Responsible Data Science

The data science lifecycle

February 27 \& March 6, 2023

Prof. Julia Stoyanovich

Center for Data Science \&
Computer Science and Engineering
New York University

OF ENGINEERING

This week's reading

contributed articles ®
Responsible
Data
Management

 ane we au:oms iny and whyw it the cetem workizs
as intendedt Are there any uaforescen ensequences

 sitems bocs not roy when they are deploged.

INDETAIL

To predict and serve?

Profliuz relational data: a survey

givin dubuct in an irestant and twquest activity if arp 	1 Bata prefliog firiey notatis
	atio
	inta
Noser	
 tived dethow	
	+
	weror Axiutecompt imaty authe
	-
20 nownew	
	row
	temer

Recall: Bias in computer systems

Pre-existing is independent of an algorithm and has origins in society

Technical is introduced or exacerbated by the technical properties of an ADS

Emergent arises due to context of use

The "last-mile" view of responsible AI

Data lifecycle of an ADS

Understand your data!

CRA

Computing Research
Association
"Given the heterogeneity of the flood of data, it is not enough merely to record it and throw it into a repository. Consider, for example, data from a range of scientific experiments. If we just have a bunch of data sets in a repository, it is unlikely anyone will ever be able to find, let alone reuse, any of this data. With adequate metadata, there is some hope, but even so, challenges will remain due to differences in experimental details and in data record structure."

Understand your data!

2.2 Big data

In the analog age, most of the data that were used for social research was created for the purpose of doing research. In the digital age, however, a huge amount of data is being created by companies and governments for purposes other than research, such as providing services, generating profit, and administering laws. Creative people, however, have realized that you can repurpose this corporate and government data for research.

Understand your data!

2.2 Big data

... from the perspective of researchers, big data sources are "found," they don't just fall from the sky. Instead, data sources that are "found" by researchers are designed by someone for some purpose. Because "found" data are designed by someone, I always recommend that you try to understand as much as possible about the people and processes that created your data.

Understand your data!

Need metadata to:

- enable data re-use (have to be able to find it!)
- determine fitness for use of a dataset in a task
- help establish trust in the data analysis process and its outcomes

Data is considered to be of high quality if it's "fit for intended uses in operations, decision making and planning"
[Thomas C. Redman, "Data Driven: Profiting from Your Most Important Business Asset." 2013]

NYC Open Data

Mre OpenData

Open Data for All New Yorkers

Open Data is free public data published by New York City agencies and other partners. Share your work during Open Data Week 2022 or sign up for the NYC Open Data mailing list to learn about training opportunities and upcoming events.

Leern about the next decade of NYC Dpen Data and read our 2001 Report

Search Open Data for things like 311, Buildings, Crime

How You Can Get Involved

New to Open Deta Learn suat cats la and new to got starnod wet oun How

Date Voterans hiere detals on Open Data afls.

Get in Touch Ast a question, leaven a conment, 3 sugpost a dataset to me NYC Poan Dratsam.

Dive into the Data Aleat/s cnow what yoitre hotieg lor Hiowsetrodal: ectalen now.

Discover NYC Data

Datasets by Agency Seach dra by the ciey somery it comas fram.

Datasets by Category Gearch data by categorises such as Eusiress. EJucaton, and Emponem

New Datasets Newrecertly publisted carnsers on the dara catabc.

Popular Datasets Viere some of the mast pecpilar datisents on the data
https://opendata.cityofnewyork.us/

NYC Open Data

SAT (College Board) 2010 School Level Results

New York City school level College Board SAT results for the graduating seniors of 2010.
Records contain 2010 College-bound seniors mean SAT scores. summary

Records with 5 or fewer students are suppressed (marked 's').

Dataset
freshness

Updated

April 25, 2019
Views
28,463
popularity

College-bound seniors are those students that complete the SAT Questionnaire when they register for the SAT and identify that they will graduate from high school in a specific year. For example, the 2010 college-bound seniors are those students that self-reported they would graduate in 2010. Students are not required to complete the SAT Questionnaire in order to register for the SAT. Students who do not indicate which year they will graduate from high school will not be included in any college-bound senior report.

Students are linked to schools by identifying which school they attend when registering for a College Board exam. A student is only included in a school's report if he/she self-reports being enrolled at that school.


```
Tags No tags assignea

\section*{NYC Open Data}

\section*{About this Dataset}

\section*{Updated}

April 25, 2019
\begin{tabular}{ll} 
Data Last Updated & Metadata Last Updated \\
February 29, 2012 & April 25, 2019
\end{tabular}

\section*{Date Created}

October 6, 2011
\(\begin{array}{ll}\text { Views } & \text { Downloads } \\ 28.5 \mathrm{~K} & 48.4 \mathrm{~K}\end{array}\)

Data Provided by
Department of Education (DOE)

Update
\begin{tabular}{ll} 
Update Frequency & Historical Data \\
Automation & No \\
Date Made Public & \(10 / 11 / 2011\)
\end{tabular}

Dataset Information

Agency
Department of Education (DOE)

Attachments
© SAT Data Dictionary.xisx

Topics
\begin{tabular}{ll} 
Category & Education \\
\hline Tags & This datoset does not have any tags \\
\hline
\end{tabular}
https://opendata.cityofnewyork.us/
center
for
responsible
ai

\section*{NYC Open Data}

What's in this Dataset?
\begin{tabular}{ll} 
Rows & Columns \\
460 & 6
\end{tabular}

Columns in this Dataset
\begin{tabular}{|c|c|c|c|c|}
\hline Columin Name & Desuriph on & \multicolumn{3}{|l|}{Type} \\
\hline DBN & & Plain Text & T & \(\checkmark\) \\
\hline School Name & & Plain Text & T & \(\checkmark\) \\
\hline Number of Test Takers & & Number & \# & \(\checkmark\) \\
\hline Critical Reading Mean & & Number & \# & \(\checkmark\) \\
\hline Mathematies Mean & & Number & \# & \(\checkmark\) \\
\hline Writing Mean & & Number & \# & \(v\) \\
\hline
\end{tabular}
https://opendata.cityofnewyork.us/

\section*{NYC Open Data}

What's in this Dataset?
\begin{tabular}{ll} 
Rows & Columns \\
460 & 6
\end{tabular}

Columns in this Dataset
\begin{tabular}{|c|c|c|c|c|}
\hline Columin Name & Desuriph on & \multicolumn{3}{|l|}{Type} \\
\hline DBN & & Plain Text & T & \(\checkmark\) \\
\hline School Name & & Plain Text & T & \(\checkmark\) \\
\hline Number of Test Takers & & Number & \# & \(\checkmark\) \\
\hline Critical Reading Mean & & Number & \# & \(\checkmark\) \\
\hline Mathematies Mean & & Number & \# & \(\checkmark\) \\
\hline Writing Mean & & Number & \# & \(v\) \\
\hline
\end{tabular}
https://opendata.cityofnewyork.us/

\section*{NYC Open Data}

https://opendata.cityofnewyork.us/

\section*{Data profiling}
- Data profiling refers to the activity of creating small but informative summaries of a database
- What is informative depends on the task, or set of tasks, we have in mind
should profiling be task-agnostic or task-specific?

A related activity is data cleaning

\section*{Data cleaning}


Data cleansing or data cleaning is the process of detecting and repairing corrupt or inaccurate records from a data set in order to improve the quallity of data.

Erhard Rahm, Hong Hai Do: Data Cleaning: Problems and Current
Approaches, IEEE Data Engineering Bulletin, 2000 .

... data is generally considered high quality if it is "fit for [its] intended uses in operations, decision making and planning"

Thomas C. Redman, Data Driven: Profiting from Your Most Important Business Asset. 2013


Even though quality cannot be defined, you know what it is. Robert M. Prisig, Zen and the Art of Motorcycle Maintenance, 1975

\section*{Data cleaning}

\section*{Forbes}

\section*{Cleaning Big Data: Most TimeConsuming, Least Enjoyable Data Science Task, Survey Says \\  \\ Gil Press contrlbutor 0 \\ I write aiout techaologh, entrepareteirs and innowntion.}


What data scientists spend the most time doing
- Builaing troining sets; 3\%
- Clearirgand organizing data. 60\%
- Collecting dotasets 19\%
- Mining dute for pottems: 9\%
- Refiningalgovitions. 4\%
- Other \(5 \%\)
- Bullding training sets: \(10 \%\).
- Cleaning and orgenizing data: 57\%:
- Collerting doto sets.218
- Mining data for patterns \(3 \%\)
- Refining olgorithms. 4\%

Find least enjoyable
Collecting data (21\%) Cleaning and organizing data (57\%)
Spend most time doing
Collecting data (19\%) Cleaning and organizing data (60\%)
- Other: \(5 \%\)

-

\section*{data profiling}
r/ai
center
for
responsible

\section*{DB (databases) vs DS (data science)}
\begin{tabular}{ll} 
& \begin{tabular}{l} 
IDEAL \\
PERFECT \\
CAT
\end{tabular} \\
& \\
IMPERFECT
\end{tabular}
https://midnightmediamusings.wordpress.com/ 2014/07/01/plato-and-the-theory-of-forms/
- DB: start with the schema, admit only data that fits; iterative refinement is possible, and common, but we are still schema-first
- DS: start with the data, figure out what schema it fits, or almost fits reasons of usability, repurposing, low start-up cost
the "right" approach is somewhere between these two, data profiling aims to bridge between the two world views / methodologies
[Abedjan, Golab \& Naumann (2017)]

\section*{Data profiling}

[Abedjan, Golab \& Naumann (2017)]

\section*{An alternative classification}

- To help understand the statistics, we look at value ranges, data types, value distributions per column or across columns, etc
- To help understand the structure - the (business) rules that generated the data - we look at unique columns / column combinations, dependencies between columns, etc - reverse-engineer the relational schema of the data we have
- We need both statistics and structure, they are mutually-reinforcing, and help us understand the semantics of the data - it's meaning

\section*{Data profiling}

responsible

\section*{Single column: cardinalities, data types}
- cardinality of relation \(\mathbf{R}\) - number of rows
- domain cardinality of a column R.a - number of distinct values
- attribute value length: min, max, average, median
- basic data type: string, numeric, date, time, ....
- number of percentage of null values of a given attribute
- regular expressions
- semantic domain: SSN, phone number
- ....

\section*{NYC Open Data}

https://opendata.cityofnewyork.us/

\section*{The trouble with null values}
```

THEGOL
A TABASE
LANGUAGE

```

\section*{C.J. Date}

FO Box 2647, Garatoqa California 95070 , USA

\section*{* Nu11 V키느농}

December 1983
I have argued against null values at length elsewhere [6], and I will not repeat those arguments here. In my opinion the null value concept is far more trouble than it is worth. Certainly it has never been properly thought through in the existing SQL 1mprementavions (see the arsctussion uncer Lack of or thogonality: Miscellaneous Items", earlier). For example, the fact that functions such as AVG simply ignore null values in their argument violates what should surely be a fundamental principle, viz: The System should never produce a (spuriously) precise answer to a query when the data involved in that query is itself imprecise. At least the system should offer the user the explicit option either to ignore nulls or to treat their presence as an exception.

\section*{50 shades of null}
- Unknown - some value definitely belongs here, but I don't know what it is (e.g., unknown birthdate)
- Inapplicable - no value makes sense here (e.g., if marital status = single then spouse name should not have a value)
- Unintentionally omitted - values is left unspecified unintentionally, by mistake
- Optional - a value may legitimately be left unspecified (e.g., middle name)
- Intentionally withheld (e.g., an unlisted phone number)
- .....
(this selection is mine, see reference below for a slightly different list) https://www.vertabelo.com/blog/technical-articles/50-shades-of-null-or-how-a-billion-dollar-mistake-has-been-stalking-a-whole-industry-for-decades

\section*{50 shades of null... and it gets worse}
- Hidden missing values -
- 99999 for zip code, Alabama for state
- need data cleaning....
- lots of houses in Philadelphia, PA were built in 1934 (or 1936?) - not really!
how do we detect hidden missing values?

\section*{Single column: cardinalities, data types}
- cardinality of relation \(\mathbf{R}\) - number of rows
- domain cardinality of a column R.a - number of distinct values
- attribute value length: min, max, average, median
- basic data type: string, numeric, date, time, ....
- number of percentage of null values of a given attribute
- regular expressions
- semantic domain: SSN, phone number
- ....
[Abedjan, Golab \& Naumann (2015)]

\section*{Regular expressions}
- some attributes will have values that follow a regular format, e.g, telephone numbers: 212-864-0355 or (212) 864-0355 or 1.212.864-0355
- we may want to identify a small set of regular expressions that match all (or most) values in a column
- challenging - very many possibilities!

A regular expression, regex or regexp ... is a sequence of characters that define a search pattern. Usually this pattern is used by string searching algorithms for "find" or "find and
 replace" operations on strings, or for input validation. It is a technique that developed in theoretical computer science and formal language theory.

\section*{Inferring regular expressions}
- we may want to identify a small set of regular expressions that match all (or most) values in a column
\begin{tabular}{|l|}
\hline telephone \\
\hline\((201) \quad 368-1000\) \\
\hline\((201) 373-9599\) \\
\hline\((718) \quad 206-1088\) \\
\hline\((718) \quad 206-1121\) \\
\hline\((718) \quad 206-1420\) \\
\hline\((718) \quad 206-4420\) \\
\hline\((718) \quad 206-4481\) \\
\hline\((718) \quad 262-9072\) \\
\hline\((718)\) \\
\hline\((718)\) \\
\hline\((814)\) \\
\hline
\end{tabular}\(\quad 686-206-05450\)

\section*{Example Regular Expression Language}

Matches any character
abc Sequence of characters
[ abc ] Matches any of the characters inside [ ]
* Previous character matched zero or more times
? Previous character matched zero or one time
\{m\} Exactly \(\mathbf{m}\) repetitions of previous character
\(\wedge \quad\) Matches beginning of a line
\$ Matches end of a line
ld Matches any decimal digit
Is Matches any whitespace character
lw Matches any alphanumeric character
```

800-624-4143

```

\section*{Oakham's razor}

\section*{Lex parsimoniae}

If multiple hypotheses explain an observation, the simplest one should be preferred.

Ockham's motivation: can one prove the existence of God?
Used as a heuristic to help identify a promising hypothesis to test
Many applications today: biology, probability theory, ethics - also good for inferring regular expressions :)


William of Ockham (1285-1347)

\section*{Inferring regular expressions}

\section*{Simple Algorithm}
(1) Group values by length
(2) Find pattern for each group
- Ignore small groups
- Find most specific character at each position
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline\((\) & 2 & 0 & 1 & \()\) & & 3 & 6 & 8 & - & 1 & 0 & 0 & 0 \\
\hline \hline\((\) & 2 & 0 & 1 & \()\) & & 2 & 0 & 6 & - & 1 & 0 & 8 & 8 \\
\hline \hline\((\) & 7 & 1 & 8 & \()\) & & 2 & 0 & 6 & - & 1 & 1 & 2 & 1 \\
\hline \hline\((\) & 7 & 1 & 8 & \()\) & & 2 & 0 & 6 & - & 1 & 4 & 2 & 0 \\
\hline \hline\((\) & 7 & 1 & 8 & \()\) & & 2 & 0 & 6 & - & 4 & 4 & 2 & 0 \\
\hline \hline\((\) & 7 & 1 & 8 & \()\) & & 2 & 0 & 6 & - & 4 & 4 & 8 & 1 \\
\hline \hline\((\) & 7 & 1 & 8 & \()\) & & 2 & 6 & 2 & - & 9 & 0 & 7 & 2 \\
\hline \hline\((\) & 7 & 1 & 8 & \()\) & & 8 & 6 & 8 & - & 2 & 3 & 0 & 0 \\
\hline \hline\((\) & 7 & 1 & 8 & \()\) & & 2 & 0 & 6 & - & 0 & 5 & 4 & 5 \\
\hline \hline\((\) & 8 & 1 & 4 & \()\) & & 6 & 8 & 1 & - & 6 & 2 & 0 & 0 \\
\hline \hline\((\) & 8 & 8 & 8 & \()\) & & 8 & \(N\) & \(Y\) & \(C\) & - & \(T\) & \(R\) & \(S\) \\
\hline \hline\((\) & ld & ld & ld & \()\) & & Id & lw & lw &. &. & lw & lw & Iw \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline telephone \\
\hline 800-624-4143 \\
\hline (201) 373-9599 \\
\hline (201) 368-1000 \\
\hline (718) 206-1088 \\
\hline (718) 206-1121 \\
\hline (718) 206-1420 \\
\hline (718) 206-4420 \\
\hline (718) 206-4481 \\
\hline (718) 262-9072 \\
\hline (718) 868-2300 \\
\hline (718) 206-0545 \\
\hline (814) 681-6200 \\
\hline (888) 8NYC-TRS \\
\hline
\end{tabular}

\section*{Inferring regular expressions}

\section*{Simple Algorithm}
(1) Group values by length
(2) Find pattern for each group
- Ignore small groups
- Find most specific character at each position
ignoring small groups: alternatives?
\((\backslash d\{3\}) \backslash d \backslash w\{2\} \cdot\{2\} \backslash w\{3\}\)
based on a slide by Heiko Mueller

\section*{Single column: basic stats, distributions}
- min, max, average, median value of R.a
- histogram
- equi-width - (approximately) the same number of distinct values in each bucket (e.g., age broken down into 5-year windows)
- equi-depth (approximately) the same number of tuples in each bucket
- biased histograms use different granularities for different parts of the value range to provide better accuracy
- quartiles - three points that divide the numeric values into four equal groups - a kind of an equi-depth histogram
- first digit - distribution of first digit in numeric values, to check Benford law

\section*{The well-chosen average}


\section*{Howy Tod WIV WHIT STANISNCS Darrell Hufi Illustrated by Irving Geis}


Over Half a Million Copies SoldAn Honest to Goodness Bestseller

\section*{Is my data biased? (histograms + geo)}


Estimated number of drug users, based on 2011 National Survey on Drug Use and Health, in Oakland, CA


Estimated drug use by race

\section*{Is my data biased? (histograms + geo)}


Number of days with targeted policing for drug crimes in areas flagged by PredPol analysis of Oakland, CA, police data for 2011


Targeted policing for drug crimes by race
[Lum \& Isaac (2016)]

\section*{Is my data biased? (histograms + geo)}


Number of drug arrests made by the Oakland, CA, police department in 2010


\footnotetext{
[Lum \& Isaac (2016)]
}

\section*{Benford Law}

The distribution of the first digit \(\mathbf{d}\) of a number, in many naturally occurring domains, approximately follows

https://en.wikipedia.org/wiki/Benford\%27s_law
\[
P(d)=\log _{10}\left(1+\frac{1}{d}\right)
\]

1 is the most frequent leading digit, followed by 2 , etc.
[Benford: "The law of anomalous numbers" Proc. Am. Philos. Soc., 1938]

\section*{Benford Law}

The distribution of the first digit \(\mathbf{d}\) of a number, in many naturally occurring domains, approximately follows
\[
P(d)=\log _{10}\left(1+\frac{1}{d}\right)
\]

Holds if \(\log (x)\) is uniformly distributed. Most accurate when values are distributed across multiple orders of magnitude, especially if the process generating the numbers is described by a power law (common in nature)


A logarithmic scale bar. Picking a random \(\times\) position uniformly on this number line, roughly \(30 \%\) of the time the first digit of the number will be 1 .
https://en.wikipedia.org/wiki/Benford\%27s_law
[Benford: "The law of anomalous numbers" Proc. Am. Philos. Soc., 1938]

\section*{Examples of Benford Law}
- surface area of 355 rivers
- sizes of 3,259 US populations
- 104 physical constants
- 1,800 molecular weights
- 308 numbers contained in an issue of Reader's Digest
- Street addresses of the first 342 persons listed in American Men of Science

physical constants

\section*{used in fraud detection!}
[Abedjan, Golab \& Naumann (2015)]

\section*{Data profiling}

[Abedjan, Golab \& Naumann (2015)]

\section*{An alternative classification}

- To help understand the statistics, we look at value ranges, data types, value distributions per column or across columns, etc
- To help understand the structure - the (business) rules that generated the data - we look at unique columns / column combinations, dependencies between columns, etc - reverse-engineer the relational schema of the data we have
- We need both statistics and structure, they are mutually-reinforcing, and help us understand the semantics of the data - it's meaning

\section*{discovering uniques}

\author{
r/ai wime
}

\section*{Discovering uniques}

Given a relation schema \(\boldsymbol{R}(A, B, C, D)\) and a relation instance \(\boldsymbol{r}\), a unique column combination (or a "unique" for short) is a set of attributes \(\boldsymbol{X}\) whose projection contains no duplicates in \(\boldsymbol{r}\)
\begin{tabular}{l|l|l|l|}
\multicolumn{4}{|c|}{ Episodes(season,num,title, viewers) } \\
season & num & title & viewers \\
\hline 1 & 1 & Winter is Coming & 2.2 M \\
\hline 1 & 2 & The Kingsroad & 2.2 M \\
2 & 1 & The North Remembers & 3.9 M
\end{tabular}

Projection is a relational algebra operation that takes as input relation \(\boldsymbol{R}\) and returns a new relation \(\boldsymbol{R}\) ' with a subset of the columns of \(\boldsymbol{R}\).
\begin{tabular}{|c|c|c|c|}
\hline \(\pi_{\text {season }}(\) Episodes \()\) & \(\pi_{\text {season,num }}\) & Episodes) & \(\pi_{\text {title }}(\) Episodes \()\) \\
\hline season & season & num & title \\
\hline 1 & 1 & 1 & Winter is Coming \\
\hline 1 non-unique & 1 & 2 unique & The Kingsroad unique \\
\hline 2 & 2 & 1 & The North Remembers \\
\hline
\end{tabular}

\section*{Discovering uniques}

Given a relation schema \(\boldsymbol{R}(A, B, C, D)\) and a relation instance \(\boldsymbol{r}\), a unique column combination (or a "unique" for short) is a set of attributes \(\boldsymbol{X}\) whose projection contains no duplicates in \(\boldsymbol{r}\)
\begin{tabular}{l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Episodes(season, num, title, viewers) } \\
\hline season & num & title & viewers \\
\hline 1 & 1 & Winter is Coming & 2.2 M \\
\hline 1 & 2 & The Kingsroad & 2.2 M \\
\hline 2 & 1 & The North Remembers & 3.9 M
\end{tabular}

Projection is a relational algebra operation that takes as input relation \(\boldsymbol{R}\) and returns a new relation \(\boldsymbol{R}\) ' with a subset of the columns of \(\boldsymbol{R}\).
- Recall that more than one set of attributes \(\mathbf{X}\) may be unique
- It may be the case that \(\mathbf{X}\) and \(\mathbf{Y}\) are both unique, and that they are not disjoint. When is this interesting?

\section*{Discovering uniques}
\(R(A, B, C, D)\) attribute lattice of \(\boldsymbol{R}\)

\[
\begin{aligned}
& \binom{4}{4}=1 \\
& \binom{4}{3}=4 \\
& \binom{4}{2}=6 \\
& \binom{4}{1}=4
\end{aligned}
\]

What's the size of the attribute lattice of \(\boldsymbol{R}\) ?
Look at all attribute combinations?

\section*{Discovering uniques}

R (A, B, C, D) attribute lattice of \(R\)

- If \(\mathbf{X}\) is unique, then what can we say about its superset \(\mathbf{Y}\) ?
- If \(\mathbf{X}\) is non-unique, then what can we say about its subset \(\mathbf{Z}\) ?

\section*{Discovering uniques}

Given a relation schema \(\boldsymbol{R}(A, B, C, D)\) and a relation instance \(\boldsymbol{r}\), a unique column combination (or a "unique" for short) is a set of attributes \(\boldsymbol{X}\) whose projection contains no duplicates in \(\boldsymbol{r}\)

Given a relation schema \(\boldsymbol{R}(A, B, C, D)\) and a relation instance \(\boldsymbol{r}\), a set of attributes \(\boldsymbol{Y}\) is non-unique if its projection contains duplicates in \(\boldsymbol{r}\)
\(\boldsymbol{X}\) is minimal unique if every subset \(\boldsymbol{Y}\) of \(\boldsymbol{X}\) is non-unique
\(\boldsymbol{Y}\) is maximal non-unique if every superset \(\boldsymbol{X}\) of \(\boldsymbol{Y}\) is unique


\section*{From uniques to candidate keys}

Given a relation schema \(\boldsymbol{R}(A, B, C, D)\) and a relation instance \(\boldsymbol{r}\), a unique column combination is a set of attributes \(\boldsymbol{X}\) whose projection contains no duplicates in \(\boldsymbol{r}\)
\begin{tabular}{l|l|l|l|}
\multicolumn{4}{|c|}{ Episodes(season, num, title, viewers) } \\
season & num & title & viewers \\
\hline 1 & 1 & Winter is Coming & 2.2 M \\
\hline 1 & 2 & The Kingsroad & 2.2 M \\
2 & 1 & The North Remembers & 3.9 M
\end{tabular}

A set of attributes is a candidate key for a relation if:
(1) no two distinct tuples can have the same values for all key attributes (candidate key uniquely identifies a tuple), and
(2) this is not true for any subset of the key attributes (candidate key is minimal)

A minimal unique of a relation instance is a (possible) candidate key of the relation schema. To find all possible candidate keys, find all minimal uniques in a relation instance.

\title{
association rule mining
}

\section*{The early days of data mining}
- Problem formulation due to Agrawal, Imielinski, Swami, SIGMOD 1993
- Solution: the Apriori algorithm by Agrawal \& Srikant, VLDB 1994
- Initially for market-basket data analysis, has many other applications, we'll see one today
- We wish to answer two related questions:
- Frequent itemsets: Which items are often purchased together, e.g., milk and cookies are often bought together
- Association rules: Which items will likely be purchased, based on other purchased items, e.g., if diapers are bought in a transaction, beer is also likely bought in the same transaction

\section*{Market-basket data}
- \(\boldsymbol{I}=\left\{\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \ldots, \boldsymbol{i}_{\boldsymbol{m}}\right\}\) is the set of available items, e.g., a product catalog of a store
- \(\boldsymbol{X} \subseteq I\) is an itemset, e.g., \(\{\) milk, bread, cereal\}
- Transaction \(\boldsymbol{t}\) is a set of items purchased together, \(\boldsymbol{t} \subseteq \boldsymbol{I}\), has a transaction id (TID)
\[
\boldsymbol{t}_{\boldsymbol{1}}:\{\text { bread, cheese, milk }\}
\]
\(\boldsymbol{t}_{2}\) : \{apple, eggs, salt, yogurt\}
\(\boldsymbol{t}_{3}\) : \{biscuit, cheese, eggs, milk\}
- Database \(\boldsymbol{T}\) is a set of transactions \(\left\{\boldsymbol{t}_{1}, \boldsymbol{t}_{\boldsymbol{2}}, \ldots, \boldsymbol{t}_{n}\right\}\)
- A transaction \(\boldsymbol{t}\) supports an itemset \(\boldsymbol{X}\) if \(\boldsymbol{X} \subseteq \boldsymbol{t}\)
- Itemsets supported by at least minSupp transactions are called frequent itemsets
minSupp, which can be a number or a percentage, is specified by the user

\section*{Itemsets}
\begin{tabular}{|cc|}
\hline TID & Items \\
\hline 1 & A \\
\hline 2 & A C \\
\hline 3 & A B D \\
\hline 4 & A C \\
\hline 5 & A B C \\
\hline 6 & A B C \\
\hline
\end{tabular}
minSupp \(=2\) transactions

How many possible itemsets are there (excluding the empty itemset)?
\[
2^{4}-1=15
\]
\begin{tabular}{|c|c|}
\hline itemset & support \\
\hline - A & 6 \\
\hline + B & 3 \\
\hline * C & 4 \\
\hline D & 1 \\
\hline * \(A B\) & 3 \\
\hline * \(A C\) & 4 \\
\hline A D & 1 \\
\hline * BC & 2 \\
\hline B D & 1 \\
\hline \(C D\) & 0 \\
\hline * \(A B C\) & 2 \\
\hline ABD & 1 \\
\hline B C D & 0 \\
\hline ACD & 0 \\
\hline A B C D & 0 \\
\hline
\end{tabular}

\section*{Association rules}

An association rule is an implication \(X \rightarrow Y\), where \(X, Y \subset I\), and \(X \cap Y=\varnothing\) example: \{milk, bread\} \(\rightarrow\) \{cereal\}
"A customer who purchased \(X\) is also likely to have purchased \(Y\) in the same transaction"
we are interested in rules with a single item in \(Y\) can we represent \{milk, bread\} \(\rightarrow\) \{cereal, cheese\}?

Rule \(X \rightarrow Y\) holds with support supp in T if supp of transactions contain \(X \cup Y\)

Rule \(X \rightarrow Y\) holds with confidence conf in T if conf \% of transactions that contain \(X\) also contain \(Y\)
\[
\begin{aligned}
& \operatorname{conf} \approx \operatorname{Pr}(Y \mid X) \\
& \operatorname{conf}(X \rightarrow Y)=\operatorname{supp}(X \cup Y) / \operatorname{supp}(X)
\end{aligned}
\]

\section*{Association rules}
minSupp \(=2\) transactions \(\boldsymbol{m i n C o n f}=0.75\)


\section*{Association rule mining}
- Goal: find all association rules that satisfy the userspecified minimum support and minimum confidence
- Algorithm outline
- Step 1: find all frequent itemsets
- Step 2: find association rules
- Take 1: naïve algorithm for frequent itemset mining
- Enumerate all subsets of \(\boldsymbol{I}\), check their support in \(\boldsymbol{T}\)
- What is the complexity?

\section*{Key idea: downward closure}
\begin{tabular}{cc} 
itemset & support \\
A A & 6 \\
B & 3 \\
A A B & 4 \\
A C & 1 \\
\hline A D & 3 \\
B C & 1 \\
C D & 2 \\
\hline A B C & 1 \\
A B D & 0 \\
\hline B C D & 2 \\
A C D & 1 \\
\hline A B C D & 0 \\
\hline
\end{tabular}

All subsets of a frequent itemset \(\boldsymbol{X}\) are themselves frequent

So, if some subset of \(X\) is infrequent, then \(X\) cannot be frequent, we know this apriori


The converse is not true! If all subsets of \(\boldsymbol{X}\) are frequent, \(\boldsymbol{X}\) is not guaranteed to be frequent

\section*{The Apriori algorithm}

Algorithm Apriori(T, minSupp)
\[
\begin{aligned}
& F_{1}=\{\text { frequent 1-itemsets }\} ; \\
& \text { for }\left(k=2 ; F_{\mathrm{k}-1} \neq \varnothing ; k++\right) \text { do } \\
& \quad C_{k} \leftarrow \text { candidate-gen }\left(F_{k-1}\right) ; \\
& \text { for each transaction } t \in T \text { do } \\
& \quad \text { for each candidate } c \in C_{k} \text { do } \\
& \text { if } c \text { is contained in } t \text { then } \\
& \quad c . c o u n t++; \\
& \text { end } \\
& \text { end } \\
& F_{k} \leftarrow\left\{c \in C_{k} \mid c . c o u n t \geq \text { minSupp }\right\} \\
& \text { end }
\end{aligned}
\]
return \(F \leftarrow \bigcup_{k} F_{\mathrm{k}}\);
itemset
A
B
C
\(\begin{array}{cc}D & 1 \\ > & A B\end{array}\)
* AC 4

\begin{tabular}{cl} 
CD & 0 \\
\hline\(A\) ABC & 2 \\
ABD & 1 \\
BCD & 0 \\
ACD & 0 \\
\hline ABCD & 0
\end{tabular}

\section*{Candidate generation}

The candidate-gen function takes \(\mathrm{F}_{\mathrm{k}-1}\) and returns a superset (called the candidates) of the set of all frequent k-itemsets. It has two steps:

Join: generate all possible candidate itemsets \(C_{k}\) of length \(k\)
Prune: optionally remove those candidates in \(\mathrm{C}_{\mathrm{k}}\) that have infrequent subsets


\section*{Candidate generation: join}

Insert into \(C_{k}(\)
select p.item, p.item \({ }_{2}\),..., p.item \(m_{k-1}\), q. item \(_{k-1}\)
\begin{tabular}{cl} 
from & \(F_{k-1} p, F_{k-1} q\) \\
where & p.item \(=q\). item \(_{1}\) \\
and & p.item \(=q\). item \(_{2}\) \\
and & \(\ldots\) \\
and & p.item \\
&
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{F}_{1}\) as p & \(\mathrm{F}_{1}\) as q & \multicolumn{2}{|l|}{\(\mathrm{C}_{2}\)} \\
\hline A & A & A & B \\
\hline B & B & A & C \\
\hline C & C & B & C \\
\hline
\end{tabular}
itemset
A

\section*{support}
4

D ..... 1

가 3
\(A C \quad 4\)

AD
1
+ BC 2

B D
1
CD
0
\begin{tabular}{cl}
\(C D\) & 0 \\
\hline\(-\operatorname{ABC}\) & 2 \\
A B D & 1 \\
B C D & 0 \\
A C D & 0 \\
\hline A B C D & 0
\end{tabular}

\section*{Candidate generation: join}


\section*{Candidate generation}

Assume a lexicographic ordering of the items
Join
Insert into \(C_{k}\) (
select p.item, p.item, ..., p.item \({ }_{k-1}\), q.item \({ }_{k-1}\)
from \(\quad F_{k-1} p, F_{k-1} q\)
where p.item \({ }_{1}=\) q. item \(_{1}\)
and \(\quad\) p. item \(_{2}=\) q. item \(_{2}\)
and
and \(\quad\) p. item \(_{k-1}<\) q. item \(_{k-1}\) ) why not p.item \({ }_{k-1} \neq\) q.item \({ }_{k-1}\) ?

\section*{Prune}
for each c in \(\mathrm{C}_{\mathrm{k}}\) do
for each ( \(k-1\) ) subset \(s\) of \(c\) do if ( \(s\) not in \(F_{k-1}\) ) then delete c from \(\mathrm{C}_{\mathrm{k}}\)

\section*{Generating association rules}

Rules \(=\varnothing\)
for each frequent \(k\)-itemset X do
for each 1-itemset \(A \subset X\) do
compute \(\operatorname{conf}(X / A \rightarrow A)=\operatorname{supp}(X) / \sup (X / A)\)
if conf \((X / A \rightarrow A) \geq\) minConf then Rules \(\leftarrow\) " \(X / A \rightarrow A\) "
end
end
end
return Rules

\section*{Performance of Apriori}
- The possible number of frequent itemsets is exponential, \(\mathrm{O}\left(\mathbf{2}^{\boldsymbol{m}}\right)\), where \(\boldsymbol{m}\) is the number of items
- Apriori exploits sparseness and locality of data
- Still, it may produce a large number of rules: thousands, tens of thousands, ....
- So, thresholds should be set carefully. What are some good heuristics?

\section*{back to data profiling}

\author{
r/ai \\ center \\ for
responsible \\ ai
}

\section*{Discovering uniques}

Given a relation schema \(\boldsymbol{R}(A, B, C, D)\) and a relation instance \(\boldsymbol{r}\), a unique column combination (or a "unique" for short) is a set of attributes \(\boldsymbol{X}\) whose projection contains no duplicates in \(\boldsymbol{r}\)

Given a relation schema \(\boldsymbol{R}(A, B, C, D)\) and a relation instance \(\boldsymbol{r}\), a set of attributes \(\boldsymbol{Y}\) is non-unique if its projection contains duplicates in \(\boldsymbol{r}\)
\(\boldsymbol{X}\) is minimal unique if every subset \(\boldsymbol{Y}\) of \(\boldsymbol{X}\) is non-unique
\(\boldsymbol{Y}\) is maximal non-unique if every superset \(\boldsymbol{X}\) of \(\boldsymbol{Y}\) is unique

[Abedjan, Golab, Naumann; SIGMOD 2017]

\section*{Output}


\section*{From uniques to candidate keys}

Given a relation schema \(\boldsymbol{R}(A, B, C, D)\) and a relation instance \(\boldsymbol{r}\), a unique column combination is a set of attributes \(\boldsymbol{X}\) whose projection contains no duplicates in \(\boldsymbol{r}\)
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Episodes (season, num,title, viewers) } \\
\hline season & num & title & viewers \\
\hline 1 & 1 & Winter is Coming & 2.2 M \\
\hline 1 & 2 & The Kingsroad & 2.2 M \\
2 & 1 & The North Remembers & 3.9 M
\end{tabular}

> A set of attributes is a candidate key for a relation if:
> (1) no two distinct tuples can have the value values for all key attributes (candidate key uniquely identifies a tuple), and
> (2) this is not true for any subset of the key attributes (candidate key is minimal)

A minimal unique of a relation instance is a (possible) candidate key of the relation schema. To find such possible candidate keys, find all minimal uniques in a given relation instance.

\section*{Apriori-style uniques discovery}
[Abedjan, Golab, Naumann; SIGMOD 2017]
A minimal unique of a relation instance is a (possible) candidate key of the relation schema.
Algorithm Uniques // sketch, similar to HCA
\[
\begin{aligned}
& \begin{array}{l}
U_{1}=\{1 \text {-uniques }\} \quad N_{1}=\{1 \text {-non-uniques }\} \\
\text { for }\left(k=2 ; N_{\text {k-1 }} \neq \varnothing ; k++\right) \text { do } \\
C_{k} \leftarrow \text { candidate-gen }\left(N_{k-1}\right) \\
U_{k} \leftarrow \text { prune-then-check }\left(C_{k}\right) \\
\\
\quad / / \text { prune candidates with unique sub-sets, and with value distributions } \\
\text { that cannot be unique } \\
\quad / / \text { check each candidate in pruned set for uniqueness } \\
N_{k} \quad \leftarrow C_{k} \backslash U_{k}
\end{array} \\
& \text { end } \quad \text { return } U \leftarrow U_{k} U_{k} ; \quad \text { breadth-first bottom-up strategy for attribute lattice traversal }
\end{aligned}
\]

\section*{taming technical bias}


\section*{This week's reading}

\section*{Taming Technical Bias in Machine Learning Pipelines *}

University of Amsterdem \& Ahold Deltaina amsterdim, The Netherlands s.szhelter ©uv.nl

Julia Stoyarovich
New York: University New York, NY, USA soyarovich @nyu.ciu

\section*{Abstract}

 bulance the beneftits of efficiency with the potentian! risks. Which of the canversation adoad the risiss
 is stili poorty iendersiosd. In this paper we focis on trectrical btas - a ope of bias that hass so far




 ruitygris it wiven punsilite.

\section*{1 Introduction}



 is still pporly urderstood.
 systems: pre-cxising, keemicol, and emergen: [D]. We briety chscuss these in tum. see Steyanonich et al. (38) ir a mase compelensine overview.

Preerxiting bius has its ongixs in sceiely. In ML applications, this type of hias of en exhi rita itself in the infu daia, datecing and mitigating it is ine subject of muen researth under the heading of algoriturn ic Eimess [5]. Inportarily, the presence or shsence of pee-exidting hias ca mont be scientifically verified, but rether is postulater based on a behef system \([8,12]\). Consequantly, the ettaxtivencs5 - or eren the validiy - of a techitica. attenpt to miligate pre-existing tios is perikated on that belief ssstem.




\footnotetext{


}
wneklond
SPECIAL ISSUE PADER

\section*{Data distribution debugging in machine learning pipelines}




\section*{abutract}







 aviona in thmicrotiry


\section*{1 Introduction}










satmonsixy
Bullinat
R1) pelver



Betad allic: ? Menerytaz









 (avied dTe:




 0 Pambels 15




\section*{The "last-mile" view of responsible AI}


\section*{Zooming out to the lifecycle view}


\section*{Bias in computer systems}

Pre-existing is independent of an algorithm and has origins in society

Technical is introduced or exacerbated by the technical properties of an ADS

Emergent arises due to context of use

\section*{Model development lifecycle}

\section*{Goal}
design a model to predict an appropriate level of compensation for job applicants

\section*{Problem}
women are offered a lower salary than they would expect, potentially reinforcing the gender wage gap

\section*{demographics}


[Schelter, He, Khilnani, Stoyanovich (2020)]

\section*{Missing values: Observed data}


\section*{Missing values: Imputed distribution}


\section*{Missing values: True distribution}

r/ai
center
for
responsible

\section*{dimensions of technical bias}
center
for
responsible
ai

\section*{Recall: 50 shades of null}
- Unknown - some value definitely belongs here, but I don't know what it is (e.g., unknown birthdate)
- Inapplicable - no value makes sense here (e.g., if marital status = single then spouse name should not have a value)
- Unintentionally omitted - values is left unspecified unintentionally, by mistake
- Optional - a value may legitimately be left unspecified (e.g., middle name)
- Intentionally withheld (e.g., an unlisted phone number)
 a-billion-dollar-mistake-has-been-stalking-a-whole-industry-for-decades

\section*{Missing value imputation}
are values missing at random (e.g., gender, age, disability on job applications)?
are we ever interpolating rare categories (e.g., Native American)
are all categories represented (e.g., non binary gender)?


\section*{Data filtering}

\section*{"filtering" operations (like selection and join), can arbitrarily change demographic group proportions}
select by zip code, country, years of C++ experience, others?


\section*{Data filtering}

\section*{"filtering" operations (like selection and join), can arbitrarilly change demographic group proportions}
select by zip code, country, years of \(\mathrm{C}++\) experience, others?

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ healthcare spending } \\
\hline ssn & spent \\
\hline \(000-00-0001\) & \(10,000 \$\) \\
\hline \(000-00-0003\) & \(8,000 \$\) \\
\hline
\end{tabular}

\section*{Data distribution debugging: mlinspect}

Potential issues in preprocessing pipeline:


Column 'age_group' projected out, but required for fairness

Selection might change proportions of groups in data

Imputation might change proportions of groups in data
'race' as a feature might be illegal!

Embedding vectors may not be available for rare names!

Python script for preprocessing, written exclusively with native pandas and sklearn constructs
\# load input data sources, join to single table patients \(=\) pandas. read csv(...)
histories \(=\) pandas. read_csv(...)
data \(=\) pandas.merge([pāients, histories], on=['ssn'])
\# compute mean complications per age group, append as column complications = data.groupby ('age_group')
.agg(mean_complications=('complications', 'mean')) data \(=\) datā.merge(complications, on=['age_group']) \# Target variable: people with frequent complications data['label'] = data['complications'] >
1.2 * data['mean_complications']
\# Project data to subset of attributes, filter by counties data = data[['smoker', 'last_name', 'county',
'num children', 'race', 'income', 'label']]
data \(=\) data[data['county'].isin(counties_of_interest)]
\# Define a nested feature encoding pipeline for the data impute_and_encode = sklearn. Pipeline([
(sklearn.SimpleImputer(strategy='most_frequent')), (sklearn.OneHotEncoder())])
featurisation = sklearn.ColumnTransformer(transformers=[ (impute_and_encode, ['smoker', 'county', 'race']), (Word2VēcTrānsformer(), 'last_name') (sklearn.StandardScaler(), ['num_children', 'income']])
\# Define the training pipeline for the model
neural_net = sklearn.KerasClassifier(build_fn=create_model()) pipeline = sklearn. Pipeline([
('features', featurisation),
('learning_algorithm', neural_net)])
\# Train-test split, model training and evaluation train_data, test_data = train test_split(data) model = pipeline.fit(train_data, train_data.label) print(model.score(test data, test data.label))

Corresponding dataflow DAG for instrumentation, extracted by mlinspect


\section*{Data debugging: mlinspect}
- similar to code inspection in modern IDEs, but specifically for data
- works on existing pipeline code using libraries like pandas and scikit-learn
- negligible performance overhead

\section*{ACM SIGMOD 2021 demo (4 min)}
https://surfdrive.surf.nl/files/index.php/s/ybriyzsdc6vcd2w

\section*{CIDR 2021 talk (10 min)}
https://www.youtube.com/watch?v=Ic0aD6lv5h0

\section*{Sound experimentation}


Karl Popper
- software-engineering and data science best-practices
- data isolation: training / validation / test
- accounting for variability when observing trends
- tuning hyper-parameters: for what objective?

\section*{Responsible Data Science} The data science lifecycle

\section*{Thank you!}```

