K

female | 0.40 0.43 0.17 \ / college == 0.8 o
male | 0.29 0.59 0.21

{ Income J college >50 0.41 0.59

non-college <30 0.96 0.04

non-college 30~50 0.76 0.24

non-college >50 0.75 0.25

[Ping, Stoyanovich, Howe 20717] http://demo.dataresponsibly.com/synthesizer/ r al
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NIST-MST: Tuning synthetic datasets

Queries
(Marginals)

Select
R o

Generate
_— e

Gaussian l
e ( Private-PGM
Mechanism p N

Noisy Marginals

Measure

Synthetic Data

Sensitive Data

General template (Section 4)

« Select a collection or marginal queries - manually or automatically

- Use the Gaussian mechanism to measure those marginals while preserving
differential privacy

 Post-process noisy marginals and generate synthetic data that respects them

[McKenna, Miklau, Sheldon 2027]  https://github.com/ryan112358/private-pgm/ r al
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NIST-MST: Marginals

- For a set of attributes C in €, a marginal, is a table that counts the number of occurrences
of each combination of possible values of these attributes. Marginals can be selected
manually by a domain expert or automatically.

- Marginals are measured in a DP manner; how epsilon is used can incorporate information
about their relative importance (specified as a weight wc).

SEX  LAEFORCE count SEX  LABFORCE| count sex rasrores| count . Gount (LABFORCE=N) is inconsistent in (b)
M 156 M 132428 M 124.529
M N 65 M N 124,540 M N | 121.696 124.549 + 318.029 = 442,578
M 316 M Y 244,365 M Y | 234.636
& 158 » 179,693 1 166.034 287.215 + 171.134 = 458.349
2 N 282 r N 318.029 3 N | a5
F 23 F Y ~21.358 3 Yy | 0 _ _ _
“LAEFORCE  SCHOOL count  LABFORCE  SCHOOL | vouni  LABFORCE scmool | et count (LABFORCE=N) is consistent in (c)
N 159 v TTh.021 v 10,1129
1BE Y 186,895 ¥ 150,834 121.696 + 315.177 = 436.873
N N 288 N N 287.215 N N | 276477
24 2 S ey \ A (6K 276.477 + 160.396 = 436.873
Y N 236 Y N 278 408 y v | 254.636
Y : 3 Y Y | —46.497 Y ¥ 0
() True mearginls (b) Noisy mergiuals (¢) Private-PGM muargin:ls

Better accuracy in (c) than in (b): L1(a, ¢) <L1(a, b)

[McKenna, Miklau, Sheldon 2027]  https://github.com/ryan112358/private-pgm/ r al
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NIST-MST: Selecting marginals

Which marginals should we select to be measured? Important, because which marginals we focus on
will determine which marginals will be preserved well in the synthetic data.

Marginal selection algorithm takes epsilon as input to determine weights wc to assign to the selected
marginals. It does not consume epsilon.

Summary of Algorithm 5

1. Construct complete graph G, where vertices i and j correspond to attributes,
and the weight of edge (/, )) is the mutual information (MIl) between /and j. Ml
measures a lack of independence between i and | by quantitying the difference

between the joint distribution of a pair of variables and to the product of their J;' ot
marginals.

2. Find the maximum spanning tree (MST) of G

4. Heuristically prune the MST to measure only highly correlated attributes

[McKenna, Miklau, Sheldon 2027]  https://github.com/ryan112358/private-pgm/ r al
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NIST-MST: Selecting marginals

- Which marginals should we select to be measured? Important, because which marginals we focus on
will determine which marginals will be preserved well in the synthetic data.

« Marginal selection algorithm takes epsilon as input to determine weights wc to assign to the selected
marginals. It does not consume epsilon.

Algorithm 6: Differentially private measurement selection
Input: D (sensitive dataset), log (measurements of l-way marginals), p (privacy parameter), C
{(initial set of (7, 1) pairs Lo mweasure; etnptly by defaull)
Outpurt: C (firal set of (i, ) pairs to measure)
(1) Use Frivata-PGM tn estimate all 2-way marginals AL,; from log

(2) Compute Ly error between estimated 2 way marginal and actual 2 way marginal for all 2, j:
4i;(D) = |[Mi;(D) — M;;

(3) Let G = (A,C) be the graph where attributes are vertices and edges are pairs of attributes

|l (this is a sensitivity 1 quantity)

~ o ~ 6

(4) Let r be the number of connected components in &G °
b Sp

(5) Ls. C = J" 1

(6) Repeat r — | times

() Let S be the set of all attribute pairs (7, j), where i and j are in different connected
cotnponerts of G

(8) Select attribute pair (2,7) by running the exponential mechanism with quality score function
qi;, on set § and privacy parameter .

(0) Add attribute pair (2,7) to C

[McKenna, Miklau, Sheldon 2027] https://github.com/ryan112358/private-pgm/
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Differential privacy in the field

CUnited States

ensus

ossssssm—— Bureau

v |

RESPONDENTS CURATOR || ANALYST
MmE  f o
L1 e

Decennial Census 2020

slide by Gerome Miklau



Differential privacy in the field

First adoption by the US Census Bureau:

OnTheMap (2008), synthetic data about where people in the US live and work

< A Y OnTreaty Y -+
. U S T B S SRR S T BT T 4 a ‘ i
1" e PO rugien: [0 B nsf oo » ™M DO KT N vxcge Lawram £ Cowr icotrux

| OnTheMap gl L

S B Nip focte Acvarced Lottt T5 Featars 4 Dt Dvae

L S
Y.
Frtniie: Powire !
, CONNEY Adverom ,,’
. Ot r

4

Carcm Adwoce
T

» s )
Crawieg Yook W s,
Aragateon .
Duma Prippen [Fundand,
Orpa Lne

D Puied 1)

ot Doams Bayw
Owe Sow. ¥t s
! ‘
= A g Dradhen 35 "nihy :\! e,

b Coloches Layse 3

« A3 340 1n Belscton B

# Oc N Sl ) b T
SruinUsy o L g el
facs s “
Ocrut
e Ao 1
(SN T O
Masrw
Swr tedn o
Gl Fadee o

.y /
* Y, {

= report Congrephy
st foer EAM
Lread b 0
IO e UGS

* dwase Dagesn




Differential privacy in the field

TheUpshot
To Reduce Privacy Risks, the Census Ehe New Hork Times
Plans to Report Less Accurate Data
Guaranteeing people’s confidentiality has become more of a By Mark Hansen

challenge, but some scholars worry that the new system will

Dec. 5, 2018

. ’:N AT the root of the problem are the tables of aggregate statistics that the
| 3“8" regau fsti :':'::: :
e NM

bureau publishes. There are hundreds of tables — sex by age, say, or

C Unitaq o ethnicity by race — summarizing the population at several levels of
en s uss geography, from areas the size of a city block &all the way up to the level
of a state or the nation. In 2010, the bureau released tables with nearly

eight billion numbers in all. Thal was aboul for each
;g;sdn liv!';gin the United StatE;;TéK'en thﬁiéh Americans were asked

== only 10 questions about themselves. In other words, the tables were
,dm“ generated in so many ways that the Census Bureau ended up releasing

IP_assm;..,"."f""""‘""Mw..;. more data in aggregate then it had collected in the first place.

A 3018 census test letter mailed to a resident in Providence, R.I. The pation's test run
of the 2020 Census is in Rhode Island. Micholle R, Sqaith) Assoctn ] Prisis




Reconstruction attack: an example

TABLE 1: FICTIONAL STATISTICAL DATA FOR A FICTIDNAL BLOCK

AGE
| STATISTIC  GROUP COUNT  MEDIAN | MEAN
1A total population ] 30 38
28 male 3 - an 44
e —— e e
e e s e s g
3A single adults D] (D] (D]
i e e

4A black or Afrlcan Amerncan female 3 36 36.7
4B black or Afrlcan Amerlcan male (D) (D] (D)

e o et R— [D][D][D]
. E— e i [ D] ............. [D][D] ......
5A persons under 5 years D) (D] (D]
e p Soston : nder181ears ................................. [ D] ............. [D][D] ......
e p erson564yearsorover .............................. [ D] .............. [D][D] ......

AR AR A R R Rl R L R R e R L L L R L A L R Ll L L A R A L L A A L R R A Ll R L L e R L ]

Note: Married persons must be 15 or over

[Garfinkel, Abowd and Martindale, ACM Queue 2018]




Reconstruction attack: an example

Let's assume that the oldest
person is 125 years old, and that 125
everyone’s age is different. How ( 3 ]: 317,750
many possible age combinations

are there” TABLE 2: POSSIBLE AGES FOR A MEDIAN OF 30 AND MEAN OF 44

O A B C A B C

. ] 1 30 101 1 30 91 21 30 B1
But only 40 comblnatlons R I T R IR TR A C R e PR A R R O S C R i b i

have median = 30 aNd = crnremicummmiemmmme o st s ey s g esesspens

Idea: extract all such
Constralnts’ rep.resent them --.u.......uu3-6u vv!§4‘ocvu'lvoc ."18 "“:;6"‘ 84--.»-..«---..«-;5-5" :‘3.6."'.;&"". .
aS a mathematlcal model’ B A B S B S A 8 A DA SO B AR D e e b B SO ha A BTGNS AR R AN R AIEe B R

have an automated Solver .o ..ib. .3.0.. ....9.2.. semisaasrres ....20 .30 ...éz.. serasrmre ..3.6. 3..0 ...72....
flnd a Soluthn RO BE06D S4INEH 0L HOUS B0 9440 SYPUIHR 04 HEGHD DIDIIEE 064 1004 B4 44444 TN SH46 HEN PR AT AN LA HHU ORI AATIA SPEH IO ET SO

[Garfinkel, Abowd and Martindale, ACM Queue 2018]




What does the law say?

Title 13 of U.S. Code authorizes data collection and publication of statistics
by the Census Bureau.

Section 9 of Title 13 requires privacy protections: “Neither the Secretary, nor
any other officer or employee of the Department of Commerce or bureau or
agency thereof, ... may ... make any publication whereby the data
furnished by any particular establishment or individual under this title
can be identified” (Title 13 U.5.C. § 9(a)(2), Public Law 87-813).

In 2002, Congress further clarified the concept of identifiable data: it is
prohibited to publish “any representation of information that permits the
identity of the respondent to whom the information applies to be
reasonably inferred by either direct or indirect means” (Pub. L. 107-347,
Title V, §502 (4), Dec. 17, 2002, 116 Stat. 2969).

Section 214 of Title 13 outlines penalties: fines up to $5,000 or imprisonment
up to 5 years or both per incident (data item), up to $250,000 in total.




DP in the 2020 Census: pushback

MINNESOTA FOPULATION CENITER

LNIVERSITY OF MINNESOTA

Implications of Differcntial Privacy for Census Burcau

Data and Research

Task Force on Differential Privacy for Census Data
Institute for Social Research and Data Innovation (ISRDI)
University of Minnesota

November 2018
Version 2
Working Paper No. 2018-6

noisy data - impact on critical
decisions

difficult to explain differential privacy /
privacy budget to the public - how do
we set epsilon?

disagreement about whether using
differential privacy is legally required

messaging is difficult to get right “the
result doesn’t change whether or not
you participate” - might discourage
participation!

Revealing characteristics of individuals vs. their identity, is there a distinction?

But the Census collects “generic” harmless data, is this really a big deal?

What sorts of trade-offs should we be aware of? Who should decide?
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The Strava Heat Map

SECURITY  JAN 20, 2310 T3¢ '

The Strava Heat Map and the End of Secrets

The US military is reexamining security policies after fitness tracker data shared on social media revealed bases and patrol routes

Nathan Ruser £
@NrgB000

"Over the weekend, researchers and journalists raised the alarm about how -

. . . . Strava raleasad their glabal heatmap. 13 trillion GPS
anyone can identify secretive military bases and patrol routes based on points from their users (turning off data sharing is an
public data shared by a “social network for athletes” called Strava. OPLT): INSERENSANTYSRE- ST, | 00

very pretty, hut not amazing for Op-Sec. US Bases
are clearly identifiable and mappable

This past November, the San Francisco-based Strava announced a huge
update to its global heat map of user activity that displays 1 billion activities—
including running and cycling routes—undertaken by exercise enthusiasts
wearing Fitbits or other wearable fitness trackers. [...]

But the biggest danger may come from potential adversaries figuring out
“patterns of life,” by tracking and even identifying military or intelligence
agency personnel as they go about their duties or head home after

C . . . oo 124 PM  Jan 27 2018 (3
deployment. These digital footprints that echo the real-life steps of individuals o ' -
. - . Read the Tu'l coniversation on T Lter
underscore a greater challenge to governments and ordinary citizens alike:
each person’s connection to online services and personal devices makes it~ */ #¢ & feslr & Cory ko Tueet

increasingly difficult to keep secrets.” tead 132 replies




Is genetic data your own?

We will find you: DNA search used to nab Golden
State Killer can home in on about 60% of white
Americans

Researchers call for limiting how ancestry databases can be used to protect privacy

If you're white, live in the United States, and a distant relative has uploaded their DNA to a public ancestry
database, there's a good chance an internet sleuth can identify you from a DNA sample you left
somewhere. That's the conclusion of a new study, which finds that by combining an anonymous DNA sample
with some basic information such as someone's rough age, researchers could narrow that person's identity
to fewer than 20 people by starting with a DNA database of 1.3 million individuals. [...]

The study was sparked by the April arrest of the alleged "Golden State Killer," a California man accused of
a series of decades-old rapes and murders. To find him—and more than a dozen other criminal suspects
since then—Ilaw enforcement agencies first test a crime scene DNA sample, which could be old blood, hair, or
semen, for hundreds of thousands of DNA markers—signposts along the genome that vary among people, but
whose identity in many cases are shared with blood relatives. They then upload the DNA data to GEDmatch, a
free online database where anyone can share their data from consumer DNA testing companies such as
23andMe and Ancestry.com to search for relatives who have submitted their DNA. Searching GEDMatch's
nearly 1 million profiles revealed several relatives who were the equivalent to third cousins to the crime scene
DNA linked to the Golden State Killer. Other information such as genealogical records, approximate age, and
crime locations then allowed the sleuths to home in on a single person.

https://www.science.org/content/article/we-will-find-you-dna-search-used- r al
nab-golden-state-killer-can-home-about-60-white
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data protection
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Barrow, Alaska, 1979

Native leaders and city officials, worried about drinking
and associated violence in their community, invited a
group of sociology researchers to assess the problem
and work with them to devise solutions.

Methodology:
e 10% representative sample (N=88) of everyone over the

age of 15 using a 1972 demographic survey
¢ [nterviewed on attitudes and values about use of alcohol
e Obtained psychological histories & drinking behavior
e Given the Michigan Alcoholism Screening Test
e Asked to draw a picture of a person (to determine cultural
identity)

based on a slide by Bill Howe




Study “results”

Alcohol Plagues Eskimos; Alcoholism Plagues Eskimo
Village

DAVA SOBEL ();
January 22, 1980,

, Section Science Times, Page C1, Column , words [E) PERMISSIONS

[ DISPLAYING ABSTRACT ]

THE Inupiat Eskimos of Alaska's North Slope, whose culture has been overwhelmed by
energy development activities, are "practically committing suicide" by mass alcoholism,
University of Pennsylvania researchers said here yesterday. The alcoholism rate is 72

percent among the 2,000 Eskimo men and women in the village of Barrow, where violence
is becoming the ...

At the conclusion of the study researchers formulated a report entitled “The
Inupiat, Economics and Alcohol on the Alaskan North Slope”, released
simultaneously at a press release and to the Barrow community.

The press release was picked up by the New York Times, who ran a front page
story entitled “Alcohol Plagues Eskimos”

based on a slide by Bill Howe




Harms and backlash

Article Preview

Eskimos Irate Over Alcoholism Study

[ DISPLAYING ABSTRACT ]

BARROW, ALASKA HOT tempers and tension arising from a [E PERMISSIONS
scientific report that found a high rate of alcoholism in this

predominantly Eskimo community have abated somewhat after two days of meetings here
at the northernmost point of Alaska.

Study results were revealed in the context of a press conference that was held
far from the Native village, and without the presence, much less the knowledge
or consent, of any community member who might have been able to present any
context concerning the socioeconomic conditions of the village.

Study results suggested that nearly all adults in the community were
alcoholics. In addition to the shame felt by community members, the town’s
Standard and Poor bond rating suffered as a result, which in turn decreased the
tribe’s ability to secure funding for much needed projects.

based on a slide by Bill Howe




Problems

Edward F. Foulks, M.D., “Misalliances In The Barrow Alcohol Study”

Methodological

e “The authors once again met with the Barrow Technical Advisory Group, who stated
their concern that only Natives were studied, and that outsiders in town had not been
iIncluded.”

e “The estimates of the frequency of intoxication based on association with the
probability of being detained were termed "ludicrous, both logically and statistically.”

Ethical

e Participants not in control of how their data is used
e Significant harm: social (stigmatization) and financial (bond rating)

can differential privacy help with this?

based on a slide by Bill Howe
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Responsible Data Science
Anonymity and privacy

Thank you!
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