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explainability, intelligibility

transparency, interpretability,




Interpretability for different stakeholders

What are we explaining”
To Whom are we explaining?

Why are we explaining?




Staples discounts

THE WALL STREET JOURNAL

WHAT THEY KNOW

Websites Vary Prices, Deals Based on Users’

December 2012

Information It was the same Swingline stapler, on the
By Jennifer Valentino-DeVries, Jeremy Singer- same Staples.com website. But for Kim Wamble, the price
Vine and Ashkan Soltani was $15.79, while the price on Trude Frizzell's screen, just

December 24, 2012 a few miles away, was $14.29.

WHAT PRICE WOULD YOU SEE? A key difference: where Staples seemed to think they were

located.

A Wall Street Journal investigation found that the Staples
Inc. website displays different prices to people after
estimating their locations. More than that, Staples
appeared to consider the person's distance from a rival
brick-and-mortar store, either OfficeMax Inc. or Office
Depot Inc. If rival stores were within 20 miles or so,
Staples.com usually showed a discounted price.

https://www.wsj.com/articles/SB10001424127887323777204578189391813881534



https://www.wsj.com/articles/SB10001424127887323777204578189391813881534
https://www.wsj.com/market-data/quotes/SPLS
https://www.wsj.com/market-data/quotes/OMX
https://www.wsj.com/market-data/quotes/ODP
https://www.wsj.com/market-data/quotes/ODP
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Online job ads

theguardian July 2015

Samucl Gibbs

Women less likely to be shown ads for
Aulomaled lesling and analysis of company's adverlising system revedls male lligh'paid jObS O].]. Google, StUdy S].lOWS

job seekers dare shown far more adverts for lugh-paying execulive jobs
' - « The AdFisher tool simulated job seekers that did
L -~ not differ in browsing behavior, preferences or
®
- 1 [
) -
& -

demographic characteristics, except in gender.

One experiment showed that Google displayed
ads for a career coaching service for “$200k+"
executive jobs 1,852 times to the male group
and only 318 times to the female group.
Another experiment, in July 2014, showed a
similar trend but was not statistically significant.

https://www.theguardian.com/technology/2015/jul/08/women-less-likely-ads-high-paid-jobs-google-study



http://fusion.kinja.com/google-showed-women-ads-for-lower-paying-jobs-1793848970
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Racism is Poisoning Online Ad Delivery,
Says Harvard Professor

Google searches involving black-sounding names are
more likely to serve up ads suggestive of a criminal record

https://www.technologyreview.com/s/510646/racism-is- than white-sounding names, says computer scientist

poisoning-online-ad-delivery-says-harvard-professor/




Nutritional labels

What are we explaining?

SIDE-BY-SIDE COMPARISON

Nutrition Facts| Nutrition Facts Why are we explaining?

Serving Stae 219 owo (553)
Servings Par Conainer Atout § € servngs per contaner
Serving size  2/3 cup [85g)

To Whom are we explaining?
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explaining black box
Models
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What are we explaining?

How does a system work??
How well does a system work?
What does a system do?

Why was | __ (mis-diagnosed / not offered
a discount / denied credit) ?

Are a system'’s decisions discriminatory?

Are a system’s decisions illegal?




But isn’t accuracy sufficient?

How is accuracy measured? FPR/FNR/ ...

Accuracy for whom: over-all or in sub-
populations?

Accuracy over which data”

There is never 100% accuracy. Mistakes for
HYPOTHES S | what reason?

(()l\( LUSION

EXPERIMENT




Facebook’s real-name policy

“~  Tweet Shane Creepingbear is a member of the Kiowa Tribe of Oklahoma

3 Shane Creepingbear @Creepingbear - Oct 13, 2014 v October 13, 2014

' Hey yall today | was kicked off of Facebook for having a fake name.
Happy Columbus Day great job #facebook #goodtiming #racist
#ColumbusDay

= TIME 7 Pacebook Thinks Some Native American Names
Are Inauthentic

BY JOSH SANBURN FEBRUARY 14, 2015

February 14, 2015

If you’re Native American, Facebook might think your name is fake.

The social network has a history of telling its users that the names they’re
attempting to use aren’t real. Drag queens and overseas human rights activists,

for example, have experienced error messages and problems logging in in the
past.

The latest flap involves Native Americans, including Dana Lone Hill, who is
Lakota. Lone Hill recently wrote in a blog post that Facebook told her her name
was not “authentic” when she attempted to log in.




Explanations based on features

e LIME (Local Interpretable Model-Agnostic Explanations): to help users trust a
prediction, explain individual predictions

e SP-LIME: to help users trust a model, select a set of representative instances for
which to generate explanations

—
: a _1 sneeze | FU Explainer
weight (LIME) |

sneeze

o headache —
»-\\\v__ headache
() no fatigue no fatigue
4 age 7 ~
Model Data and Prediction Explanation Human makes decision

features in green (“sneeze”, “headache”) support the prediction (“Flu”),
while features in red (“no fatigue”) are evidence against the prediction

what if patient id appears in green in the list? - an example of “data leakage”

[Ribeiro, Singh & Guestrin, 2016]



LIME: Local explanations of classifiers

Three must-haves for a good explanation

e Humans can easily interpret reasoning

"y l'  . | ) ' sexma? (3
Definitely Potentially
not interpretable interpretable

slide by Marco Tulio Ribeiro, KDD 2016

[Ribeiro, Singh & Guestrin, 2016]




Explanations based on features

Three must-haves for a good explanation

e Humans can easily interpret reasoning

e Describes how this model actually behaves

Y v Learned
model

\ Not faithful
to model

X slide by Marco Tulio Ribeiro, KDD 2016

[Ribeiro, Singh & Guestrin, 2016]




Explanations based on features

Three must-haves for a good explanation

e Humans can easily interpret reasoning
e Describes how this model actually behaves

e Can be used for any ML model
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Key idea: Interpretable representation

“The overall goal of LIME is to identity an interpretable model over the
interpretable representation that is locally faithful to the classier.”

e |IME relies on a distinction between features and interpretable
data representations; examples:

e |n text classification features are word embeddings; an interpretable
representation is a vector indicating the presence of absence of a word

e |nimage classification features encoded in a tensor with three color
channels per pixel; an interpretable representation is a binary vector
indicating the presence or absence of a contiguous patch of similar
pixels

e To summarize: we may have some dfeatures and d’ interpretable
components; interpretable models will act over domain {0, 1}4" - denoting
the presence of absence of each of d’ interpretable components

[Ribeiro, Singh & Guestrin, 2016]




Fidelity-interpretability trade-off

“The overall goal of LIME is to identity an interpretable model over the
interpretable representation that is locally faithful to the classier.”

f:R">R f e G, dom(g)=1{0,11" €(g)
classifijr model explanation model measure of

some class of
Interpretable
models

f(x) denotes the probability that x belongs to some class

JC IS a proximity measure relative to x
X

being explained complexity of

explanation g

we make no assumptions explanation measures how unfaithful is g
about fto remain model- to fin the locality around x
agnostic: draw samples .

weighted by 7T E(x)= argmin__.L(f,gm )+£Ag)

[Ribeiro, Singh & Guestrin, 2016]




Fidelity-interpretability trade-off

“The overall goal of LIME is to identity an interpretable model over the
interpretable representation that is locally faithful to the classier.”

1. sample points around + 8@83 8%@ >
g %
835&_ 2333
xl ¥ %
%y

based on a slide by Marco Tulio Ribeiro, KDD 2016

[Ribeiro, Singh & Guestrin, 2016]




Fidelity-interpretability trade-off

“The overall goal of LIME is to identity an interpretable model over the
interpretable representation that is locally faithful to the classier.”

1. sample points around +

2. use complex model fto assign class labels

based on a slide by Marco Tulio Ribeiro, KDD 2016

[Ribeiro, Singh & Guestrin, 2016]




Fidelity-interpretability trade-off

“The overall goal of LIME is to identity an interpretable model over the
interpretable representation that is locally faithful to the classier.”

1. sample points around + . + 4
. + +
2. use complex model fto assign class labels + O
| | 4+, @
3. weigh samples according to 7Z'X ® . n
. . ®e® .
4. learn simple model g according to samples

based on a slide by Marco Tulio Ribeiro, KDD 2016

[Ribeiro, Singh & Guestrin, 2016]



Example: text classification with SVMs

Example #3 of 6

True Class: ‘ Atheism

Algorithm 1
Words that Al considers important:

GOD

mcan

anyone
this

Koresh

through

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp

Lines: 8

[Ribeiro, Singh & Guestrin, 2016]

Prediction correct:

Words that A2 considers important:

Posting
Host
Re

by

in

Document
From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp
Lines: 8

Predicted:

. Atheism

Prediction correct:

v




When accuracy Is not enough

Explaining Google’s Inception NN

probabilities of the top-3 classes
and the super-pixels predicting each

P(& ) =0.21

Electric guitar - incorrect but Acoustic guitar Labrador
reasonable, similar fretboard

[Ribeiro, Singh & Guestrin, 2016]




When accuracy Is not enough

Train a neural network to predict V. husky

Predicted: Predicted: husky Predicted: Predicted: Predicted: husky Predicted:
True: True: husky True: True: husky True: husky True:

Only 1 mistake!!!

slide by Marco Tulio Ribeiro, KDD 2016

[Ribeiro, Singh & Guestrin, 2016]




When accuracy Is not enough

Explanations for neural network prediction

“
f o \ . 3
\ ™. i
- - o
, '~ e

Predicted: Predicted: husky Predicted:
lrue. True: husky Irue.

Predicted: Predicted: husky Predicted:
True. nusky True: husky ITue.

slide by Marco Tulio Ribeiro, KDD 2016

[Ribeiro, Singh & Guestrin, 2016]




LIME: Recap

Why should I trust you 7

Explaining the predictions of any classifier

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin

Check out our paper, and open source project at
https://github.com/marcotcr/lime

https://www.youtube.com/watch?v=hUnRCxnydCc

[Ribeiro, Singh & Guestrin, 2016]



https://www.youtube.com/watch?v=hUnRCxnydCc

Auditing black-box models

User data Credit Decisions
Classifier

Credit
Classifier

[Datta, Sen & Zick, 2016]




QIl: Quantitative Input Influence

Goal: determine how much influence an input, or a set of inputs,
has on a classification outcome for an individual or a group

Transparency queries / quantities of interest
Individual: Which inputs have the most influence in my credit denial?
Group: Which inputs have the most influence on credit decisions for women?

Disparity: Which inputs influence men getting more positive outcomes than
women?

[Datta, Sen & Zick, 2016]




QIl: Quantitative Input Influence

For a quantity of influence Q and an input feature i, the Qll of ion Q
s the difference in Q when jis changed via an intervention.

Key ideas 1?2
intervene on an input feature, )~
measure its importance User data Credit Decisions

Classifier

aggregate feature importance
using its Shapley value

images by Anupam Datta

[Datta, Sen & Zick, 2016]




Running example

Consider lending decisions by a bank, based on gender, age,
education, and income. Does gender influence lending decisions?

e Observe that 20% of women receive the positive classification.

® [0 check whether gender impacts decisions, take the input dataset and
replace the value of gender in each input profile by drawing it from the unitorm
distribution: set gender in 50% of the inputs to female and 50% to male.

o [f we still observe that 20% of female profiles are positively classified after the
intervention - we conclude that gender does not influence lending decisions.

e Do a similar test for other features, one at a time. This is known as Unary Qll

[Datta, Sen & Zick, 2016]




Transparency report: Mr. X

How much influence do individual features have a
given classifier's decision about an individual?

0.5
Age
= 0.4 - ST 7T R e e e A Workclass Private
%_ 0.3 A Education 11th
E . Marital Status Never married
@ 0.2 - ------ ------ ----- ...... ...... Occupation Craft repair
8 ' ' l ' ' ' ' ' ' Relationship to household income  Child
CE) R """"""""""""""""""""""""""""""""""""""""" Race Asian-Pac
) . ; : . . ! ! ! ! ! . ; Island
bt \ ' ' ' ' ! \ ' ' ' '
8 0.0 |- T el N B B B B B Gender Male
C Capital gain $14344
(@) —(.] |SEEEEEETEELL LR A . S S S '
—_ : ; Capital loss $0
o -0.2 L A S T Lo AN S R Work hours per week 40
: Country Vietnam
—0.3 : : : : : :
. < .
FEF LS E S SR
X NI I N RS P S :
RO & & & ¢ & & Income
o SRR AR b\\’(:o Q2 \@«\
® <

iImages by Anupam Datta

[Datta, Sen & Zick, 2016]




Transparency report: Mr. Y

Explanations for superficially similar
individuals can be different

0.4

: : : : : . : : : : . : Age 27
. 0.3 L e . o Workdlass Private
> ' , ' . ' ' . ' . ' ' \
QL o2k U S B Lo Lo R S S Lo I Education Preschool
E : : : : : : ; : : : : ! Marital Status Married
g QL ‘Ocoupation | FarmingFishing.
g 0.0 -~ N o Relationship to household income  Other Relative
o ' i
b —0.1 f-reeee C T L o T L Race White
-] : : : ! : : : : : : ! ! Gender Male
YY) U SR U S S NV S A R B A A
c AR A Capialgan  sawi0
Y e | ICETTE o
o 0.4 Work hours per week 24
' | | f : | Country Mexico
—-0.5 i i i i i
<& A S o R e % O 2 & RS
S F S & &‘\\ & {\&\ & (50} S $®@ ,v\\\’so &S
'Z} \)c L Y O ’Z} 9 < AN QQ
& S X MR & '
® 2 SRS o &P O Income
\ S
SOl

iImages by Anupam Datta

[Datta, Sen & Zick, 2016]




Unary QI

iImages by Anupam Datta

For a quantity of influence Q and an input feature i, the Qll of fon Q
is the difference in Q when iis changed via an intervention.

-

~ 0 X..
N P

b

Age

Classifier —
(uses On|y DeC|S|On

income)

Income

n

replace features with random values from the population, examine
the distribution over outcomes

[Datta, Sen & Zick, 2016]




Unary QI

For a quantity of influence Q and an input feature i, the Qll of fon Q
is the difference in Q when iis changed via an intervention.
high-income

individuals

Classifier Decision ‘

Only accept old,

Income°%

intervening on one feature at a time will not have any effect

iImages by Anupam Datta

[Datta, Sen & Zick, 2016]




Marginal Qll

* Not all features are equally important within a set.

» Margtnal QII: Influence of age and income over only income.
(({age, income}) — t({income

Need to aggregate Marginal Qll across all sets
* But age is a part of many sets!

8D O G gender
(({age,job}) — «(fiob) | (rage, gender, job}) — ({gender, job})

(({age, gender, income}) — i({gender, income |
(age. 8 t()age, gg%der,income,io]g}) — (({gender, income, job}!

[Datta, Sen & Zick, 2016]




Aggregating influence across sets

Idea: Use game theory methods: voting systems, revenue division

“In voting systems with multiple agents with differing weights, voting power often
does not directly correspond to the weights of the agents. For example, the US
presidential election can roughly be modeled as a cooperative game where
each state is an agent. The weight of a state is the number of electors in that
state (i.e., the number of votes it brings to the presidential candidate who wins
that state). Although states like California and Texas have higher weight, swing
states like Pennsylvania and Ohio tend to have higher power in determining the
outcome of elections.”

This paper uses the Shapley value as the aggregation mechanism

0 (N,v)=E_[m(0)]= Z m (o)

GEH(N)

[Datta, Sen & Zick, 2016]




Aggregating influence across sets

Idea: Use game theory methods: voting systems, revenue division

This paper uses the Shapley value as the aggregation mechanism

0 (N,v)=E_[m(0)]= Z m (o)

O'EH(N)

V. ZN — R influence of a set of features S on the outcome

qDl.(N,v) influence of feature I, given the set of features N = {1,..., n/
o ell(N) a permutation over the features in set N
m.(O) payoff corresponding to this permutation

[Datta, Sen & Zick, 2016]




Qll summary

e A principled (and beautiful!) framework for determining the influence
of a feature, or a set of features, on a decision

e \Norks for black-box models, with the assumption that the full set of
inputs is available

e Accounts for correlations between features

e “‘Parametrizes” on what quantity we want to set (Qll), how we
iIntervene, how we aggregate the intluence of a feature across sets

e Experiments in the paper: interesting results

¢ Also in the paper: a discussion of transparency under differential
privacy

[Datta, Sen & Zick, 2016]




SHAP: Shapley Additive Explanations

A unifying framework for interpreting predictions with “additive feature
attribution methods”, including LIME and Qll, for local explanations

A Unified Approach to

Interpreting Model Predictions

Scott Lundberg, Su-In Lee

University of Washington

NIPS 2017

https://www.youtube.com/watch?v=wjd1G5bu_TY

[Lundberg & Lee, 2017] r al


https://www.youtube.com/watch?v=wjd1G5bu_TY

SHAP: Shapley Additive Explanations

A unifying framework for interpreting predictions with “additive feature
attribution methods”, including LIME and Qll, for local explanations

e The best explanation of a simple model is the model itself: the explanation
IS both accurate and interpretable. For complex models we must use a
simpler explanation model — an interpretable approximation of the original
model.

= ={0,1}¢
f:Rd%R g C_},dom(g) 10,1}
explanation model from a class
of interpretable models, over a

set of simplified features

model being explained

e Additive feature attribution methods have an explanation model that is
a linear function of binary variables

[Lundberg & Lee, 2017]




Additive feature attribution methods

Additive feature attribution methods have an explanation model that is
a linear function of binary variables (simplified features)

"
g(x)=¢,+ EQ)Z.x'Z. where x'€{0,1}, and ¢.€R
i=1

Three properties guarantee a single unigue solution — a unique allocation of
Shapley values to each feature

1. Local accuracy: g(x’) matches the original model f(x) when x’is the simplified
input corresponding to x.

2. Missingness: if X’ — the ith feature of simplified input X>— is missing, then it
has no attributable impact for x

3. Consistency (monotonicity): if toggling off feature i makes a bigger (or the
same) difference in model F(x) than in model f(x), then the weight (attribution) of
i should be no lower in F(x) than in f(x)

[Lundberg & Lee, 2017]




Additive feature attribution methods

E=) README.md
Output=04 Output =04
Age = 65 — Age = 65
el lanation m — Sex=F
BP =180 .1 BP =180
BMI = 40 = F BMI = 40

Baserate=0.1 3ase rate = 0.1

https://github.com/slundberg/shap

[Lundberg & Lee, 2017]
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