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ABSTRACT
Despite widespread adoption, machine learning models re-
main mostly black boxes. Understanding the reasons behind
predictions is, however, quite important in assessing trust,
which is fundamental if one plans to take action based on a
prediction, or when choosing whether to deploy a new model.
Such understanding also provides insights into the model,
which can be used to transform an untrustworthy model or
prediction into a trustworthy one.

In this work, we propose LIME, a novel explanation tech-
nique that explains the predictions of any classifier in an in-
terpretable and faithful manner, by learning an interpretable
model locally around the prediction. We also propose a
method to explain models by presenting representative indi-
vidual predictions and their explanations in a non-redundant
way, framing the task as a submodular optimization prob-
lem. We demonstrate the flexibility of these methods by
explaining different models for text (e.g. random forests)
and image classification (e.g. neural networks). We show the
utility of explanations via novel experiments, both simulated
and with human subjects, on various scenarios that require
trust: deciding if one should trust a prediction, choosing
between models, improving an untrustworthy classifier, and
identifying why a classifier should not be trusted.

1. INTRODUCTION
Machine learning is at the core of many recent advances in
science and technology. Unfortunately, the important role
of humans is an oft-overlooked aspect in the field. Whether
humans are directly using machine learning classifiers as tools,
or are deploying models within other products, a vital concern
remains: if the users do not trust a model or a prediction,
they will not use it. It is important to differentiate between
two different (but related) definitions of trust: (1) trusting a
prediction, i.e. whether a user trusts an individual prediction
sufficiently to take some action based on it, and (2) trusting
a model, i.e. whether the user trusts a model to behave in
reasonable ways if deployed. Both are directly impacted by
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how much the human understands a model’s behaviour, as
opposed to seeing it as a black box.

Determining trust in individual predictions is an important
problem when the model is used for decision making. When
using machine learning for medical diagnosis [6] or terrorism
detection, for example, predictions cannot be acted upon on
blind faith, as the consequences may be catastrophic.

Apart from trusting individual predictions, there is also a
need to evaluate the model as a whole before deploying it “in
the wild”. To make this decision, users need to be confident
that the model will perform well on real-world data, according
to the metrics of interest. Currently, models are evaluated
using accuracy metrics on an available validation dataset.
However, real-world data is often significantly different, and
further, the evaluation metric may not be indicative of the
product’s goal. Inspecting individual predictions and their
explanations is a worthwhile solution, in addition to such
metrics. In this case, it is important to aid users by suggesting
which instances to inspect, especially for large datasets.

In this paper, we propose providing explanations for indi-
vidual predictions as a solution to the “trusting a prediction”
problem, and selecting multiple such predictions (and expla-
nations) as a solution to the “trusting the model” problem.
Our main contributions are summarized as follows.

• LIME, an algorithm that can explain the predictions of any
classifier or regressor in a faithful way, by approximating
it locally with an interpretable model.

• SP-LIME, a method that selects a set of representative
instances with explanations to address the “trusting the
model” problem, via submodular optimization.

• Comprehensive evaluation with simulated and human sub-
jects, where we measure the impact of explanations on
trust and associated tasks. In our experiments, non-experts
using LIME are able to pick which classifier from a pair
generalizes better in the real world. Further, they are able
to greatly improve an untrustworthy classifier trained on
20 newsgroups, by doing feature engineering using LIME.
We also show how understanding the predictions of a neu-
ral network on images helps practitioners know when and
why they should not trust a model.

2. THE CASE FOR EXPLANATIONS
By“explaining a prediction”, we mean presenting textual or

visual artifacts that provide qualitative understanding of the
relationship between the instance’s components (e.g. words
in text, patches in an image) and the model’s prediction. We
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Figure 1: Explaining individual predictions. A model predicts that a patient has the flu, and LIME highlights
the symptoms in the patient’s history that led to the prediction. Sneeze and headache are portrayed as
contributing to the “flu” prediction, while “no fatigue” is evidence against it. With these, a doctor can make
an informed decision about whether to trust the model’s prediction.

argue that explaining predictions is an important aspect in
getting humans to trust and use machine learning effectively,
if the explanations are faithful and intelligible.

The process of explaining individual predictions is illus-
trated in Figure 1. It is clear that a doctor is much better
positioned to make a decision with the help of a model if
intelligible explanations are provided. In this case, an ex-
planation is a small list of symptoms with relative weights –
symptoms that either contribute to the prediction (in green)
or are evidence against it (in red). Humans usually have prior
knowledge about the application domain, which they can use
to accept (trust) or reject a prediction if they understand the
reasoning behind it. It has been observed, for example, that
providing explanations can increase the acceptance of movie
recommendations [12] and other automated systems [8].

Every machine learning application also requires a certain
measure of overall trust in the model. Development and
evaluation of a classification model often consists of collect-
ing annotated data, of which a held-out subset is used for
automated evaluation. Although this is a useful pipeline for
many applications, evaluation on validation data may not
correspond to performance “in the wild”, as practitioners
often overestimate the accuracy of their models [21], and
thus trust cannot rely solely on it. Looking at examples
offers an alternative method to assess truth in the model,
especially if the examples are explained. We thus propose
explaining several representative individual predictions of a
model as a way to provide a global understanding.

There are several ways a model or its evaluation can go
wrong. Data leakage, for example, defined as the uninten-
tional leakage of signal into the training (and validation) data
that would not appear when deployed [14], potentially in-
creases accuracy. A challenging example cited by (author?)
[14] is one where the patient ID was found to be heavily corre-
lated with the target class in the training and validation data.
This issue would be incredibly challenging to identify just by
observing the predictions and the raw data, but much easier
if explanations such as the one in Figure 1 are provided, as
patient ID would be listed as an explanation for predictions.
Another particularly hard to detect problem is dataset shift
[5], where training data is different than test data (we give
an example in the famous 20 newsgroups dataset later on).
The insights given by explanations are particularly helpful in
identifying what must be done to convert an untrustworthy
model into a trustworthy one – for example, removing leaked
data or changing the training data to avoid dataset shift.

Machine learning practitioners often have to select a model
from a number of alternatives, requiring them to assess
the relative trust between two or more models. In Figure

Figure 2: Explaining individual predictions of com-
peting classifiers trying to determine if a document
is about “Christianity” or “Atheism”. The bar chart
represents the importance given to the most rele-
vant words, also highlighted in the text. Color indi-
cates which class the word contributes to (green for
“Christianity”, magenta for “Atheism”).

2, we show how individual prediction explanations can be
used to select between models, in conjunction with accuracy.
In this case, the algorithm with higher accuracy on the
validation set is actually much worse, a fact that is easy to see
when explanations are provided (again, due to human prior
knowledge), but hard otherwise. Further, there is frequently
a mismatch between the metrics that we can compute and
optimize (e.g. accuracy) and the actual metrics of interest
such as user engagement and retention. While we may not
be able to measure such metrics, we have knowledge about
how certain model behaviors can influence them. Therefore,
a practitioner may wish to choose a less accurate model for
content recommendation that does not place high importance
in features related to “clickbait” articles (which may hurt
user retention), even if exploiting such features increases
the accuracy of the model in cross validation. We note
that explanations are particularly useful in these (and other)
scenarios if a method can produce them for any model, so
that a variety of models can be compared.

Desired Characteristics for Explainers
We now outline a number of desired characteristics from
explanation methods.

An essential criterion for explanations is that they must
be interpretable, i.e., provide qualitative understanding
between the input variables and the response. We note that
interpretability must take into account the user’s limitations.
Thus, a linear model [24], a gradient vector [2] or an additive
model [6] may or may not be interpretable. For example, if
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hundreds or thousands of features significantly contribute
to a prediction, it is not reasonable to expect any user to
comprehend why the prediction was made, even if individual
weights can be inspected. This requirement further implies
that explanations should be easy to understand, which is
not necessarily true of the features used by the model, and
thus the “input variables” in the explanations may need
to be different than the features. Finally, we note that the
notion of interpretability also depends on the target audience.
Machine learning practitioners may be able to interpret small
Bayesian networks, but laymen may be more comfortable
with a small number of weighted features as an explanation.

Another essential criterion is local fidelity. Although it is
often impossible for an explanation to be completely faithful
unless it is the complete description of the model itself, for
an explanation to be meaningful it must at least be locally
faithful, i.e. it must correspond to how the model behaves in
the vicinity of the instance being predicted. We note that
local fidelity does not imply global fidelity: features that
are globally important may not be important in the local
context, and vice versa. While global fidelity would imply
local fidelity, identifying globally faithful explanations that
are interpretable remains a challenge for complex models.

While there are models that are inherently interpretable [6,
17, 26, 27], an explainer should be able to explain any model,
and thus be model-agnostic (i.e. treat the original model
as a black box). Apart from the fact that many state-of-
the-art classifiers are not currently interpretable, this also
provides flexibility to explain future classifiers.

In addition to explaining predictions, providing a global
perspective is important to ascertain trust in the model.
As mentioned before, accuracy may often not be a suitable
metric to evaluate the model, and thus we want to explain
the model. Building upon the explanations for individual
predictions, we select a few explanations to present to the
user, such that they are representative of the model.

3. LOCAL INTERPRETABLE
MODEL-AGNOSTIC EXPLANATIONS

We now present Local Interpretable Model-agnostic Expla-
nations (LIME). The overall goal of LIME is to identify an
interpretable model over the interpretable representation
that is locally faithful to the classifier.

3.1 Interpretable Data Representations
Before we present the explanation system, it is impor-

tant to distinguish between features and interpretable data
representations. As mentioned before, interpretable expla-
nations need to use a representation that is understandable
to humans, regardless of the actual features used by the
model. For example, a possible interpretable representation
for text classification is a binary vector indicating the pres-
ence or absence of a word, even though the classifier may
use more complex (and incomprehensible) features such as
word embeddings. Likewise for image classification, an in-
terpretable representation may be a binary vector indicating
the “presence” or “absence” of a contiguous patch of similar
pixels (a super-pixel), while the classifier may represent the
image as a tensor with three color channels per pixel. We
denote x ∈ Rd be the original representation of an instance

being explained, and we use x′ ∈ {0, 1}d′ to denote a binary
vector for its interpretable representation.

3.2 Fidelity-Interpretability Trade-off
Formally, we define an explanation as a model g ∈ G,

where G is a class of potentially interpretable models, such
as linear models, decision trees, or falling rule lists [27], i.e. a
model g ∈ G can be readily presented to the user with visual

or textual artifacts. The domain of g is {0, 1}d′ , i.e. g acts
over absence/presence of the interpretable components. As
not every g ∈ G may be simple enough to be interpretable -
thus we let Ω(g) be a measure of complexity (as opposed to
interpretability) of the explanation g ∈ G. For example, for
decision trees Ω(g) may be the depth of the tree, while for
linear models, Ω(g) may be the number of non-zero weights.

Let the model being explained be denoted f : Rd → R. In
classification, f(x) is the probability (or a binary indicator)
that x belongs to a certain class1. We further use πx(z) as a
proximity measure between an instance z to x, so as to define
locality around x. Finally, let L(f, g, πx) be a measure of
how unfaithful g is in approximating f in the locality defined
by πx. In order to ensure both interpretability and local
fidelity, we must minimize L(f, g, πx) while having Ω(g) be
low enough to be interpretable by humans. The explanation
produced by LIME is obtained by the following:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (1)

This formulation can be used with different explanation
families G, fidelity functions L, and complexity measures Ω.
Here we focus on sparse linear models as explanations, and
on performing the search using perturbations.

3.3 Sampling for Local Exploration
We want to minimize the locality-aware loss L(f, g, πx)

without making any assumptions about f , since we want the
explainer to be model-agnostic. Thus, in order to learn
the local behavior of f as the interpretable inputs vary, we
approximate L(f, g, πx) by drawing samples, weighted by
πx. We sample instances around x′ by drawing nonzero
elements of x′ uniformly at random (where the number of
such draws is also uniformly sampled). Given a perturbed

sample z′ ∈ {0, 1}d′ (which contains a fraction of the nonzero
elements of x′), we recover the sample in the original repre-
sentation z ∈ Rd and obtain f(z), which is used as a label for
the explanation model. Given this dataset Z of perturbed
samples with the associated labels, we optimize Eq. (1) to
get an explanation ξ(x). The primary intuition behind LIME
is presented in Figure 3, where we sample instances both
in the vicinity of x (which have a high weight due to πx)
and far away from x (low weight from πx). Even though
the original model may be too complex to explain globally,
LIME presents an explanation that is locally faithful (linear
in this case), where the locality is captured by πx. It is worth
noting that our method is fairly robust to sampling noise
since the samples are weighted by πx in Eq. (1). We now
present a concrete instance of this general framework.

3.4 Sparse Linear Explanations
For the rest of this paper, we let G be the class of linear

models, such that g(z′) = wg ·z′. We use the locally weighted
square loss as L, as defined in Eq. (2), where we let πx(z) =
exp(−D(x, z)2/σ2) be an exponential kernel defined on some

1For multiple classes, we explain each class separately, thus
f(x) is the prediction of the relevant class.
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Figure 3: Toy example to present intuition for LIME.
The black-box model’s complex decision function f
(unknown to LIME) is represented by the blue/pink
background, which cannot be approximated well by
a linear model. The bold red cross is the instance
being explained. LIME samples instances, gets pre-
dictions using f , and weighs them by the proximity
to the instance being explained (represented here
by size). The dashed line is the learned explanation
that is locally (but not globally) faithful.

distance function D (e.g. cosine distance for text, L2 distance
for images) with width σ.

L(f, g, πx) =
∑

z,z′∈Z
πx(z)

(
f(z)− g(z′)

)2
(2)

For text classification, we ensure that the explanation is
interpretable by letting the interpretable representation be
a bag of words, and by setting a limit K on the number of
words, i.e. Ω(g) =∞1[‖wg‖0 > K]. Potentially, K can be
adapted to be as big as the user can handle, or we could
have different values of K for different instances. In this
paper we use a constant value for K, leaving the exploration
of different values to future work. We use the same Ω for
image classification, using “super-pixels” (computed using
any standard algorithm) instead of words, such that the
interpretable representation of an image is a binary vector
where 1 indicates the original super-pixel and 0 indicates a
grayed out super-pixel. This particular choice of Ω makes
directly solving Eq. (1) intractable, but we approximate it by
first selecting K features with Lasso (using the regularization
path [9]) and then learning the weights via least squares (a
procedure we call K-LASSO in Algorithm 1). Since Algo-
rithm 1 produces an explanation for an individual prediction,
its complexity does not depend on the size of the dataset,
but instead on time to compute f(x) and on the number
of samples N . In practice, explaining random forests with
1000 trees using scikit-learn (http://scikit-learn.org) on a
laptop with N = 5000 takes under 3 seconds without any
optimizations such as using gpus or parallelization. Explain-
ing each prediction of the Inception network [25] for image
classification takes around 10 minutes.

Any choice of interpretable representations and G will
have some inherent drawbacks. First, while the underlying
model can be treated as a black-box, certain interpretable
representations will not be powerful enough to explain certain
behaviors. For example, a model that predicts sepia-toned
images to be retro cannot be explained by presence of absence
of super pixels. Second, our choice of G (sparse linear models)
means that if the underlying model is highly non-linear even
in the locality of the prediction, there may not be a faithful
explanation. However, we can estimate the faithfulness of

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f , Number of samples N
Require: Instance x, and its interpretable version x′

Require: Similarity kernel πx, Length of explanation K
Z ← {}
for i ∈ {1, 2, 3, ..., N} do

z′i ← sample around(x′)
Z ← Z ∪ 〈z′i, f(zi), πx(zi)〉

end for
w ← K-Lasso(Z,K) . with z′i as features, f(z) as target
return w

the explanation on Z, and present this information to the
user. This estimate of faithfulness can also be used for
selecting an appropriate family of explanations from a set of
multiple interpretable model classes, thus adapting to the
given dataset and the classifier. We leave such exploration
for future work, as linear explanations work quite well for
multiple black-box models in our experiments.

3.5 Example 1: Text classification with SVMs
In Figure 2 (right side), we explain the predictions of a
support vector machine with RBF kernel trained on uni-
grams to differentiate “Christianity” from “Atheism” (on a
subset of the 20 newsgroup dataset). Although this classifier
achieves 94% held-out accuracy, and one would be tempted
to trust it based on this, the explanation for an instance
shows that predictions are made for quite arbitrary reasons
(words “Posting”, “Host”, and “Re” have no connection to
either Christianity or Atheism). The word “Posting” appears
in 22% of examples in the training set, 99% of them in the
class “Atheism”. Even if headers are removed, proper names
of prolific posters in the original newsgroups are selected by
the classifier, which would also not generalize.

After getting such insights from explanations, it is clear
that this dataset has serious issues (which are not evident
just by studying the raw data or predictions), and that this
classifier, or held-out evaluation, cannot be trusted. It is also
clear what the problems are, and the steps that can be taken
to fix these issues and train a more trustworthy classifier.

3.6 Example 2: Deep networks for images
When using sparse linear explanations for image classifiers,
one may wish to just highlight the super-pixels with posi-
tive weight towards a specific class, as they give intuition
as to why the model would think that class may be present.
We explain the prediction of Google’s pre-trained Inception
neural network [25] in this fashion on an arbitrary image
(Figure 4a). Figures 4b, 4c, 4d show the superpixels expla-
nations for the top 3 predicted classes (with the rest of the
image grayed out), having set K = 10. What the neural
network picks up on for each of the classes is quite natural
to humans - Figure 4b in particular provides insight as to
why acoustic guitar was predicted to be electric: due to the
fretboard. This kind of explanation enhances trust in the
classifier (even if the top predicted class is wrong), as it shows
that it is not acting in an unreasonable manner.
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(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception neural network. The top
3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador” (p = 0.21)

4. SUBMODULAR PICK FOR
EXPLAINING MODELS

Although an explanation of a single prediction provides
some understanding into the reliability of the classifier to the
user, it is not sufficient to evaluate and assess trust in the
model as a whole. We propose to give a global understanding
of the model by explaining a set of individual instances. This
approach is still model agnostic, and is complementary to
computing summary statistics such as held-out accuracy.

Even though explanations of multiple instances can be
insightful, these instances need to be selected judiciously,
since users may not have the time to examine a large number
of explanations. We represent the time/patience that humans
have by a budget B that denotes the number of explanations
they are willing to look at in order to understand a model.
Given a set of instances X, we define the pick step as the
task of selecting B instances for the user to inspect.

The pick step is not dependent on the existence of explana-
tions - one of the main purpose of tools like Modeltracker [1]
and others [11] is to assist users in selecting instances them-
selves, and examining the raw data and predictions. However,
since looking at raw data is not enough to understand predic-
tions and get insights, the pick step should take into account
the explanations that accompany each prediction. Moreover,
this method should pick a diverse, representative set of expla-
nations to show the user – i.e. non-redundant explanations
that represent how the model behaves globally.

Given the explanations for a set of instances X (|X| = n),
we construct an n× d′ explanation matrix W that represents
the local importance of the interpretable components for
each instance. When using linear models as explanations,
for an instance xi and explanation gi = ξ(xi), we set Wij =
|wgij |. Further, for each component (column) j in W, we
let Ij denote the global importance of that component in
the explanation space. Intuitively, we want I such that
features that explain many different instances have higher
importance scores. In Figure 5, we show a toy example W,
with n = d′ = 5, where W is binary (for simplicity). The
importance function I should score feature f2 higher than
feature f1, i.e. I2 > I1, since feature f2 is used to explain
more instances. Concretely for the text applications, we set
Ij =

√∑n
i=1Wij . For images, I must measure something

that is comparable across the super-pixels in different images,

f1 f2 f3 f4 f5

Covered Features
Figure 5: Toy example W. Rows represent in-
stances (documents) and columns represent features
(words). Feature f2 (dotted blue) has the highest im-
portance. Rows 2 and 5 (in red) would be selected
by the pick procedure, covering all but feature f1.

Algorithm 2 Submodular pick (SP) algorithm

Require: Instances X, Budget B
for all xi ∈ X do
Wi ← explain(xi, x

′
i) . Using Algorithm 1

end for
for j ∈ {1 . . . d′} do

Ij ←
√∑n

i=1 |Wij | . Compute feature importances
end for
V ← {}
while |V | < B do . Greedy optimization of Eq (4)

V ← V ∪ argmaxi c(V ∪ {i},W, I)
end while
return V

such as color histograms or other features of super-pixels; we
leave further exploration of these ideas for future work.

While we want to pick instances that cover the important
components, the set of explanations must not be redundant
in the components they show the users, i.e. avoid selecting
instances with similar explanations. In Figure 5, after the
second row is picked, the third row adds no value, as the
user has already seen features f2 and f3 - while the last row
exposes the user to completely new features. Selecting the
second and last row results in the coverage of almost all the
features. We formalize this non-redundant coverage intuition
in Eq. (3), where we define coverage as the set function c
that, given W and I, computes the total importance of the
features that appear in at least one instance in a set V .
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c(V,W, I) =

d′∑

j=1

1[∃i∈V :Wij>0]Ij (3)

The pick problem, defined in Eq. (4), consists of finding the
set V, |V | ≤ B that achieves highest coverage.

Pick(W, I) = argmax
V,|V |≤B

c(V,W, I) (4)

The problem in Eq. (4) is maximizing a weighted coverage
function, and is NP-hard [10]. Let c(V ∪{i},W, I)−c(V,W, I)
be the marginal coverage gain of adding an instance i to a set
V . Due to submodularity, a greedy algorithm that iteratively
adds the instance with the highest marginal coverage gain to
the solution offers a constant-factor approximation guarantee
of 1−1/e to the optimum [15]. We outline this approximation
in Algorithm 2, and call it submodular pick.

5. SIMULATED USER EXPERIMENTS
In this section, we present simulated user experiments to

evaluate the utility of explanations in trust-related tasks. In
particular, we address the following questions: (1) Are the
explanations faithful to the model, (2) Can the explanations
aid users in ascertaining trust in predictions, and (3) Are
the explanations useful for evaluating the model as a whole.
Code and data for replicating our experiments are available
at https://github.com/marcotcr/lime-experiments.

5.1 Experiment Setup
We use two sentiment analysis datasets (books and DVDs,

2000 instances each) where the task is to classify prod-
uct reviews as positive or negative [4]. We train decision
trees (DT), logistic regression with L2 regularization (LR),
nearest neighbors (NN), and support vector machines with
RBF kernel (SVM), all using bag of words as features. We
also include random forests (with 1000 trees) trained with
the average word2vec embedding [19] (RF), a model that is
impossible to interpret without a technique like LIME. We
use the implementations and default parameters of scikit-
learn, unless noted otherwise. We divide each dataset into
train (1600 instances) and test (400 instances).

To explain individual predictions, we compare our pro-
posed approach (LIME), with parzen [2], a method that
approximates the black box classifier globally with Parzen
windows, and explains individual predictions by taking the
gradient of the prediction probability function. For parzen,
we take the K features with the highest absolute gradients
as explanations. We set the hyper-parameters for parzen and
LIME using cross validation, and set N = 15, 000. We also
compare against a greedy procedure (similar to (author?)
[18]) in which we greedily remove features that contribute
the most to the predicted class until the prediction changes
(or we reach the maximum of K features), and a random
procedure that randomly picks K features as an explanation.
We set K to 10 for our experiments.

For experiments where the pick procedure applies, we either
do random selection (random pick, RP) or the procedure
described in §4 (submodular pick, SP). We refer to pick-
explainer combinations by adding RP or SP as a prefix.

5.2 Are explanations faithful to the model?
We measure faithfulness of explanations on classifiers that

are by themselves interpretable (sparse logistic regression
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Figure 6: Recall on truly important features for two
interpretable classifiers on the books dataset.
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Figure 7: Recall on truly important features for two
interpretable classifiers on the DVDs dataset.

and decision trees). In particular, we train both classifiers
such that the maximum number of features they use for any
instance is 10, and thus we know the gold set of features
that the are considered important by these models. For
each prediction on the test set, we generate explanations and
compute the fraction of these gold features that are recovered
by the explanations. We report this recall averaged over all
the test instances in Figures 6 and 7. We observe that
the greedy approach is comparable to parzen on logistic
regression, but is substantially worse on decision trees since
changing a single feature at a time often does not have an
effect on the prediction. The overall recall by parzen is low,
likely due to the difficulty in approximating the original high-
dimensional classifier. LIME consistently provides > 90%
recall for both classifiers on both datasets, demonstrating
that LIME explanations are faithful to the models.

5.3 Should I trust this prediction?
In order to simulate trust in individual predictions, we first

randomly select 25% of the features to be “untrustworthy”,
and assume that the users can identify and would not want
to trust these features (such as the headers in 20 newsgroups,
leaked data, etc). We thus develop oracle “trustworthiness”
by labeling test set predictions from a black box classifier as
“untrustworthy” if the prediction changes when untrustworthy
features are removed from the instance, and “trustworthy”
otherwise. In order to simulate users, we assume that users
deem predictions untrustworthy from LIME and parzen ex-
planations if the prediction from the linear approximation
changes when all untrustworthy features that appear in the
explanations are removed (the simulated human “discounts”
the effect of untrustworthy features). For greedy and random,
the prediction is mistrusted if any untrustworthy features
are present in the explanation, since these methods do not
provide a notion of the contribution of each feature to the
prediction. Thus for each test set prediction, we can evaluate
whether the simulated user trusts it using each explanation
method, and compare it to the trustworthiness oracle.

Using this setup, we report the F1 on the trustworthy
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Table 1: Average F1 of trustworthiness for different
explainers on a collection of classifiers and datasets.

Books DVDs

LR NN RF SVM LR NN RF SVM

Random 14.6 14.8 14.7 14.7 14.2 14.3 14.5 14.4
Parzen 84.0 87.6 94.3 92.3 87.0 81.7 94.2 87.3
Greedy 53.7 47.4 45.0 53.3 52.4 58.1 46.6 55.1
LIME 96.6 94.5 96.2 96.7 96.6 91.8 96.1 95.6
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Figure 8: Choosing between two classifiers, as the
number of instances shown to a simulated user is
varied. Averages and standard errors from 800 runs.

predictions for each explanation method, averaged over 100
runs, in Table 1. The results indicate that LIME dominates
others (all results are significant at p = 0.01) on both datasets,
and for all of the black box models. The other methods either
achieve a lower recall (i.e. they mistrust predictions more
than they should) or lower precision (i.e. they trust too many
predictions), while LIME maintains both high precision and
high recall. Even though we artificially select which features
are untrustworthy, these results indicate that LIME is helpful
in assessing trust in individual predictions.

5.4 Can I trust this model?
In the final simulated user experiment, we evaluate whether

the explanations can be used for model selection, simulating
the case where a human has to decide between two competing
models with similar accuracy on validation data. For this
purpose, we add 10 artificially “noisy” features. Specifically,
on training and validation sets (80/20 split of the original
training data), each artificial feature appears in 10% of the
examples in one class, and 20% of the other, while on the
test instances, each artificial feature appears in 10% of the
examples in each class. This recreates the situation where the
models use not only features that are informative in the real
world, but also ones that introduce spurious correlations. We
create pairs of competing classifiers by repeatedly training
pairs of random forests with 30 trees until their validation
accuracy is within 0.1% of each other, but their test accuracy
differs by at least 5%. Thus, it is not possible to identify the
better classifier (the one with higher test accuracy) from the
accuracy on the validation data.

The goal of this experiment is to evaluate whether a user
can identify the better classifier based on the explanations of
B instances from the validation set. The simulated human
marks the set of artificial features that appear in the B
explanations as untrustworthy, following which we evaluate
how many total predictions in the validation set should be
trusted (as in the previous section, treating only marked
features as untrustworthy). Then, we select the classifier with

fewer untrustworthy predictions, and compare this choice to
the classifier with higher held-out test set accuracy.

We present the accuracy of picking the correct classifier
as B varies, averaged over 800 runs, in Figure 8. We omit
SP-parzen and RP-parzen from the figure since they did not
produce useful explanations, performing only slightly better
than random. LIME is consistently better than greedy, irre-
spective of the pick method. Further, combining submodular
pick with LIME outperforms all other methods, in particular
it is much better than RP-LIME when only a few examples
are shown to the users. These results demonstrate that the
trust assessments provided by SP-selected LIME explana-
tions are good indicators of generalization, which we validate
with human experiments in the next section.

6. EVALUATION WITH HUMAN SUBJECTS
In this section, we recreate three scenarios in machine

learning that require trust and understanding of predictions
and models. In particular, we evaluate LIME and SP-LIME
in the following settings: (1) Can users choose which of two
classifiers generalizes better (§ 6.2), (2) based on the explana-
tions, can users perform feature engineering to improve the
model (§ 6.3), and (3) are users able to identify and describe
classifier irregularities by looking at explanations (§ 6.4).

6.1 Experiment setup
For experiments in §6.2 and §6.3, we use the “Christianity”

and “Atheism” documents from the 20 newsgroups dataset
mentioned beforehand. This dataset is problematic since it
contains features that do not generalize (e.g. very informative
header information and author names), and thus validation
accuracy considerably overestimates real-world performance.

In order to estimate the real world performance, we create
a new religion dataset for evaluation. We download Atheism
and Christianity websites from the DMOZ directory and
human curated lists, yielding 819 webpages in each class.
High accuracy on this dataset by a classifier trained on 20
newsgroups indicates that the classifier is generalizing using
semantic content, instead of placing importance on the data
specific issues outlined above. Unless noted otherwise, we
use SVM with RBF kernel, trained on the 20 newsgroups
data with hyper-parameters tuned via the cross-validation.

6.2 Can users select the best classifier?
In this section, we want to evaluate whether explanations

can help users decide which classifier generalizes better, i.e.,
which classifier would the user deploy “in the wild”. Specif-
ically, users have to decide between two classifiers: SVM
trained on the original 20 newsgroups dataset, and a version
of the same classifier trained on a “cleaned” dataset where
many of the features that do not generalize have been man-
ually removed. The original classifier achieves an accuracy
score of 57.3% on the religion dataset, while the “cleaned”
classifier achieves a score of 69.0%. In contrast, the test accu-
racy on the original 20 newsgroups split is 94.0% and 88.6%,
respectively – suggesting that the worse classifier would be
selected if accuracy alone is used as a measure of trust.

We recruit human subjects on Amazon Mechanical Turk –
by no means machine learning experts, but instead people
with basic knowledge about religion. We measure their
ability to choose the better algorithm by seeing side-by-
side explanations with the associated raw data (as shown
in Figure 2). We restrict both the number of words in each
explanation (K) and the number of documents that each
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Figure 10: Feature engineering experiment. Each
shaded line represents the average accuracy of sub-
jects in a path starting from one of the initial 10 sub-
jects. Each solid line represents the average across
all paths per round of interaction.

person inspects (B) to 6. The position of each algorithm
and the order of the instances seen are randomized between
subjects. After examining the explanations, users are asked
to select which algorithm will perform best in the real world.
The explanations are produced by either greedy (chosen
as a baseline due to its performance in the simulated user
experiment) or LIME, and the instances are selected either
by random (RP) or submodular pick (SP). We modify the
greedy step in Algorithm 2 slightly so it alternates between
explanations of the two classifiers. For each setting, we repeat
the experiment with 100 users.

The results are presented in Figure 9. Note that all of
the methods are good at identifying the better classifier,
demonstrating that the explanations are useful in determining
which classifier to trust, while using test set accuracy would
result in the selection of the wrong classifier. Further, we see
that the submodular pick (SP) greatly improves the user’s
ability to select the best classifier when compared to random
pick (RP), with LIME outperforming greedy in both cases.

6.3 Can non-experts improve a classifier?
If one notes that a classifier is untrustworthy, a common

task in machine learning is feature engineering, i.e. modifying
the set of features and retraining in order to improve gener-
alization. Explanations can aid in this process by presenting
the important features, particularly for removing features
that the users feel do not generalize.

We use the 20 newsgroups data here as well, and ask Ama-
zon Mechanical Turk users to identify which words from the
explanations should be removed from subsequent training, for
the worse classifier from the previous section (§6.2). In each
round, the subject marks words for deletion after observing

B = 10 instances with K = 10 words in each explanation (an
interface similar to Figure 2, but with a single algorithm).
As a reminder, the users here are not experts in machine
learning and are unfamiliar with feature engineering, thus
are only identifying words based on their semantic content.
Further, users do not have any access to the religion dataset
– they do not even know of its existence. We start the experi-
ment with 10 subjects. After they mark words for deletion,
we train 10 different classifiers, one for each subject (with the
corresponding words removed). The explanations for each
classifier are then presented to a set of 5 users in a new round
of interaction, which results in 50 new classifiers. We do a
final round, after which we have 250 classifiers, each with a
path of interaction tracing back to the first 10 subjects.

The explanations and instances shown to each user are
produced by SP-LIME or RP-LIME. We show the average
accuracy on the religion dataset at each interaction round
for the paths originating from each of the original 10 subjects
(shaded lines), and the average across all paths (solid lines)
in Figure 10. It is clear from the figure that the crowd
workers are able to improve the model by removing features
they deem unimportant for the task. Further, SP-LIME
outperforms RP-LIME, indicating selection of the instances
to show the users is crucial for efficient feature engineering.

Each subject took an average of 3.6 minutes per round
of cleaning, resulting in just under 11 minutes to produce
a classifier that generalizes much better to real world data.
Each path had on average 200 words removed with SP,
and 157 with RP, indicating that incorporating coverage of
important features is useful for feature engineering. Further,
out of an average of 200 words selected with SP, 174 were
selected by at least half of the users, while 68 by all the
users. Along with the fact that the variance in the accuracy
decreases across rounds, this high agreement demonstrates
that the users are converging to similar correct models. This
evaluation is an example of how explanations make it easy
to improve an untrustworthy classifier – in this case easy
enough that machine learning knowledge is not required.

6.4 Do explanations lead to insights?
Often artifacts of data collection can induce undesirable

correlations that the classifiers pick up during training. These
issues can be very difficult to identify just by looking at
the raw data and predictions. In an effort to reproduce
such a setting, we take the task of distinguishing between
photos of Wolves and Eskimo Dogs (huskies). We train a
logistic regression classifier on a training set of 20 images,
hand selected such that all pictures of wolves had snow in
the background, while pictures of huskies did not. As the
features for the images, we use the first max-pooling layer
of Google’s pre-trained Inception neural network [25]. On
a collection of additional 60 images, the classifier predicts
“Wolf” if there is snow (or light background at the bottom),
and “Husky” otherwise, regardless of animal color, position,
pose, etc. We trained this bad classifier intentionally, to
evaluate whether subjects are able to detect it.

The experiment proceeds as follows: we first present a
balanced set of 10 test predictions (without explanations),
where one wolf is not in a snowy background (and thus the
prediction is “Husky”) and one husky is (and is thus predicted
as “Wolf”). We show the “Husky” mistake in Figure 11a. The
other 8 examples are classified correctly. We then ask the
subject three questions: (1) Do they trust this algorithm

1142



(a) Husky classified as wolf (b) Explanation

Figure 11: Raw data and explanation of a bad
model’s prediction in the “Husky vs Wolf” task.

Before After

Trusted the bad model 10 out of 27 3 out of 27
Snow as a potential feature 12 out of 27 25 out of 27

Table 2: “Husky vs Wolf” experiment results.

to work well in the real world, (2) why, and (3) how do
they think the algorithm is able to distinguish between these
photos of wolves and huskies. After getting these responses,
we show the same images with the associated explanations,
such as in Figure 11b, and ask the same questions.

Since this task requires some familiarity with the notion of
spurious correlations and generalization, the set of subjects
for this experiment were graduate students who have taken at
least one graduate machine learning course. After gathering
the responses, we had 3 independent evaluators read their
reasoning and determine if each subject mentioned snow,
background, or equivalent as a feature the model may be
using. We pick the majority to decide whether the subject
was correct about the insight, and report these numbers
before and after showing the explanations in Table 2.

Before observing the explanations, more than a third
trusted the classifier, and a little less than half mentioned
the snow pattern as something the neural network was using
– although all speculated on other patterns. After examining
the explanations, however, almost all of the subjects identi-
fied the correct insight, with much more certainty that it was
a determining factor. Further, the trust in the classifier also
dropped substantially. Although our sample size is small,
this experiment demonstrates the utility of explaining indi-
vidual predictions for getting insights into classifiers knowing
when not to trust them and why.

7. RELATED WORK
The problems with relying on validation set accuracy as

the primary measure of trust have been well studied. Practi-
tioners consistently overestimate their model’s accuracy [21],
propagate feedback loops [23], or fail to notice data leaks [14].
In order to address these issues, researchers have proposed
tools like Gestalt [20] and Modeltracker [1], which help users
navigate individual instances. These tools are complemen-
tary to LIME in terms of explaining models, since they do
not address the problem of explaining individual predictions.
Further, our submodular pick procedure can be incorporated
in such tools to aid users in navigating larger datasets.

Some recent work aims to anticipate failures in machine

learning, specifically for vision tasks [3, 29]. Letting users
know when the systems are likely to fail can lead to an
increase in trust, by avoiding “silly mistakes” [8]. These
solutions either require additional annotations and feature
engineering that is specific to vision tasks or do not provide
insight into why a decision should not be trusted. Further-
more, they assume that the current evaluation metrics are
reliable, which may not be the case if problems such as data
leakage are present. Other recent work [11] focuses on ex-
posing users to different kinds of mistakes (our pick step).
Interestingly, the subjects in their study did not notice the
serious problems in the 20 newsgroups data even after look-
ing at many mistakes, suggesting that examining raw data
is not sufficient. Note that (author?) [11] are not alone in
this regard, many researchers in the field have unwittingly
published classifiers that would not generalize for this task.
Using LIME, we show that even non-experts are able to
identify these irregularities when explanations are present.
Further, LIME can complement these existing systems, and
allow users to assess trust even when a prediction seems
“correct” but is made for the wrong reasons.

Recognizing the utility of explanations in assessing trust,
many have proposed using interpretable models [27], espe-
cially for the medical domain [6, 17, 26]. While such models
may be appropriate for some domains, they may not apply
equally well to others (e.g. a supersparse linear model [26]
with 5− 10 features is unsuitable for text applications). In-
terpretability, in these cases, comes at the cost of flexibility,
accuracy, or efficiency. For text, EluciDebug [16] is a full
human-in-the-loop system that shares many of our goals
(interpretability, faithfulness, etc). However, they focus on
an already interpretable model (Naive Bayes). In computer
vision, systems that rely on object detection to produce
candidate alignments [13] or attention [28] are able to pro-
duce explanations for their predictions. These are, however,
constrained to specific neural network architectures or inca-
pable of detecting “non object” parts of the images. Here we
focus on general, model-agnostic explanations that can be
applied to any classifier or regressor that is appropriate for
the domain - even ones that are yet to be proposed.

A common approach to model-agnostic explanation is learn-
ing a potentially interpretable model on the predictions of
the original model [2, 7, 22]. Having the explanation be a
gradient vector [2] captures a similar locality intuition to
that of LIME. However, interpreting the coefficients on the
gradient is difficult, particularly for confident predictions
(where gradient is near zero). Further, these explanations ap-
proximate the original model globally, thus maintaining local
fidelity becomes a significant challenge, as our experiments
demonstrate. In contrast, LIME solves the much more feasi-
ble task of finding a model that approximates the original
model locally. The idea of perturbing inputs for explanations
has been explored before [24], where the authors focus on
learning a specific contribution model, as opposed to our
general framework. None of these approaches explicitly take
cognitive limitations into account, and thus may produce
non-interpretable explanations, such as a gradients or linear
models with thousands of non-zero weights. The problem
becomes worse if the original features are nonsensical to
humans (e.g. word embeddings). In contrast, LIME incor-
porates interpretability both in the optimization and in our
notion of interpretable representation, such that domain and
task specific interpretability criteria can be accommodated.
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8. CONCLUSION AND FUTURE WORK
In this paper, we argued that trust is crucial for effective
human interaction with machine learning systems, and that
explaining individual predictions is important in assessing
trust. We proposed LIME, a modular and extensible ap-
proach to faithfully explain the predictions of any model in
an interpretable manner. We also introduced SP-LIME, a
method to select representative and non-redundant predic-
tions, providing a global view of the model to users. Our
experiments demonstrated that explanations are useful for a
variety of models in trust-related tasks in the text and image
domains, with both expert and non-expert users: deciding
between models, assessing trust, improving untrustworthy
models, and getting insights into predictions.

There are a number of avenues of future work that we
would like to explore. Although we describe only sparse
linear models as explanations, our framework supports the
exploration of a variety of explanation families, such as de-
cision trees; it would be interesting to see a comparative
study on these with real users. One issue that we do not
mention in this work was how to perform the pick step for
images, and we would like to address this limitation in the
future. The domain and model agnosticism enables us to
explore a variety of applications, and we would like to inves-
tigate potential uses in speech, video, and medical domains,
as well as recommendation systems. Finally, we would like
to explore theoretical properties (such as the appropriate
number of samples) and computational optimizations (such
as using parallelization and GPU processing), in order to
provide the accurate, real-time explanations that are critical
for any human-in-the-loop machine learning system.
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Abstract—Algorithmic systems that employ machine learning
play an increasing role in making substantive decisions in modern
society, ranging from online personalization to insurance and
credit decisions to predictive policing. But their decision-making
processes are often opaque—it is difficult to explain why a certain
decision was made. We develop a formal foundation to improve
the transparency of such decision-making systems. Specifically,
we introduce a family of Quantitative Input Influence (QII)
measures that capture the degree of influence of inputs on outputs
of systems. These measures provide a foundation for the design
of transparency reports that accompany system decisions (e.g.,
explaining a specific credit decision) and for testing tools useful
for internal and external oversight (e.g., to detect algorithmic
discrimination).

Distinctively, our causal QII measures carefully account for
correlated inputs while measuring influence. They support a
general class of transparency queries and can, in particular,
explain decisions about individuals (e.g., a loan decision) and
groups (e.g., disparate impact based on gender). Finally, since
single inputs may not always have high influence, the QII
measures also quantify the joint influence of a set of inputs
(e.g., age and income) on outcomes (e.g. loan decisions) and the
marginal influence of individual inputs within such a set (e.g.,
income). Since a single input may be part of multiple influential
sets, the average marginal influence of the input is computed
using principled aggregation measures, such as the Shapley value,
previously applied to measure influence in voting. Further, since
transparency reports could compromise privacy, we explore the
transparency-privacy tradeoff and prove that a number of useful
transparency reports can be made differentially private with very
little addition of noise.

Our empirical validation with standard machine learning algo-
rithms demonstrates that QII measures are a useful transparency
mechanism when black box access to the learning system is
available. In particular, they provide better explanations than
standard associative measures for a host of scenarios that we
consider. Further, we show that in the situations we consider,
QII is efficiently approximable and can be made differentially
private while preserving accuracy.

I. INTRODUCTION

Algorithmic decision-making systems that employ machine
learning and related statistical methods are ubiquitous. They
drive decisions in sectors as diverse as Web services, health-
care, education, insurance, law enforcement and defense [1],
[2], [3], [4], [5]. Yet their decision-making processes are often
opaque. Algorithmic transparency is an emerging research area
aimed at explaining decisions made by algorithmic systems.

The call for algorithmic transparency has grown in in-
tensity as public and private sector organizations increas-
ingly use large volumes of personal information and complex
data analytics systems for decision-making [6]. Algorithmic
transparency provides several benefits. First, it is essential
to enable identification of harms, such as discrimination,
introduced by algorithmic decision-making (e.g., high interest
credit cards targeted to protected groups) and to hold entities
in the decision-making chain accountable for such practices.
This form of accountability can incentivize entities to adopt
appropriate corrective measures. Second, transparency can
help detect errors in input data which resulted in an adverse
decision (e.g., incorrect information in a user’s profile because
of which insurance or credit was denied). Such errors can then
be corrected. Third, by explaining why an adverse decision
was made, it can provide guidance on how to reverse it (e.g.,
by identifying a specific factor in the credit profile that needs
to be improved).

Our Goal. While the importance of algorithmic transparency
is recognized, work on computational foundations for this
research area has been limited. This paper initiates progress
in that direction by focusing on a concrete algorithmic trans-
parency question:

How can we measure the influence of inputs (or features) on
decisions made by an algorithmic system about individuals or
groups of individuals?

Our goal is to inform the design of transparency reports,
which include answers to transparency queries of this form.
To be concrete, let us consider a predictive policing system
that forecasts future criminal activity based on historical data;
individuals high on the list receive visits from the police.
An individual who receives a visit from the police may seek
a transparency report that provides answers to personalized
transparency queries about the influence of various inputs
(or features), such as race or recent criminal history, on the
system’s decision. An oversight agency or the public may
desire a transparency report that provides answers to aggregate
transparency queries, such as the influence of sensitive inputs
(e.g., gender, race) on the system’s decisions concerning the
entire population or about systematic differences in decisions
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among groups of individuals (e.g., discrimination based on
race or age). These reports can thus help identify harms and
errors in input data, and provide guidance on what input
features to work on to modify the decision.

Our Model. We focus on a setting where a transparency
report is generated with black-box access to the decision-
making system1 and knowledge of the input dataset on which
it operates. This setting models the kind of access available
to a private or public sector entity that pro-actively publishes
transparency reports. It also models a useful level of access
required for internal or external oversight of such systems
to identify harms introduced by them. For the former use
case, our approach provides a basis for design of transparency
mechanisms; for the latter, it provides a formal basis for
testing. Returning to our predictive policing system, the law
enforcement agency that employs it could proactively publish
transparency reports, and test the system for early detection
of harms like race-based discrimination. An oversight agency
could also use transparency reports for post hoc identification
of harms.

Our Approach. We formalize transparency reports by introduc-
ing a family of Quantitative Input Influence (QII) measures
that capture the degree of influence of inputs on outputs of
the system. Three desiderata drove the definitions of these
measures.

First, we seek a formalization of a general class of
transparency reports that allows us to answer many useful
transparency queries related to input influence, including but
not limited to the example forms described above about the
system’s decisions about individuals and groups.

Second, we seek input influence measures that appropriately
account for correlated inputs—a common case for our target
applications. For example, consider a system that assists in
hiring decisions for a moving company. Gender and the
ability to lift heavy weights are inputs to the system. They
are positively correlated with each other and with the hiring
decisions. Yet transparency into whether the system uses the
weight lifting ability or the gender in making its decisions (and
to what degree) has substantive implications for determining if
it is engaging in discrimination (the business necessity defense
could apply in the former case [7]). This observation makes
us look beyond correlation coefficients and other associative
measures.

Third, we seek measures that appropriately quantify input
influence in settings where any input by itself does not have
significant influence on outcomes but a set of inputs does.
In such cases, we seek measures of joint influence of a set
of inputs (e.g., age and income) on a system’s decision (e.g.,
to serve a high-paying job ad). We also seek measures of
marginal influence of an input within such a set (e.g., age)
on the decision. This notion allows us to provide finer-grained

1By “black-box access to the decision-making system” we mean a typical
setting of software testing with complete control of inputs to the system and
full observability of the outputs.

transparency about the relative importance of individual inputs
within the set (e.g., age vs. income) in the system’s decision.

We achieve the first desideratum by formalizing a notion
of a quantity of interest. A transparency query measures the
influence of an input on a quantity of interest. A quantity of
interest represents a property of the behavior of the system for
a given input distribution. Our formalization supports a wide
range of statistical properties including probabilities of various
outcomes in the output distribution and probabilities of output
distribution outcomes conditioned on input distribution events.
Examples of quantities of interest include the conditional
probability of an outcome for a particular individual or group,
and the ratio of conditional probabilities for an outcome for
two different groups (a metric used as evidence of disparate
impact under discrimination law in the US [7]).

We achieve the second desideratum by formalizing causal
QII measures. These measures (called Unary QII) model the
difference in the quantity of interest when the system operates
over two related input distributions—the real distribution and a
hypothetical (or counterfactual) distribution that is constructed
from the real distribution in a specific way to account for
correlations among inputs. Specifically, if we are interested in
measuring the influence of an input on a quantity of interest of
the system behavior, we construct the hypothetical distribution
by retaining the marginal distribution over all other inputs and
sampling the input of interest from its prior distribution. This
choice breaks the correlations between this input and all other
inputs and thus lets us measure the influence of this input
on the quantity of interest, independently of other correlated
inputs. Revisiting our moving company hiring example, if the
system makes decisions only using the weightlifting ability of
applicants, the influence of gender will be zero on the ratio of
conditional probabilities of being hired for males and females.

We achieve the third desideratum in two steps. First, we
define a notion of joint influence of a set of inputs (called
Set QII) via a natural generalization of the definition of the
hypothetical distribution in the Unary QII definition. Second,
we define a family of Marginal QII measures that model the
difference on the quantity of interest as we consider sets with
and without the specific input whose marginal influence we
want to measure. Depending on the application, we may pick
these sets in different ways, thus motivating several different
measures. For example, we could fix a set of inputs and ask
about the marginal influence of any given input in that set on
the quantity of interest. Alternatively, we may be interested in
the average marginal influence of an input when it belongs
to one of several different sets that significantly affect the
quantity of interest. We consider several marginal influence
aggregation measures from cooperative game theory originally
developed in the context of influence measurement in voting
scenarios and discuss their applicability in our setting. We
also build on that literature to present an efficient approximate
algorithm for computing these measures.

Recognizing that different forms of transparency reports
may be appropriate for different settings, we generalize our QII
measures to be parametric in its key elements: the intervention
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used to construct the hypothetical input distribution; the quan-
tity of interest; the difference measure used to quantify the
distance in the quantity of interest when the system operates
over the real and hypothetical input distributions; and the
aggregation measure used to combine marginal QII measures
across different sets. This generalized definition provides a
structure for exploring the design space of transparency re-
ports.

Since transparency reports released to an individual, reg-
ulatory agency, or the public might compromise individual
privacy, we explore the possibility of answering transparency
queries while protecting differential privacy [8]. We prove
bounds on the sensitivity of a number of transparency queries
and leverage prior results on privacy amplification via sam-
pling [9] to accurately answer these queries.

We demonstrate the utility of the QII framework by de-
veloping two machine learning applications on real datasets:
an income classification application based on the benchmark
adult dataset [10], and a predictive policing application
based on the National Longitudinal Survey of Youth [11].
Using these applications, we argue, in Section VII, the need
for causal measurement by empirically demonstrating that
in the presence of correlated inputs, observational measures
are not informative in identifying input influence. Further,
we analyze transparency reports of individuals in our dataset
to demonstrate how Marginal QII can provide insights into
individuals’ classification outcomes. Finally, we demonstrate
that under most circumstances, QII measures can be made
differentially private with minimal addition of noise, and can
be approximated efficiently.

In summary, this paper makes the following contributions:
• A formalization of a specific algorithmic transparency

problem for decision-making systems. Specifically, we
define a family of Quantitative Input Influence metrics
that accounts for correlated inputs, and provides answers
to a general class of transparency queries, including the
absolute and marginal influence of inputs on various
behavioral system properties. These metrics can inform
the design of transparency mechanisms and guide pro-
active system testing and posthoc investigations.

• A formal treatment of privacy-transparency trade-offs,
in particular, by construction of differentially private
answers to transparency queries.

• An implementation and experimental evaluation of the
metrics over two real data sets. The evaluation demon-
strates that (a) the QII measures are informative; (b) they
remain accurate while preserving differential privacy; and
(c) can be computed quite quickly for standard machine
learning systems applied to real data sets.

II. UNARY QII

Consider the situation discussed in the introduction, where
an automated system assists in hiring decisions for a moving
company. The input features used by this classification system
are : Age, Gender, Weight Lifting Ability, Marital Status and
Education. Suppose that, as before, weight lifting ability is

strongly correlated with gender (with men having better overall
lifting ability than woman). One particular question that an
analyst may want to ask is: “What is the influence of the input
Gender on positive classification for women?”. The analyst
observes that 20% of women are approved according to his
classifier. Then, he replaces every woman’s field for gender
with a random value, and notices that the number of women
approved does not change. In other words, an intervention on
the Gender variable does not cause a significant change in
the classification outcome. Repeating this process with Weight
Lifting Ability results in a 20% increase in women’s hiring.
Therefore, he concludes that for this classifier, Weight Lifting
Ability has more influence on positive classification for women
than Gender.

By breaking correlations between gender and weight lifting
ability, we are able to establish a causal relationship between
the outcome of the classifier and the inputs. We are able to
identify that despite the strong correlation between a negative
classification outcome for women, the feature gender was not
a cause of this outcome. We formalize the intuition behind
such causal experimentation in our definition of Quantitative
Input Influence (QII).

We are given an algorithm A. A operates on inputs (also
referred to as features for ML systems), N = {1, . . . , n}.
Every i ∈ N , can take on various states, given by Xi. We let
X =

∏
i∈N Xi be the set of possible feature state vectors, let

Z be the set of possible outputs of A. For a vector x ∈ X
and set of inputs S ⊆ N , x|S denotes the vector of inputs in
S. We are also given a probability distribution π on X , where
π(x) is the probability of the input vector x. We can define a
marginal probability of a set of inputs S in the standard way
as follows:

πS(x|S) =
∑

{x′∈X|x′|S=x|S}
π(x′) (1)

When S is a singleton set {i}, we write the marginal
probability of the single input as πi(x).

Informally, to quantify the influence of an input i, we
compute its effect on some quantity of interest; that is, we
measure the difference in the quantity of interest, when the
feature i is changed via an intervention. In the example above,
the quantity of interest is the fraction of positive classification
of women. In this paper, we employ a particular interpretation
of “changing an input”, where we replace the value of every
input with a random independently chosen value. To describe
the replacement operation for input i, we first define an
expanded probability space on X × X , with the following
distribution:

π̃(x,u) = π(x)π(u). (2)

The first component of an expanded vector (x,u), is just
the original input vector, whereas the second component repre-
sents an independent random vector drawn from the same dis-
tribution π. Over this expanded probability space, the random
variable X(x, ui) = x represents the original feature vector.
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The random variable X−iUi(x,u) = x|N\{i}ui, represents the
random variable with input i replaced with a random sample.
Defining this expanded probability space allows us to switch
between the original distribution, represented by the random
variable X , and the intervened distribution, represented by
X−iUi. Notice that both these random variables are defined
from X ×X , the expanded probability space, to X . We denote
the set of random variables of the type X ×X → X as R(X ).

We can now define probabilities over this expanded space.
For example, the probability over X remains the same:

Pr(X = x) =
∑

{(x′,u′)|x′=x}
π̃(x′,u′)

=

⎛
⎝ ∑

{x′|x′=x}
π(x′)

⎞
⎠
(∑

u′

π(u′)

)

= π(x)

Similarly, we can define more complex quantities. The
following expression represents the expectation of a classifier
c evaluating to 1, when i is randomly intervened on:

E(c(X−iUi) = 1) =
∑

{(x,u)|c(xN\iui)=1}
π̃(x, ui).

Observe that the expression above computes the probability
of the classifier c evaluating to 1, when input i is replaced
with a random sample from its probability distribution πi(ui).

∑

{(x,u)|c(xN\iui)=1}
π̃(x, ui)

=
∑

x

π(x)
∑

{u′i|c(xN\iu′i)=1}

∑

{u|ui=u′i}
π(u)

=
∑

x

π(x)
∑

{u′i|c(xN\iu′i)=1}
πi(u

′
i)

We can also define conditional distributions in the usual
way. The following represents the probability of the classifier
evaluating to 1 under the randomized intervention on input i
of X , given that X belongs to some subset Y ⊆ X :

E(c(X−iUi) = 1 | X ∈ Y) = E(c(X−iUi) = 1 ∧X ∈ Y)
E(X ∈ Y) .

Formally, for an algorithm A, a quantity of interest QA(·) :
R(X ) �→ R is a function of a random variable from R(X ).

Definition 1 (QII). For a quantity of interest QA(·), and an
input i, the Quantitative Input Influence of i on QA(·) is
defined to be

ιQA(i) = QA(X)−QA(X−iUi).

In the example above, for a classifier A, the quantity of
interest, the fraction of women (represented by the set W ⊆
X ) with positive classification, can be expressed as follows:

QA(·) = E(A(·) = 1 | X ∈ W),

and the influence of input i is:

ι(i) = E(A(X) = 1 | X ∈ W)−E(A(X−iUi) = 1 | X ∈ W).

When A is clear from the context, we simply write Q rather
than QA. We now instantiate this definition with different
quantities of interest to illustrate the above definition in three
different scenarios.

A. QII for Individual Outcomes

One intended use of QII is to provide personalized trans-
parency reports to users of data analytics systems. For exam-
ple, if a person is denied a job application due to feedback
from a machine learning algorithm, an explanation of which
factors were most influential for that person’s classification
can provide valuable insight into the classification outcome.

For QII to quantify the use of an input for individual
outcomes, we define the quantity of interest to be the classifi-
cation outcome for a particular individual. Given a particular
individual x, we define Qx

ind(·) to be E(c(·) = 1 | X = x).
The influence measure is therefore:

ιxind(i) = E(c(X) = 1 | X = x)− E(c(X−iUi) = 1 | X = x)
(3)

When the quantity of interest is not the probability of
positive classification but the classification that x actually
received, a slight modification of the above QII measure is
more appropriate:

ιxind-act(i) = E(c(X) = c(x) | X = x)
−E(c(X−iUi) = c(x) | X = x)

= 1− E(c(X−iUi) = c(x) | X = x)
= E(c(X−iUi) �= c(x) | X = x)

(4)

The above probability can be interpreted as the probability
that feature i is pivotal to the classification of c(x). Computing
the average of this quantity over X yields:

∑
x∈X Pr(X = x)E(i is pivotal for c(X) | X = x)

= E(i is pivotal for c(X)).
(5)

We denote this average QII for individual outcomes as
defined above, by ιind-avg(i), and use it as a measure for
importance of an input towards classification outcomes.
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B. QII for Group Outcomes

As in the running example, the quantity of interest may
be the classification outcome for a set of individuals. Given a
group of individuals Y ⊆ X , we define QYgrp(·) to be E(c(·) =
1 | X ∈ Y). The influence measure is therefore:

ιYgrp(i) = E(c(X) = 1 | X ∈ Y)− E(c(X−iUi) = 1 | X ∈ Y)
(6)

C. QII for Group Disparity

Instead of simply classification outcomes, an analyst may
be interested in more nuanced properties of data analytics
systems. Recently, disparate impact has come to the fore as a
measure of unfairness, which compares the rates of positive
classification within protected groups defined by gender or
race. The ‘80% rule’ in employment which states that the
rate of selection within a protected demographic should be
at least 80% of the rate of selection within the unprotected
demographic. The quantity of interest in such a scenario is
the ratio in positive classification outcomes for a protected
group Y from the rest of the population X \ Y .

E(c(X) = 1 | X ∈ Y)
E(c(X) = 1 | X �∈ Y)

However, the ratio of classification rates is unstable at at
low values of positive classification. Therefore, for the com-
putations in this paper we use the difference in classification
rates as our measure of group disparity.

QYdisp(·) = |E(c(·) = 1 | X ∈ Y)− E(c(·) = 1 | X �∈ Y)|
(7)

The QII measure of an input group disparity, as a result is:

ιYdisp(i) = QYdisp(X)−QYdisp(X−iUi). (8)

More generally, group disparity can be viewed as an as-
sociation between classification outcomes and membership
in a group. QII on a measure of such association (e.g.,
group disparity) identifies the variable that causes the associ-
ation in the classifier. Proxy variables are variables that are
associated with protected attributes. However, for concerns
of discrimination such as digital redlining, it is important
to identify which proxy variables actually introduce group
disparity. It is straightforward to observe that features with
high QII for group disparity are proxy variables, and also cause
group disparity. Therefore, QII on group disparity is a useful
diagnostic tool for determining discriminiation. The use of QII
in identifying proxy variables is explored experimentally in
Section VII-B. Note that because of such proxy variables,
simply ensuring that protected attributes are not input to
the classifier is not sufficient to avoid discrimination (see
also [12]).

III. SET AND MARGINAL QII

In many situations, intervention on a single input variable
has no influence on the outcome of a system. Consider, for
example, a two-feature setting where features are age (A) and
income (I), and the classifier is c(A, I) = (A = old) ∧ (I =
high). In other words, the only datapoints that are labeled 1
are those of elderly persons with high income. Now, given
a datapoint where A = young , I = low , an intervention on
either age or income would result in the same classification.
However, it would be misleading to say that neither age nor
income have an influence over the outcome: changing both the
states of income and age would result in a change in outcome.

Equating influence with the individual ability to affect the
outcome is uninformative in real datasets as well: Figure 1 is a
histogram of influences of features on outcomes of individuals
for a classifier learnt from the adult dataset [13]2. For most
individuals, all features have zero influence: changing the state
of one feature alone is not likely to change the outcome of
a classifier. Of the 19537 datapoints we evaluate, more than
half have ιx(i) = 0 for all i ∈ N , Indeed, changes to outcome
are more likely to occur if we intervene on sets of features.
In order to get a better understanding of the influence of a
feature i ∈ N , we should measure its effect when coupled
with interventions on other features. We define the influence
of a set of inputs as a straightforward extension of the influence
of individual inputs. Essentially, we wish the influence of a set
of inputs S ⊆ N to be the same as when the set of inputs is
considered to be a single input; when intervening on S, we
draw the states of i ∈ S based on the joint distribution of the
states of features in S, πS(uS), as defined in Equation (1).

We can naturally define a distribution over X ×∏i∈S Xi,
naturally extending (2) as:

π̃(x, uS) = π(x)πS(uS). (9)

We also define the random variable X−SUS(x,uS) =
x|N\SuS ; X−S(x,uS) has the states of features in N \ S
fixed to their original values in x, but features in S take on
new values according to uS .

Definition 2 (Set QII). For a quantity of interest Q, and an
input i, the Quantitative Input Influence of set S ⊆ N on Q
is defined to be

ιQ(S) = Q(X)−Q(X−SUS).

Considering the influence of a set of inputs opens up a
number of interesting questions due to the interaction between
inputs. First among these is how does one measure the
individual effect of a feature, given the measured effects of
interventions on sets of features. One natural way of doing so
is by measuring the marginal effect of a feature on a set.

2The adult dataset contains approximately 31k datapoints of users’ personal
attributes, and whether their income is more than $50k per annum; see
Section VII for more details.
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Fig. 1: A histogram of the highest specific causal influence
for some feature across individuals in the adult dataset. Alone,
most inputs alone have very low influence.

Definition 3 (Marginal QII). For a quantity of interest Q, and
an input i, the Quantitative Input Influence of input i over a
set S ⊆ N on Q is defined to be

ιQ(i, S) = Q(X−SUS)−Q(X−S∪{i}US∪{i}).

Notice that marginal QII can also be viewed as a difference
in set QIIs: ιQ(S ∪ {i}) − ιQ(S). Informally, the difference
between ιQ(S ∪ {i}) and ιQ(S) measures the “added value”
obtained by intervening on S ∪ {i}, versus intervening on S
alone.

The marginal contribution of i may vary significantly based
on S. Thus, we are interested in the aggregate marginal
contribution of i to S, where S is sampled from some
natural distribution over subsets of N \ {i}. In what follows,
we describe a few measures for aggregating the marginal
contribution of a feature i to sets, based on different methods
for sampling sets. The primary method of aggregating the
marginal contribution is the Shapley value [14]. The less
theoretically inclined reader can choose to proceed to Section
V without a loss in continuity.

A. Cooperative Games and Causality

In this section, we discuss how measures from the theory of
cooperative games define measures for aggregating marginal
influence. In particular, we observe that the Shapley value [14]
is characterized by axioms that are natural in our setting.
However, other measures may be appropriate for certain input
data generation processes.

Definition 2 measures the influence that an intervention on
a set of features S ⊆ N has on the outcome. One can naturally
think of Set QII as a function v : 2N → R, where v(S) is the
influence of S on the outcome. With this intuition in mind,
one can naturally study influence measures using cooperative
game theory, and in particular, prevalent influence measures in
cooperative games such as the Shapley value, Banzhaf index
and others. These measures can be thought of as influence

aggregation methods, which, given an influence measure v :
2N → R, output a vector φ ∈ Rn, whose i-th coordinate
corresponds in some natural way to the aggregate influence,
or aggregate causal effect, of feature i.

The original motivation for game-theoretic measures is
revenue division [15, Chapter 18]: the function v describes
the amount of money that each subset of players S ⊆ N can
generate; assuming that the set N generates a total revenue of
v(N), how should v(N) be divided amongst the players? A
special case of revenue division that has received significant
attention is the measurement of voting power [16]. In voting
systems with multiple agents with differing weights, voting
power often does not directly correspond to the weights of the
agents. For example, the US presidential election can roughly
be modeled as a cooperative game where each state is an agent.
The weight of a state is the number of electors in that state (i.e.,
the number of votes it brings to the presidential candidate who
wins that state). Although states like California and Texas have
higher weight, swing states like Pennsylvania and Ohio tend
to have higher power in determining the outcome of elections.

A voting system is modeled as a cooperative game: players
are voters, and the value of a coalition S ⊆ N is 1 if S
can make a decision (e.g. pass a bill, form a government,
or perform a task), and is 0 otherwise. Note the similarity
to classification, with players being replaced by features. The
game-theoretic measures of revenue division are a measure
of voting power: how much influence does player i have
in the decision making process? Thus the notions of voting
power and revenue division fit naturally with our goals when
defining aggregate QII influence measures: in both settings,
one is interested in measuring the aggregate effect that a single
element has, given the actions of subsets.

A revenue division should ideally satisfy certain desiderata.
Formally, we wish to find a function φ(N, v), whose input
is N and v : 2N → R, and whose output is a vector in
Rn, such that φi(N, v) measures some quantity describing
the overall contribution of the i-th player. Research on fair
revenue division in cooperative games traditionally follows an
axiomatic approach: define a set of properties that a revenue
division should satisfy, derive a function that outputs a value
for each player, and argue that it is the unique function that
satisfies these properties.

Several canonical fair cooperative solution concepts rely
on the fundamental notion of marginal contribution. given a
player i and a set S ⊆ N \ {i}, the marginal contribution of
i to S is denoted mi(S, v) = v(S ∪ {i}) − v(S) (we simply
write mi(S) when v is clear from the context). Marginal QII,
as defined above, can be viewed as an instance of a measure of
marginal contribution. Given a permutation π ∈ Π(N) of the
elements in N , we define Pi(σ) = {j ∈ N | σ(j) < σ(i)};
this is the set of i’s predecessors in σ. We can now simi-
larly define the marginal contribution of i to a permutation
σ ∈ Π(N) as mi(σ) = mi(Pi(σ)). Intuitively, one can think
of the players sequentially entering a room, according to some
ordering σ; the value mi(σ) is the marginal contribution that
i has to whoever is in the room when she enters it.
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Generally speaking, game theoretic influence measures
specify some reasonable way of aggregating the marginal
contributions of i to sets S ⊆ N . That is, they measure a
player’s expected marginal contribution to sets sampled from
some distribution D over 2N , resulting in a payoff of

ES∼D[mi(S)] =
∑

S⊆N

Pr
D
[S]mi(S).

Thus, fair revenue division draws its appeal from the degree
to which the distribution D is justifiable within the context
where revenue is shared. In our setting, we argue for the use
of the Shapley value. Introduced by the late Lloyd Shapley, the
Shapley value is one of the most canonical methods of dividing
revenue in cooperative games. It is defined as follows:

ϕi(N, v) = Eσ[mi(σ)] =
1

n!

∑

σ∈Π(N)

mi(σ)

Intuitively, the Shapley value describes the following process:
players are sequentially selected according to some randomly
chosen order σ; each player receives a payment of mi(σ). The
Shapley value is the expected payment to the players under
this regime. The definition we use describes a distribution
over permutations of N , not its subsets; however, it is easy
to describe the Shapley value in terms of a distribution over
subsets. If we define p[S] = 1

n
1

(n−1
|S| )

, it is a simple exercise

to show that

ϕi(N, v) =
∑

S⊆N

p[S]mi(S).

Intuitively, p[S] describes the following process: first, choose
a number k ∈ [0, n− 1] uniformly at random; next, choose a
set of size k uniformly at random.

The Shapley value is one of many reasonable ways of
measuring influence; we provide a detailed review of two
others — the Banzhaf index [17], and the Deegan-Packel
index [18] — in Appendix A.

B. Axiomatic Treatment of the Shapley Value

In this work, the Shapley value is our function of choice for
aggregating marginal feature influence. The objective of this
section is to justify our choice, and provide a brief exposition
of axiomatic game-theoretic value theory. We present the
axioms that define the Shapley value, and discuss how they
apply in the QII setting. As we show, by requiring some
desired properties, one arrives at a game-theoretic influence
measure as the unique function for measuring information use
in our setting.

The Shapley value satisfies the following properties:

Definition 4 (Symmetry (Sym)). We say that i, j ∈ N are
symmetric if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i, j}.
A value φ satisfies symmetry if φi = φj whenever i and j are
symmetric.

Definition 5 (Dummy (Dum)). We say that a player i ∈ N
is a dummy if v(S ∪ {i}) = v(S) for all S ⊆ N . A value φ
satisfies the dummy property if φi = 0 whenever i is a dummy.

Definition 6 (Efficiency (Eff)). A value satisfies the efficiency
property if

∑
i∈N φi = v(N).

All of these axioms take on a natural interpretation in the
QII setting. Indeed, if two features have the same probabilistic
effect, no matter what other interventions are already in place,
they should have the same influence. In our context, the
dummy axiom says that a feature that never offers information
with respect to an outcome should have no influence. In the
case of specific causal influence, the efficiency axiom simply
states that the total amount of influence should sum to

Pr(c(X) = c(x) | X = x)− Pr(c(X−N ) = c(x) | X = x)

=1− Pr(c(X) = c(x)) = Pr(c(X) �= c(x)).

That is, the total amount of influence possible is the likelihood
of encountering elements whose evaluation is not c(x). This is
natural: if the vast majority of elements have a value of c(x),
it is quite unlikely that changes in features’ state will have any
effect on the outcome whatsoever; thus, the total amount of
influence that can be assigned is Pr(c(X) �= c(x)). Similarly,
if the vast majority of points have a value different from x,
then it is likelier that a random intervention would result in a
change in value, resulting in more influence to be assigned.

In the original paper by [14], it is shown that the Shapley
value is the only function that satisfies (Sym), (Dum), (Eff),
as well as the additivity (Add) axiom.

Definition 7 (Additivity (Add)). Given two games
〈N, v1〉, 〈N, v2〉, we write 〈N, v1 + v2〉 to denote the game
v′(S) = v1(S)+ v2(S) for all S ⊆ N . A value φ satisfies the
additivity property if φi(N, v1) + φi(N, v2) = φi(N, v1 + v2)
for all i ∈ N .

In our setting, the additivity axiom makes little intuitive
sense; it would imply, for example, that if we were to multiply
Q by a constant c, the influence of i in the resulting game
should be multiplied by c as well, which is difficult to justify.

[19] offers an alternative characterization of the Shapley
value, based on the more natural monotonicity assumption,
which is a strong generalization of the dummy axiom.

Definition 8 (Monotonicity (Mono)). Given two games
〈N, v1〉, 〈N, v2〉, a value φ satisfies strong monotonicity if
mi(S, v1) ≥ mi(S, v2) for all S implies that φi(N, v1) ≥
φi(N, v2), where a strict inequality for some set S ⊆ N
implies a strict inequality for the values as well.

Monotonicity makes intuitive sense in the QII setting: if a
feature has consistently higher influence on the outcome in one
setting than another, its measure of influence should increase.
For example, if a user receives two transparency reports (say,
for two separate loan applications), and in one report gender
had a consistently higher effect on the outcome than in the
other, then the transparency report should reflect this.

Theorem 9 ([19]). The Shapley value is the only function that
satisfies (Sym), (Eff) and (Mono).

604604

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 06,2021 at 14:03:55 UTC from IEEE Xplore.  Restrictions apply. 



To conclude, the Shapley value is a unique way of measur-
ing aggregate influence in the QII setting, while satisfying a
set of very natural axioms.

IV. TRANSPARENCY SCHEMAS

We now discuss two generalizations of the definitions
presented in Section II, and then define a transparency schema
that map the space of transparency reports based on QII.

a) Intervention Distribution: In this paper we only con-
sider randomized interventions when the interventions are
drawn independently from the priors of the given input.
However, depending on the specific causal question at hand,
we may use different interventions. Formally, this is achieved
by allowing an arbitrary intervention distribution πinter such
that

π̃(x,u) = π(x)πinter(u).

The subsequent definitions remain unchanged. One example
of an intervention different from the randomized intervention
considered in the rest of the paper is one held constant at a
vector x0:

πinter
x0

(u) =

{
1 for u = x0

0 o.w.

A QII measure defined on the constant intervention as
defined above, measures the influence of being different from
a default, where the default is represented by x0.

b) Difference Measure: A second generalization allows
us to consider quantities of interest which are not real numbers.
Consider, for example, the situation where the quantity of
interest is an output probability distribution, as in the case
in a randomized classifier. In this setting, a suitable measure
for quantifying the distance between distributions can be
used as a difference measure between the two quantities of
interest. Examples of such difference measures include the
KL-divergence [20] between distribution or distance metrics
between vectors.

c) Transparency Schema: We now present a transparency
schema that maps the space of transparency reports based on
QII measures. It consists of the following elements:
• A quantity of interest, which captures the aspect of the

system we wish to gain transparency into.
• An intervention distribution, which defines how a coun-

terfactual distribution is constructed from the true distri-
bution.

• A difference measure, which quantifies the difference
between two quantities of interest.

• An aggregation technique, which combines marginal QII
measures across different subsets of inputs (features).

For a given application, one has to appropriately instantiate
this schema. We have described several instances of each
schema element. The choices of the schema elements are
guided by the particular causal question being posed. For
instance, when the question is: “Which features are most
important for group disparity?”, the natural quantity of interest

is a measure of group disparity, and the natural intervention
distribution is using the prior as the question does not suggest
a particular bias. On the other hand, when the question is:
“Which features are most influential for person A’s classifica-
tion as opposed to person B?”, a natural quantity of interest is
person A’s classification, and a natural intervention distribution
is the constant intervention using the features of person B.
A thorough exploration of other points in this design space
remains an important direction for future work.

V. ESTIMATION

While the model we propose offers several appealing prop-
erties, it faces several technical implementation issues. Several
elements of our work require significant computational effort;
in particular, both the probability that a change in feature state
would cause a change in outcome, and the game-theoretic
influence measures are difficult to compute exactly. In the
following sections we discuss these issues and our proposed
solutions.

A. Computing Power Indices

Computing the Shapley or Banzhaf values exactly is gen-
erally computationally intractable (see [21, Chapter 4] for a
general overview); however, their probabilistic nature means
that they can be well-approximated via random sampling.
More formally, given a random variable X , suppose that we
are interested in estimating some determined quantity q(X)
(say, q(X) is the mean of X); we say that a random variable
q∗ is an ε-δ approximation of q(X) if

Pr[|q∗ − q(X)| ≥ ε] < δ;

in other words, it is extremely likely that the difference
between q(X) and q∗ is no more than ε. An ε-δ approximation
scheme for q(X) is an algorithm that for any ε, δ ∈ (0, 1) is
able to output a random variable q∗ that is an ε-δ approxima-
tion of q(X), and runs in time polynomial in 1

ε , log 1δ.
[22] show that when 〈N, v〉 is a simple game (i.e. a game

where v(S) ∈ {0, 1} for all S ⊆ N ), there exists an ε-
δ approximation scheme for both the Banzhaf and Shapley
values; that is, for φ ∈ {ϕ, β}, we can guarantee that for any
ε, δ > 0, with probability ≥ 1− δ, we output a value φ∗i such
that |φ∗i − φi| < ε.

More generally, [23] observe that the number of i.i.d.
samples needed in order to approximate the Shapley value and
Banzhaf index is parametrized in Δ(v) = maxS⊆N v(S) −
minS⊆N v(S). Thus, if Δ(v) is a bounded value, then an ε-
δ approximation exists. In our setting, coalitional values are
always within the interval [0, 1], which immediately implies
the following theorem.

Theorem 10. There exists an ε-δ approximation scheme for
the Banzhaf and Shapley values in the QII setting.

B. Estimating Q

Since we do not have access to the prior generating the
data, we simply estimate it by observing the dataset itself.
Recall that X is the set of all possible user profiles; in this

605605

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 06,2021 at 14:03:55 UTC from IEEE Xplore.  Restrictions apply. 



case, a dataset is simply a multiset (i.e. possibly containing
multiple copies of user profiles) contained in X . Let D be a
finite multiset of X , the input space. We estimate probabilities
by computing sums over D. For example, for a classifier c,
the probability of c(X) = 1.

ÊD(c(X) = 1) =

∑
x∈D �(c(x) = 1)

|D| . (10)

Given a set of features S ⊆ N , let D|S denote the elements
of D truncated to only the features in S. Then, the intervened
probability can be estimated as follows:

ÊD(c(X−S) = 1) =

∑
uS∈D|S

∑
x∈D �(c(x|N\SuS) = 1)

|D|2 .

(11)

Similarly, the intervened probability on individual outcomes
can be estimated as follows:

ÊD(c(X−S) = 1|X = x) =

∑
uS∈DS

�(c(x|N\SuS) = 1)

|D| .

(12)

Finally, let us observe group disparity:
∣∣∣ÊD(c(X−S) = 1 | X ∈ Y)− ÊD(c(X−S) = 1 | X /∈ Y)

∣∣∣

The term ÊD(c(X−S) = 1 | X ∈ Y) equals

1

|Y|
∑

x∈Y

∑

uS∈DS

�(c(x|N\SuS) = 1),

Thus group disparity can be written as:
∣∣ 1

|Y|
∑

x∈Y

∑

uS∈DS

�(c(x|N\SuS) = 1)

− 1

|D \ Y|
∑

x∈D\Y

∑

uS∈DS

�(c(x|N\SuS) = 1)
∣∣. (13)

We write Q̂Ydisp(S) to denote (13).
If D is large, these sums cannot be computed efficiently.

Therefore, we approximate the sums by sampling from the
dataset D. It is possible to show using the According to the
Hoeffding bound [24], partial sums of n random variables
Xi, within a bound Δ, can be well-approximated with the
following probabilistic bound:

Pr

(∣∣∣∣∣
1

n

n∑

i=1

(Xi − EXi)

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(−2nε2
Δ

)

Since all the samples of measures discussed in the paper
are bounded within the interval [0, 1], we admit an ε-δ
approximation scheme where the number of samples n can
be chosen to be greater than log(2/δ)/2ε2. Note that these
bounds are independent of the size of the dataset. Therefore,
given an efficient sampler, these quantities of interest can be
approximated efficiently even for large datasets.

VI. PRIVATE TRANSPARENCY REPORTS

One important concern is that releasing influence measures
estimated from a dataset might leak information about in-
dividual users; our goal is providing accurate transparency
reports, without compromising individual users’ private data.
To mitigate this concern, we add noise to make the measures
differentially private. We show that the sensitivities of the QII
measures considered in this paper are very low and therefore
very little noise needs to be added to achieve differential
privacy.

The sensitivity of a function is a key parameter in ensuring
that it is differentially private; it is simply the worst-case
change in its value, assuming that we change a single data
point in our dataset. Given some function f over datasets, we
define the sensitivity of a function f with respect to a dataset
D, denoted by Δf(D) as

max
D′

|f(D)− f(D′)|

where D and D′ differ by at most one instance. We use the
shorthand Δf when D is clear from the context.

In order to not leak information about the users used
to compute the influence of an input, we use the standard
Laplace Mechanism [8] and make the influence measure
differentially private. The amount of noise required depends
on the sensitivity of the influence measure. We show that
the influence measure has low sensitivity for the individuals
used to sample inputs. Further, due to a result from [9] (and
stated in [25]), sampling amplifies the privacy of the computed
statistic, allowing us to achieve high privacy with minimal
noise addition.

The standard technique for making any function differ-
entially private is to add Laplace noise calibrated to the
sensitivity of the function:

Theorem 11 ([8]). For any function f from datasets to R,
the mechanism Kf that adds independently generated noise
with distribution Lap(Δf(D)/ε) to the k output enjoys ε-
differential privacy.

Since each of the quantities of interest aggregate over a
large number of instances, the sensitivity of each function is
very low.

Theorem 12. Given a dataset D,
1) ΔÊD(c(X) = 1) = 1

|D|
2) ΔÊD(c(X−S) = 1) ≤ 2

|D|
3) ΔÊD(c(X−S) = 1|X = x) = 1

|D|
4) Q̂Ydisp(S) ≤ max

{
1

|D∩Y| ,
1

|D\Y|

}

Proof. We examine some cases here. In Equation 10, if two
datasets differ by one instance, then at most one term of the
summation will differ. Since each term can only be either 0
or 1, the sensitivity of the function is

ΔÊD(c(X) = 1) =

∣∣∣∣
0

|D| −
1

|D|

∣∣∣∣ =
1

|D| .
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Similarly, in Equation 11, an instance appears 2|D| − 1
times, once each for the inner summation and the outer
summation, and therefore, the sensitivity of the function is

ΔÊD(c(X−S) = 1) =
2|D| − 1

|D|2 ≤ 2

|D| .

For individual outcomes (Equation (12)), similarly, only one
term of the summation can differ. Therefore, the sensitivity of
(12) is 1/|D|.

Finally, we observe that a change in a single element x′ of
D will cause a change of at most 1

|D∩Y| if x′ ∈ D ∩ Y , or
of at most 1

|D\Y| if x′ ∈ D \ Y . Thus, the maximal change to

(13) is at most max
{

1
|Y| ,

1
|D\Y|

}
.

While the sensitivity of most quantities of interest is low
(at most a 2

|D| ), Q̂
Y
disp(S) can be quite high when |Y| is either

very small or very large. This makes intuitive sense: if Y is
a very small minority, then any changes to its members are
easily detected; similarly, if Y is a vast majority, then changes
to protected minorities may be easily detected.

We observe that the quantities of interest which exhibit
low sensitivity will have low influence sensitivity as well:
for example, the local influence of S is �(c(x) = 1) −
ÊD(c(X−S) = 1] | X = x); changing any x′ ∈ D (where
x′ �= x will result in a change of at most 1

|D| to the local
influence.

Finally, since the Shapley and Banzhaf indices are normal-
ized sums of the differences of the set influence functions, we
can show that if an influence function ι has sensitivity Δι,
then the sensitivity of the indices are at most 2Δι.

To conclude, all of the QII measures discussed above
(except for group parity) have a sensitivity of α

|D| , with α
being a small constant. To ensure differential privacy, we need
only need add noise with a Laplacian distribution Lap(k/|D|)
to achieve 1-differential privacy.

Further, it is known that sampling amplifies differential
privacy.

Theorem 13 ([9], [25]). If A is 1-differentially private, then
for any ε ∈ (0, 1), A′(ε) is 2ε-differentially private, where
A′(ε) is obtained by sampling an ε fraction of inputs and
then running A on the sample.

Therefore, our approach of sampling instances from D to
speed up computation has the additional benefit of ensuring
that our computation is private.

Table I contains a summary of all QII measures defined in
this paper, and their sensitivity.

VII. EXPERIMENTAL EVALUATION

We demonstrate the utility of the QII framework by develop-
ing two simple machine learning applications on real datasets.
Using these applications, we first argue, in Section VII-A,
the need for causal measurement by empirically demonstrat-
ing that in the presence of correlated inputs, observational
measures are not informative in identifying which inputs were

actually used. In Section VII-B, we illustrate the distinction
between different quantities of interest on which Unary QII
can be computed. We also illustrate the effect of discrimination
on the QII measure. In Section VII-C, we analyze transparency
reports of three individuals to demonstrate how Marginal QII
can provide insights into individuals’ classification outcomes.
Finally, we analyze the loss in utility due to the use of
differential privacy, and provide execution times for generating
transparency reports using our prototype implementation.

We use the following datasets in our experiments:
• adult [10]: This standard machine learning benchmark

dataset is a a subset of US census data that classifies
the income of individuals, and contains factors such as
age, race, gender, marital status and other socio-economic
parameters. We use this dataset to train a classifier that
predicts the income of individuals from other parameters.
Such a classifier could potentially be used to assist credit
decisions.

• arrests [11]: The National Longitudinal Surveys are a
set of surveys conducted by the Bureau of Labor Statistics
of the United States. In particular, we use the National
Longitudinal Survey of Youth 1997 which is a survey of
young men and women born in the years 1980-84. Re-
spondents were ages 12-17 when first interviewed in 1997
and were subsequently interviewed every year till 2013.
The survey covers various aspects of an individual’s life
such as medical history, criminal records and economic
parameters. From this dataset, we extract the following
features: age, gender, race, region, history of drug use,
history of smoking, and history of arrests. We use this
data to train a classifier that predicts history of arrests to
aid in predictive policing, where socio-economic factors
are used to decide whether individuals should receive a
visit from the police. This application is inspired by a
similar application in [26].

The two applications described above are hypothetical ex-
amples of decision-making aided by machine learning that use
potentially sensitive socio-economic data about individuals,
and not real systems that are currently in use. We use these
classifiers to illustrate the subtle causal questions that our QII
measures can answer.

We use the following standard machine learning classifiers
in our dataset: Logistic Regression, SVM with a radial basis
function kernel, Decision Tree, and Gradient Boosted Decision
Trees. Bishop’s machine learning text [27] is an excellent
resource for an introduction to these classifiers. While Logistic
Regression is a linear classifier, the other three are nonlinear
and can potentially learn very complex models. All our ex-
periments are implemented in Python with the numpy library,
and the scikit-learn machine learning toolkit, and run on an
Intel i7 computer with 4 GB of memory.

A. Comparison with Observational Measures

In the presence of correlated inputs, observational measures
often cannot identify which inputs were causally influential.
To illustrate this phenomena on real datasets, we train two
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Name Notation Quantity of Interest Sensitivity
QII on Individual Outcomes (3) ιind(S) Positive Classification of an Individual 1/|D|
QII on Actual Individual Outcomes (4) ιind-act(S) Actual Classification of an Individual 1/|D|
Average QII (5) ιind-avg(S) Average Actual Classification 2/|D|
QII on Group Outcomes (6) ιYgrp(S) Positive Classification for a Group 2/|D ∩ Y|
QII on Group Disparity (8) ιYdisp(S) Difference in classification rates among groups 2max(1/|D \ Y|, 1/|D ∩ Y|)

TABLE I: A summary of the QII measures defined in the paper

classifiers: (A) where gender is provided as an actual input,
and (B) where gender is not provided as an input. For classifier
(B), clearly the input Gender has no effect and any correlation
between the outcome and gender is caused via inference from
other inputs. In Table II, for both the adult and the arrests

dataset, we compute the following observational measures:
Mutual Information (MI), Jaccard Index (Jaccard), Pearson
Correlation (corr), and the Disparate Impact Ratio (disp) to
measure the similarity between Gender and the classifiers
outcome. We also measure the QII of Gender on outcome.
We observe that in many scenarios the observational quantities
do not change, or sometimes increase, from classifier A to
classifier B, when gender is removed as an actual input
to the classifier. On the other hand, if the outcome of the
classifier does not depend on the input Gender, then the QII
is guaranteed to be zero.

B. Unary QII Measures

In Figure 2, we illustrate the use of different Unary QII
measures. Figures 2a, and 2b, show the Average QII measure
(Equation 5) computed for features of a decision forest classi-
fier. For the income classifier trained on the adult dataset, the
feature with highest influence is Marital Status, followed by
Occupation, Relationship and Capital Gain. Sensitive features
such as Gender and Race have relatively lower influence.
For the predictive policing classifier trained on the arrests

dataset, the most influential input is Drug History, followed by
Gender, and Smoking History. We observe that influence on
outcomes may be different from influence on group disparity.

QII on group disparity: Figures 2c, 2d show influences
of features on group disparity for two different settings. The
figure on the left shows the influence of features on group
disparity by Gender in the adult dataset; the figure on the
right shows the influence of group disparity by Race in the
arrests dataset. For the income classifier trained on the
adult dataset, we observe that most inputs have negative
influence on group disparity; randomly intervening on most
inputs would lead to a reduction in group disparity. In other
words, a classifier that did not use these inputs would be fairer.
Interestingly, in this classifier, marital status and not sex has
the highest influence on group disparity by sex.

For the arrests dataset, most inputs have the effect of
increasing group disparity if randomly intervened on. In
particular, Drug history has the highest positive influence on
disparity in arrests. Although Drug history is correlated with
race, using it reduces disparate impact by race, i.e. makes fairer
decisions.

In both examples, features correlated with the sensitive
attribute are the most influential for group disparity according
to the sensitive attribute instead of the sensitive attribute
itself. It is in this sense that QII measures can identify
proxy variables that cause associations between outcomes and
sensitive attributes.

QII with artificial discrimination: We simulate discrimi-
nation using an artificial experiment. We first randomly assign
ZIP codes to individuals in our dataset. Then to simulate
systematic bias, we make an f fraction of the ZIP codes
discriminatory in the following sense: All individuals in the
protected set are automatically assigned a negative classifi-
cation outcome. We then study the change in the influence
of features as we increase f . Figure 3a, shows that the
influence of Gender increases almost linearly with f . Recall
that Marital Status was the most influential feature for this
classifier without any added discrimination. As f increases,
the importance of Marital Status decreases as expected, since
the number of individuals for whom Marital Status is pivotal
decreases.

C. Personalized Transparency Reports

To illustrate the utility of personalized transparency reports,
we study the classification of individuals who received poten-
tially unexpected outcomes. For the personalized transparency
reports, we use decision forests.

The influence measure that we employ is the Shapley value,
with the underlying cooperative game defined over the local
influence Q. In more detail, v(S) = ιQA(S), with QA being
E[c(·) = 1 | X = x]; that is, the marginal contribution of
i ∈ N to S is given by mi(S) = E[c(X−S) = 1 | X =
x]− E[c(X−S∪{i}) = 1 | X = x].

We emphasize that some features may have a negative
Shapley value; this should be interpreted as follows: a feature
with a high positive Shapley value often increases the certainty
that the classification outcome is 1, whereas a feature whose
Shapley value is negative is one that increases the certainty
that the classification outcome would be zero.

Mr. X: The first example is of an individual from the
adult dataset, who we refer to as Mr. X, and is described in
Figure 4a. He is is deemed to be a low income individual, by
an income classifier learned from the data. This result may be
surprising to him: he reports high capital gains ($14k), and
only 2.1% of people with capital gains higher than $10k are
reported as low income. In fact, he might be led to believe that
his classification may be a result of his ethnicity or country
of origin. Examining his transparency report in Figure 4b,
however, we find that the the most influential features that led
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logistic kernel svm decision tree random forest
adult arrests adult arrests adult arrests adult arrests

MI A 0.045 0.049 0.046 0.047 0.043 0.054 0.044 0.053
MI B 0.043 0.050 0.044 0.053 0.042 0.051 0.043 0.052

Jaccard A 0.501 0.619 0.500 0.612 0.501 0.614 0.501 0.620
Jaccard B 0.500 0.611 0.501 0.615 0.500 0.614 0.501 0.617

corr A 0.218 0.265 0.220 0.247 0.213 0.262 0.218 0.262
corr B 0.215 0.253 0.218 0.260 0.215 0.257 0.215 0.259
disp A 0.286 0.298 0.377 0.033 0.302 0.335 0.315 0.223
disp B 0.295 0.301 0.312 0.096 0.377 0.228 0.302 0.129
QII A 0.036 0.135 0.044 0.149 0.023 0.116 0.012 0.109
QII B 0 0 0 0 0 0 0 0

TABLE II: Comparison of QII with associative measures. For 4 different classifiers, we compute metrics such as Mutual
Information (MI), Jaccard Index (JI), Pearson Correlation (corr), Group Disparity (disp) and Average QII between Gender and
the outcome of the learned classifier. Each metric is computed in two situations: (A) when Gender is provided as an input to
the classifier, and (B) when Gender is not provided as an input to the classifier.

to his negative classification were Marital Status, Relationship
and Education.

Mr. Y: The second example, to whom we refer as Mr. Y
(Figure 5), has even higher capital gains than Mr. X. Mr. Y is
a 27 year old, with only Preschool education, and is engaged
in fishing. Examination of the transparency report reveals that
the most influential factor for negative classification for Mr.
Y is his Occupation. Interestingly, his low level of education
is not considered very important by this classifier.

Mr. Z: The third example, who we refer to as Mr. Z
(Figure 6) is from the arrests dataset. History of drug use
and smoking are both strong indicators of arrests. However,
Mr. X received positive classification by this classifier even
without any history of drug use or smoking. On examining
his classifier, it appears that race, age and gender were most
influential in determining his outcome. In other words, the
classifier that we train for this dataset (a decision forest) has
picked up on the correlations between race (Black), and age
(born in 1984) to infer that this individual is likely to engage in
criminal activity. Indeed, our interventional approach indicates
that this is not a mere correlation effect: race is actively being
used by this classifier to determine outcomes. Of course, in
this instance, we have explicitly offered the race parameter
to our classifier as a viable feature. However, our influence
measure is able to pick up on this fact, and alert us of
the problematic behavior of the underlying classifier. More
generally, this example illustrates a concern with the black
box use of machine learning which can lead to unfavorable
outcomes for individuals.

D. Differential Privacy

Most QII measures considered in this paper have very low
sensitivity, and therefore can be made differentially private
with negligible loss in utility. However, recall that the sensi-
tivity of influence measure on group disparity ιYdisp depends on
the size of the protected group in the dataset D as follows:

ιYdisp = 2max

(
1

|D \ Y| ,
1

|D ∩ Y|

)

For sufficiently small minority groups, a large amount of
noise might be required to ensure differential privacy, leading

to a loss in utility of the QII measure. To estimate the loss
in utility, we set a noise of 0.005 as the threshold of noise
at which the measure is no longer useful, and then compute
fraction of times noise crosses that threshold when Laplacian
noise is added at ε = 1. The results of this experiment are as
follows:

Y Count Loss in Utility
Race: White 27816 2.97× 10−14

Race: Black 3124 5.41× 10−14

Race: Asian-Pac-Islander 1039 6.14× 10−05

Race: Amer-Indian-Eskimo 311 0.08
Race: Other 271 0.13
Gender: Male 21790 3.3× 10−47

Gender: Female 10771 3.3× 10−47

We note that for most reasonably sized groups, the loss in
utility is negligible. However, the Asian-Pac-Islander, and the
Amer-Indian-Eskimo racial groups are underrepresented in this
dataset. For these groups, the QII on Group Disparity estimate
needs to be very noisy to protect privacy.

E. Performance

We report runtimes of our prototype for generating trans-
parency reports on the adult dataset. Recall from Section VI
that we approximate QII measures by computing sums over
samples of the dataset. According to the Hoeffding bound to
derive an (ε, δ) estimate of a QII measure, at ε = 0.01, and
n = 37000 samples, δ = 2 exp(−nε2) < 0.05 is an upper
bound on the probability of the output being off by ε. Table III
shows the runtimes of four different QII computations, for
37000 samples each. The runtimes of all algorithms except
for kernel SVM are fast enough to allow real-time feedback
for machine learning application developers. Evaluating QII
metrics for Kernel SVMs is much slower than the other metrics
because each call to the SVM classifier is very computationally
intensive due to a large number of distance computations that
it entails. We expect that these runtimes can be optimized
significantly. We present them as proof of tractability.
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(a) QII of inputs on Outcomes for the adult dataset
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(b) QII of inputs on Outcomes for the arrests dataset
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(d) Influence on Group Disparity by Race in the arrests dataset

Fig. 2: QII measures for the adult and arrests datasets

logistic kernel-svm decision-tree decision-forest
QII on Group Disparity 0.56 234.93 0.57 0.73

Average QII 0.85 322.82 0.77 1.12
QII on Individual Outcomes (Shapley) 6.85 2522.3 7.78 9.30
QII on Individual Outcomes (Banzhaf) 6.77 2413.3 7.64 10.34

TABLE III: Runtimes in seconds for transparency report computation

VIII. DISCUSSION

A. Probabilistic Interpretation of Power Indices

In order to quantitatively measure the influence of data
inputs on classification outcomes, we propose causal inter-
ventions on sets of features; as we argue in Section III,
the aggregate marginal influence of i for different subsets
of features is a natural quantity representing its influence. In
order to aggregate the various influences i has on the outcome,
it is natural to define some probability distribution over (or
equivalently, a weighted sum of) subsets of N \ {i}, where
Pr[S] represents the probability of measuring the marginal
contribution of i to S; Pr[S] yields a value

∑
S⊆N\{i}mi(S).

For the Banzhaf index, we have Pr[S] = 1
2n−1 , the Shapley

value has Pr[S] = k!(n−k−1)!
n! (here, |S| = k), and the Deegan-

Packel Index selects minimal winning coalitions uniformly at
random. These choices of values for Pr[S] are based on some
natural assumptions on the way that players (features) interact,
but they are by no means exhaustive. One can define other
sampling methods that are more appropriate for the model
at hand; for example, it is entirely possible that the only
interventions that are possible in a certain setting are of size
≤ k + 1, it is reasonable to aggregate the marginal influence
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Fig. 3: The effect of discrimination on QII.

of i over sets of size ≤ k, i.e.

Pr[S] =

{
1

(n−1
|S| )

if |S| ≤ k

0 otherwise.

The key point here is that one must define some aggregation
method, and that choice reflects some normative approach on
how (and which) marginal contributions are considered. The
Shapley and Banzhaf indices do have some highly desirable
properties, but they are, first and foremost, a-priori measures
of influence. That is, they do not factor in any assumptions on
what interventions are possible or desirable.

One natural candidate for a probability distribution over S
is some natural extension of the prior distribution over the
dataset; for example, if all features are binary, one can identify
a set with a feature vector (namely by identifying each S ⊆ N
with its indicator vector), and set Pr[S] = π(S) for all S ⊆ N .

Age 23
Workclass Private
Education 11th
Education-Num 7
Marital Status Never-married
Occupation Craft-repair
Relationship Own-child
Race Asian-Pac-Islander
Gender Male
Capital Gain 14344
Capital Loss 0
Hours per week 40
Country Vietnam

(a) Mr. X’s profile
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(b) Transparency report for Mr. X’s negative classification

Fig. 4: Mr. X

If features are not binary, then there is no canonical way to
transition from the data prior to a prior over subsets of features.

B. Fairness

Due to the widespread and black box use of machine
learning in aiding decision making, there is a legitimate
concern of algorithms introducing and perpetuating social
harms such as racial discrimination [28], [6]. As a result,
the algorithmic foundations of fairness in personal informa-
tion processing systems have received significant attention
recently [29], [30], [31], [12], [32]. While many of of the
algorithmic approaches [29], [31], [32] have focused on group
parity as a metric for achieving fairness in classification,
Dwork et al. [12] argue that group parity is insufficient as
a basis for fairness, and propose a similarity-based approach
which prescribes that similar individuals should receive similar
classification outcomes. However, this approach requires a
similarity metric for individuals which is often subjective and
difficult to construct.

QII does not suggest any normative definition of fairness.
Instead, we view QII as a diagnostic tool to aid fine-grained
fairness determinations. In fact, QII can be used in the spirit
of the similarity based definition of [12]. By comparing the
personalized privacy reports of individuals who are perceived
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Age 27
Workclass Private
Education Preschool
Education-Num 1
Marital Status Married-civ-spouse
Occupation Farming-fishing
Relationship Other-relative
Race White
Gender Male
Capital Gain 41310
Capital Loss 0
Hours per week 24
Country Mexico

(a) Mr. Y’s profile
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(b) Transparency report for Mr. Y’s negative classification

Fig. 5: Mr. Y.

to be similar but received different classification outcomes,
and identifying the inputs which were used by the classifier to
provide different outcomes. Additionally, when group parity
is used as a criteria for fairness, QII can identify the features
that lead to group disparity, thereby identifying features being
used by a classifier as a proxy for sensitive attributes.

The determination of whether using certain proxies for
sensitive attributes is discriminatory is often a task-specific
normative judgment. For example, using standardized test
scores (e.g., SAT scores) for admissions decisions is by and
large accepted, although SAT scores may be a proxy for
several protected attributes. In fact, several universities have
recently announced that they will not use SAT scores for
admissions citing this reason [33], [34]. Our goal is not
to provide such normative judgments. Rather we seek to
provide fine-grained transparency into input usage (e.g., what’s
the extent to which SAT scores influence decisions), which
is useful to make determinations of discrimination from a
specific normative position.

Finally, we note that an interesting question is whether
providing a sensitive attribute as an input to a classifier is
fundamentally discriminatory behavior, even if QII can show
that the sensitive input has no significant impact on the

Birth Year 1984
Drug History None
Smoking History None
Census Region West
Race Black
Gender Male

(a) Mr. Z’s profile
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(b) Transparency report for Mr. Z’s positive classification

Fig. 6: Mr. Z.

outcome. Our view is that this is a policy question and different
legal frameworks might take different viewpoints on it. At a
technical level, from the standpoint of information use, the
two situations are identical: the sensitive input is not really
used although it is supplied. However, the very fact that it
was supplied might be indicative of an intent to discriminate
even if that intended goal was not achieved. No matter what
the policy decision is on this question, QII remains a useful
diagnostic tool for discrimination because of the presence of
proxy variables as described earlier.

IX. RELATED WORK

A. Quantitative Causal Measures

Causal models and probabilistic interventions have been
used in a few other settings. While the form of the inter-
ventions in some of these settings may be very similar, our
generalization to account for different quantities of interests
enables us to reason about a large class of transparency
queries for data analytics systems ranging from classification
outcomes of individuals to disparity among groups. Further,
the notion of marginal contribution which we use to compute
responsibility does not appear in this line of prior work.

Janzing et al. [35] use interventions to assess the causal
importance of relations between variables in causal graphs;
in order to assess the causal effect of a relation between two
variables, X → Y (assuming that both take on specific values
X = x and Y = y), a new causal model is constructed, where
the value of X is replaced with a prior over the possible values
of X . The influence of the causal relation is defined as the KL-
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Divergence of the joint distribution of all the variables in the
two causal models with and without the value of X replaced.
The approach of the intervening with a random value from the
prior is similar to our approach of constructing X−S .

Independently, there has been considerable work in the
machine learning community to define importance metrics for
variables, mainly for the purpose of feature selection (see [36]
for a comprehensive overview). One important metric is called
Permutation Importance [37], which measures the importance
of a feature towards classification by randomly permuting
the values of the feature and then computing the difference
of classification accuracies before and after the permutation.
Replacing a feature with a random permutation can be viewed
as a sampling the feature independently from the prior.

There exists extensive literature on establishing causal re-
lations, as opposed to quantifying them. Prominently, Pearl’s
work [38] provides a mathematical foundation for causal rea-
soning and inference. In [39], Tian and Pearl discuss measures
of causal strength for individual binary inputs and outputs in a
probabilistic setting. Another thread of work by Halpern and
Pearl discusses actual causation [40], which is extended in [41]
to derive a measure of responsibility as degree of causality.
In [41], Chockler and Halpern define the responsibility of a
variable X to an outcome as the amount of change required
in order to make X the counterfactual cause. As we discuss
in Appendix A-B, the Deegan-Packel index is strongly related
to causal responsibility.

B. Quantitative Information Flow

One can think of our results as a causal alternative to
quantitative information flow. Quantitative information flow is
a broad class of metrics that quantify the information leaked
by a process by comparing the information contained before
and after observing the outcome of the process. Quantitative
Information Flow traces its information-theoretic roots to the
work of Shannon [42] and Rényi [43]. Recent works have
proposed measures for quantifying the security of information
by measuring the amount of information leaked from inputs to
outputs by certain variables; we point the reader to [44] for an
overview, and to [45] for an exposition on information theory.
Quantitative Information Flow is concerned with information
leaks and therefore needs to account for correlations between
inputs that may lead to leakage. The dual problem of trans-
parency, on the other hand, requires us to destroy correlations
while analyzing the outcomes of a system to identify the causal
paths for information leakage.

C. Interpretable Machine Learning

An orthogonal approach to adding interpretability to ma-
chine learning is to constrain the choice of models to those that
are interpretable by design. This can either proceed through
regularization techniques such as Lasso [46] that attempt
to pick a small subset of the most important features, or
by using models that structurally match human reasoning
such as Bayesian Rule Lists [47], Supersparse Linear Integer
Models [48], or Probabilistic Scaling [49]. Since the choice

of models in this approach is restricted, a loss in predictive
accuracy is a concern, and therefore, the central focus in
this line of work is the minimization of the loss in accuracy
while maintaining interpretability. On the other hand, our
approach to interpretability is forensic. We add interpretability
to machine learning models after they have been learnt. As a
result, our approach does not constrain the choice of models
that can be used.

D. Experimentation on Web Services

There is an emerging body of work on systematic experi-
mentation to enhance transparency into Web services such as
targeted advertising [50], [51], [52], [53], [54]. The setting in
this line of work is different since they have restricted access
to the analytics systems through publicly available interfaces.
As a result they only have partial control of inputs, partial
observability of outputs, and little or no knowledge of input
distributions. The intended use of these experiments is to
enable external oversight into Web services without any coop-
eration. Our framework is more appropriate for a transparency
mechanism where an entity proactively publishes transparency
reports for individuals and groups. Our framework is also
appropriate for use as an internal or external oversight tool
with access to mechanisms with control and knowledge of
input distributions, thereby forming a basis for testing.

E. Game-Theoretic Influence Measures

Recent years have seen game-theoretic influence measures
used in various settings. Datta et al. [55] also define a measure
for quantifying feature influence in classification tasks. Their
measure does not account for the prior on the data, nor does
it use interventions that break correlations between sets of
features. In the terminology of this paper, the quantity of
interest used by [55] is the ability of changing the outcome by
changing the state of a feature. This work greatly extends and
generalizes the concepts presented in [55], by both accounting
for interventions on sets, and by generalizing the notion of
influence to include a wide range of system behaviors, such
as group disparity, group outcomes and individual outcomes.

Game theoretic measures have been used by various re-
search disciplines to measure influence. Indeed, such measures
are relevant whenever one is interested in measuring the
marginal contribution of variables, and when sets of variables
are able to cause some measurable effect. Lindelauf et al. [56]
and Michalak et al. [57] use game theoretic influence measures
on graph-based games in order to identify key members of
terrorist networks. Del Pozo et al. [58] and Michalak et al. [59]
use similar ideas for identifying important members of large
social networks, providing scalable algorithms for influence
computation. Bork et al. [60] use the Shapley value to assign
importance to protein interactions in large, complex biological
interaction networks; Keinan et al. [61] employ the Shapley
value in order to measure causal effects in neurophysical
models. The novelty in our use of the game theoretic power
indices lies in the conception of a cooperative game via a
valuation function ι(S), defined by an randomized intervention
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on inputs S. Such an intervention breaks correlations and
allows us to compute marginal causal influences on a wide
range of system behaviors.

X. CONCLUSION & FUTURE WORK

In this paper, we present QII, a general family of metrics
for quantifying the influence of inputs in systems that process
personal information. In particular, QII lends insights into the
behavior of opaque machine learning algorithms by allowing
us to answer a wide class of transparency queries ranging
from influence on individual causal outcomes to influence
on disparate impact. To achieve this, QII breaks correlations
between inputs to allow causal reasoning, and computes the
marginal influence of inputs in situations where inputs cannot
affect outcomes alone. Also, we demonstrate that QII can
be efficiently approximated, and can be made differentially
private with negligible noise addition in many cases.

An immediate next step in this line of work is to explore
adoption strategies in the many areas that use personal infor-
mation to aid decision making. Areas such as healthcare [3],
predictive policing [1], education [4], and defense [5] all have
a particularly acute need for transparency in their decision
making. It is likely that specific applications will guide us in
our choice of a QII metric that is appropriate for that scenario,
which includes a choice for our game-theoretic power index.

We have not considered situations where inputs do not
have well understood semantics. Such situations arise often in
settings such as image or speech recognition, and automated
video surveillance. With the proliferation of immense process-
ing power, complex machine learning models such as deep
neural networks have become ubiquitous in these domains.
Defining transparency and developing analysis techniques in
such settings is important future work.
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APPENDIX A
ALTERNATIVE GAME-THEORETIC INFLUENCE MEASURES

In what follows, we describe two alternatives to the Shapley
value used in this work. The Shapley value makes intuitive
sense in our setting, as we argue in Section III-B. However,
other measures may be appropriate for certain input data
generation processes. In what follows we revisit the Banzhaf
index, briefly discussed in Section III-A, and introduce the
readers to the Deegan-Packel index, a game-theoretic influ-
ence measure with deep connections to a formal theory of
responsibilty and blame [41].

A. The Banzhaf Index

Recall that the Banzhaf index, denoted βi(N, v) is defined
as follows:

βi(N, v) =
1

2n−1

∑

S⊆N\{i}
mi(S).

The Banzhaf index can be thought of as follows: each
j ∈ N \ {i} will join a work effort with probability 1

2
(or, equivalently, each S ⊆ N \ {i} has an equal chance
of forming); if i joins as well, then its expected marginal
contribution to the set formed is exactly the Banzhaf index.
Note the marked difference between the probabilistic models:
under the Shapley value, we sample permutations uniformly
at random, whereas under the regime of the Banzhaf index,
we sample sets uniformly at random. The different sampling
protocols reflect different normative assumptions. For one,
the Banzhaf index is not guaranteed to be efficient; that is,∑

i∈N βi(N, v) is not necessarily equal to v(N), whereas it
is always the case that

∑n
i=1 ϕi(N, v) = v(N). Moreover, the

Banzhaf index is more biased towards measuring the marginal
contribution of i to sets of size n

2 ±O(
√
n); this is because the

expected size of a randomly selected set follows a binomial
distribution B(n, 1

2 ). On the other hand, the Shapley value is
equally likely to measure the marginal contribution of i to sets
of any size k ∈ {0, . . . , k}, as i is equally likely to be in any
one position in a randomly selected permutation σ (and, in
particular, the the set of i’s predecessors in σ is equally likely
to have any size k ∈ {0, . . . , n− 1}).

Going back to the QII setting, the difference in sampling
procedure is not merely an interesting anecdote: it is a sig-
nificant modeling choice. Intuitively, the Banzhaf index is
more appropriate if we assume that large sets of features
would have a significant influence on outcomes, whereas the
Shapley value is more appropriate if we assume that even
small sets of features might cause significant effects on the
outcome. Indeed, as we mention in Section VIII, aggregating
the marginal influence of i over sets is a significant modeling
choice; while using the measures proposed here is perfectly
reasonable in many settings, other aggregation methods may
be applicable in others.

Unlike the Shapley value, the Banzhaf index is not guar-
anteed to be efficient (although it does satisfy the symmetry
and dummy properties). Indeed, [62] shows that replacing
the efficiency axiom with an alternative axiom, uniquely

characterizes the Banzhaf index; the axiom, called 2-efficiency,
prescribes the behavior of an influence measure when two
players merge. First, let us define a merged game; given a
game 〈N, v〉, and two players i, j ∈ N , we write T = {i, j}.
We define the game v̄ on N \T ∪{t̄} as follows: for every set
S ⊆ N \{i, j}, v̄(S) = v(S), and v̄(S ∪{t̄}) = v(S ∪{i, j}),
note that the added player t̄ represents the two players i and
j who are now acting as one. The 2-Efficiency axiom states
that influence should be invariant under merges.

Definition 14 (2-Efficiency (2-EFF)). Given two players i, j ∈
N , let v̄ be the game resulting from the merge of i and j into
a single player t̄; an influence measure φ satisfies 2-Efficiency
if φi(N, v) + φj(N, v) = φt̄(N \ {i, j} ∪ {t̄}, v̄).
Theorem 15 ([62]). The Banzhaf index is the only function
to satisfy (Sym), (D), (Mono) and (2-EFF).

In our context, 2-Efficiency can be interpreted as follows:
suppose that we artificially treat two features i and j as
one, keeping all other parameters fixed; in this setting, 2-
efficiency means that the influence of merged features equals
the influence they had as separate entities.

B. The Deegan-Packel Index

Finally, we discuss the Deegan-Packel index [18]. While
the Shapley value and Banzhaf index are well-defined for any
coalitional game, the Deegan-Packel index is only defined for
simple games. A cooperative game is said to be simple if
v(S) ∈ {0, 1} for all S ⊆ N . In our setting, an influence
measure would correspond to a simple game if it is binary
(e.g. it measures some threshold behavior, or corresponds to
a binary classifier). The binary requirement is rather strong;
however, we wish to draw the reader’s attention to the Deegan-
Packel index, as it has an interesting connection to causal
responsibility [41], a variant of the classic Pearl-Halpern
causality model [40], which aims to measure the degree to
which a single variable causes an outcome.

Given a simple game v : 2N → {0, 1}, let M(v) be the set
of minimal winning coalitions; that is, for every S ∈ M(v),
v(S) = 1, and v(T ) = 0 for every strict subset of S. The
Deegan-Packel index assigns a value of

δi(N, v) =
1

|M(v)|
∑

S∈M(v):i∈S

1

|S| .

The intuition behind the Deegan-Packel index is as follows:
players will not form coalitions any larger than what they
absolutely have to in order to win, so it does not make sense
to measure their effect on non-minimal winning coalitions.
Furthermore, when a minimal winning coalition is formed,
the benefits from its formation are divided equally among its
members; in particular, small coalitions confer a greater benefit
for those forming them than large ones. The Deegan-Packel
index measures the expected payment one receives, assuming
that every minimal winning coalition is equally likely to form.
Interestingly, the Deegan-Packel index corresponds nicely to
the notion of responsibility and blame described in [41].
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Suppose that we have a set of variables X1, . . . , Xn set to
x1, . . . , xn, and some binary effect f(x1, . . . , xn) (written
as f(x)) occurs (say, f(x) = 1). To establish a causal
relation between the setting of Xi to xi and f(x) = 1,
[40] require that there is some set S ⊆ N \ {i} and some
values (yj)j∈S∪{i} such that f(x−S∪{i}, (yj)j∈S∪{i}) = 0,
but f(x−S , (yj)j∈S) = 1. In words, an intervention on the
values of both S and i may cause a change in the value of
f , but performing the same intervention just on the variables
in S would not cause such a change. This definition is at the
heart of the marginal contribution approach to interventions
that we describe in Section III-A. [41] define the responsibility
of i for an outcome as 1

k+1 , where k is the size of the
smallest set S for which the causality definition holds with
respect to i. The Deegan-Packel index can thus be thought of
as measuring a similar notion: instead of taking the overall
minimal number of changes necessary in order to make i a
direct, counterfactual cause, we observe all minimal sets that
do so. Taking the average responsibility of i (referred to as
blame in [41]) according to this variant, we obtain the Deegan-
Packel index.

Example 16. Let us examine the following setup, based on
Example 3.3 in [41]. There are n = 2k + 1 voters (n is an
odd number) who must choose between two candidates, Mr.
B and Mr. G ([41] describe the setting with n = 11). All
voters elected Mr. B, resulting in an n-0 win. It is natural to
ask: how responsible was voter i for the victory of Mr. B?
According to [41], the degree of responsibility of each voter
is 1

k+1 . It will require that i and k additional voters change
their vote in order for the outcome to change. Modeling this
setup as a cooperative game is quite natural: the voters are the
players N = {1, . . . , n}; for every subset S ⊆ N we have

v(S) =

{
1 if |S| ≥ k + 1

0 otherwise.

That is, v(S) = 1 if and only if the set S can change the
outcome of the election. The minimal winning coalitions here
are the subsets of N of size k + 1, thus the Deegan-Packel
index of player i is

δi(N, v) =
1

|M(v)|
∑

S∈M(v):i∈S

1

|S|

=
1(
n

k+1

)
(
n

k

)
1

k + 1
=

1

n− k
=

1

k + 1

We note that if one assumes that all voters are equally likely
to prefer Mr. B over Mr. G, then the blame of voter i would
be computed in the exact manner as the Deegan-Packel index.

617617

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 06,2021 at 14:03:55 UTC from IEEE Xplore.  Restrictions apply. 



A Unified Approach to Interpreting Model
Predictions

Scott M. Lundberg
Paul G. Allen School of Computer Science

University of Washington
Seattle, WA 98105

slund1@cs.washington.edu

Su-In Lee
Paul G. Allen School of Computer Science

Department of Genome Sciences
University of Washington

Seattle, WA 98105
suinlee@cs.washington.edu

Abstract

Understanding why a model makes a certain prediction can be as crucial as the
prediction’s accuracy in many applications. However, the highest accuracy for large
modern datasets is often achieved by complex models that even experts struggle to
interpret, such as ensemble or deep learning models, creating a tension between
accuracy and interpretability. In response, various methods have recently been
proposed to help users interpret the predictions of complex models, but it is often
unclear how these methods are related and when one method is preferable over
another. To address this problem, we present a unified framework for interpreting
predictions, SHAP (SHapley Additive exPlanations). SHAP assigns each feature
an importance value for a particular prediction. Its novel components include: (1)
the identification of a new class of additive feature importance measures, and (2)
theoretical results showing there is a unique solution in this class with a set of
desirable properties. The new class unifies six existing methods, notable because
several recent methods in the class lack the proposed desirable properties. Based
on insights from this unification, we present new methods that show improved
computational performance and/or better consistency with human intuition than
previous approaches.

1 Introduction

The ability to correctly interpret a prediction model’s output is extremely important. It engenders
appropriate user trust, provides insight into how a model may be improved, and supports understanding
of the process being modeled. In some applications, simple models (e.g., linear models) are often
preferred for their ease of interpretation, even if they may be less accurate than complex ones.
However, the growing availability of big data has increased the benefits of using complex models, so
bringing to the forefront the trade-off between accuracy and interpretability of a model’s output. A
wide variety of different methods have been recently proposed to address this issue [5, 8, 9, 3, 4, 1].
But an understanding of how these methods relate and when one method is preferable to another is
still lacking.

Here, we present a novel unified approach to interpreting model predictions.1 Our approach leads to
three potentially surprising results that bring clarity to the growing space of methods:

1. We introduce the perspective of viewing any explanation of a model’s prediction as a model itself,
which we term the explanation model. This lets us define the class of additive feature attribution
methods (Section 2), which unifies six current methods.
1https://github.com/slundberg/shap
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2. We then show that game theory results guaranteeing a unique solution apply to the entire class of
additive feature attribution methods (Section 3) and propose SHAP values as a unified measure of
feature importance that various methods approximate (Section 4).

3. We propose new SHAP value estimation methods and demonstrate that they are better aligned
with human intuition as measured by user studies and more effectually discriminate among model
output classes than several existing methods (Section 5).

2 Additive Feature Attribution Methods

The best explanation of a simple model is the model itself; it perfectly represents itself and is easy to
understand. For complex models, such as ensemble methods or deep networks, we cannot use the
original model as its own best explanation because it is not easy to understand. Instead, we must use a
simpler explanation model, which we define as any interpretable approximation of the original model.
We show below that six current explanation methods from the literature all use the same explanation
model. This previously unappreciated unity has interesting implications, which we describe in later
sections.

Let f be the original prediction model to be explained and g the explanation model. Here, we focus
on local methods designed to explain a prediction f(x) based on a single input x, as proposed in
LIME [5]. Explanation models often use simplified inputs x′ that map to the original inputs through a
mapping function x = hx(x′). Local methods try to ensure g(z′) ≈ f(hx(z′)) whenever z′ ≈ x′.
(Note that hx(x′) = x even though x′ may contain less information than x because hx is specific to
the current input x.)

Definition 1 Additive feature attribution methods have an explanation model that is a linear
function of binary variables:

g(z′) = φ0 +
M∑

i=1

φiz
′
i, (1)

where z′ ∈ {0, 1}M , M is the number of simplified input features, and φi ∈ R.

Methods with explanation models matching Definition 1 attribute an effect φi to each feature, and
summing the effects of all feature attributions approximates the output f(x) of the original model.
Many current methods match Definition 1, several of which are discussed below.

2.1 LIME

The LIME method interprets individual model predictions based on locally approximating the model
around a given prediction [5]. The local linear explanation model that LIME uses adheres to Equation
1 exactly and is thus an additive feature attribution method. LIME refers to simplified inputs x′ as
“interpretable inputs,” and the mapping x = hx(x′) converts a binary vector of interpretable inputs
into the original input space. Different types of hx mappings are used for different input spaces. For
bag of words text features, hx converts a vector of 1’s or 0’s (present or not) into the original word
count if the simplified input is one, or zero if the simplified input is zero. For images, hx treats the
image as a set of super pixels; it then maps 1 to leaving the super pixel as its original value and 0
to replacing the super pixel with an average of neighboring pixels (this is meant to represent being
missing).

To find φ, LIME minimizes the following objective function:

ξ = arg min
g∈G

L(f, g, πx′) + Ω(g). (2)

Faithfulness of the explanation model g(z′) to the original model f(hx(z′)) is enforced through
the loss L over a set of samples in the simplified input space weighted by the local kernel πx′ . Ω
penalizes the complexity of g. Since in LIME g follows Equation 1 and L is a squared loss, Equation
2 can be solved using penalized linear regression.
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2.2 DeepLIFT

DeepLIFT was recently proposed as a recursive prediction explanation method for deep learning
[8, 7]. It attributes to each input xi a value C∆xi∆y that represents the effect of that input being set
to a reference value as opposed to its original value. This means that for DeepLIFT, the mapping
x = hx(x′) converts binary values into the original inputs, where 1 indicates that an input takes its
original value, and 0 indicates that it takes the reference value. The reference value, though chosen
by the user, represents a typical uninformative background value for the feature.

DeepLIFT uses a "summation-to-delta" property that states:

n∑

i=1

C∆xi∆o = ∆o, (3)

where o = f(x) is the model output, ∆o = f(x)− f(r), ∆xi = xi− ri, and r is the reference input.
If we let φi = C∆xi∆o and φ0 = f(r), then DeepLIFT’s explanation model matches Equation 1 and
is thus another additive feature attribution method.

2.3 Layer-Wise Relevance Propagation

The layer-wise relevance propagation method interprets the predictions of deep networks [1]. As
noted by Shrikumar et al., this menthod is equivalent to DeepLIFT with the reference activations of all
neurons fixed to zero. Thus, x = hx(x′) converts binary values into the original input space, where
1 means that an input takes its original value, and 0 means an input takes the 0 value. Layer-wise
relevance propagation’s explanation model, like DeepLIFT’s, matches Equation 1.

2.4 Classic Shapley Value Estimation

Three previous methods use classic equations from cooperative game theory to compute explanations
of model predictions: Shapley regression values [4], Shapley sampling values [9], and Quantitative
Input Influence [3].

Shapley regression values are feature importances for linear models in the presence of multicollinearity.
This method requires retraining the model on all feature subsets S ⊆ F , where F is the set of all
features. It assigns an importance value to each feature that represents the effect on the model
prediction of including that feature. To compute this effect, a model fS∪{i} is trained with that feature
present, and another model fS is trained with the feature withheld. Then, predictions from the two
models are compared on the current input fS∪{i}(xS∪{i})− fS(xS), where xS represents the values
of the input features in the set S. Since the effect of withholding a feature depends on other features
in the model, the preceding differences are computed for all possible subsets S ⊆ F \ {i}. The
Shapley values are then computed and used as feature attributions. They are a weighted average of all
possible differences:

φi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[
fS∪{i}(xS∪{i})− fS(xS)

]
. (4)

For Shapley regression values, hx maps 1 or 0 to the original input space, where 1 indicates the input
is included in the model, and 0 indicates exclusion from the model. If we let φ0 = f∅(∅), then the
Shapley regression values match Equation 1 and are hence an additive feature attribution method.

Shapley sampling values are meant to explain any model by: (1) applying sampling approximations
to Equation 4, and (2) approximating the effect of removing a variable from the model by integrating
over samples from the training dataset. This eliminates the need to retrain the model and allows fewer
than 2|F | differences to be computed. Since the explanation model form of Shapley sampling values
is the same as that for Shapley regression values, it is also an additive feature attribution method.

Quantitative input influence is a broader framework that addresses more than feature attributions.
However, as part of its method it independently proposes a sampling approximation to Shapley values
that is nearly identical to Shapley sampling values. It is thus another additive feature attribution
method.
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3 Simple Properties Uniquely Determine Additive Feature Attributions

A surprising attribute of the class of additive feature attribution methods is the presence of a single
unique solution in this class with three desirable properties (described below). While these properties
are familiar to the classical Shapley value estimation methods, they were previously unknown for
other additive feature attribution methods.

The first desirable property is local accuracy. When approximating the original model f for a specific
input x, local accuracy requires the explanation model to at least match the output of f for the
simplified input x′ (which corresponds to the original input x).

Property 1 (Local accuracy)

f(x) = g(x′) = φ0 +
M∑

i=1

φix
′
i (5)

The explanation model g(x′) matches the original model f(x) when x = hx(x′), where φ0 =
f(hx(0)) represents the model output with all simplified inputs toggled off (i.e. missing).

The second property is missingness. If the simplified inputs represent feature presence, then missing-
ness requires features missing in the original input to have no impact. All of the methods described in
Section 2 obey the missingness property.

Property 2 (Missingness)
x′i = 0 =⇒ φi = 0 (6)

Missingness constrains features where x′i = 0 to have no attributed impact.

The third property is consistency. Consistency states that if a model changes so that some simplified
input’s contribution increases or stays the same regardless of the other inputs, that input’s attribution
should not decrease.

Property 3 (Consistency) Let fx(z′) = f(hx(z′)) and z′ \ i denote setting z′i = 0. For any two
models f and f ′, if

f ′x(z′)− f ′x(z′ \ i) ≥ fx(z′)− fx(z′ \ i) (7)
for all inputs z′ ∈ {0, 1}M , then φi(f ′, x) ≥ φi(f, x).

Theorem 1 Only one possible explanation model g follows Definition 1 and satisfies Properties 1, 2,
and 3:

φi(f, x) =
∑

z′⊆x′

|z′|!(M − |z′| − 1)!

M !
[fx(z′)− fx(z′ \ i)] (8)

where |z′| is the number of non-zero entries in z′, and z′ ⊆ x′ represents all z′ vectors where the
non-zero entries are a subset of the non-zero entries in x′.

Theorem 1 follows from combined cooperative game theory results, where the values φi are known
as Shapley values [6]. Young (1985) demonstrated that Shapley values are the only set of values
that satisfy three axioms similar to Property 1, Property 3, and a final property that we show to be
redundant in this setting (see Supplementary Material). Property 2 is required to adapt the Shapley
proofs to the class of additive feature attribution methods.

Under Properties 1-3, for a given simplified input mapping hx, Theorem 1 shows that there is only one
possible additive feature attribution method. This result implies that methods not based on Shapley
values violate local accuracy and/or consistency (methods in Section 2 already respect missingness).
The following section proposes a unified approach that improves previous methods, preventing them
from unintentionally violating Properties 1 and 3.

4 SHAP (SHapley Additive exPlanation) Values

We propose SHAP values as a unified measure of feature importance. These are the Shapley values
of a conditional expectation function of the original model; thus, they are the solution to Equation

4



Figure 1: SHAP (SHapley Additive exPlanation) values attribute to each feature the change in the
expected model prediction when conditioning on that feature. They explain how to get from the
base value E[f(z)] that would be predicted if we did not know any features to the current output
f(x). This diagram shows a single ordering. When the model is non-linear or the input features are
not independent, however, the order in which features are added to the expectation matters, and the
SHAP values arise from averaging the φi values across all possible orderings.

8, where fx(z′) = f(hx(z′)) = E[f(z) | zS ], and S is the set of non-zero indexes in z′ (Figure 1).
Based on Sections 2 and 3, SHAP values provide the unique additive feature importance measure that
adheres to Properties 1-3 and uses conditional expectations to define simplified inputs. Implicit in this
definition of SHAP values is a simplified input mapping, hx(z′) = zS , where zS has missing values
for features not in the set S. Since most models cannot handle arbitrary patterns of missing input
values, we approximate f(zS) with E[f(z) | zS ]. This definition of SHAP values is designed to
closely align with the Shapley regression, Shapley sampling, and quantitative input influence feature
attributions, while also allowing for connections with LIME, DeepLIFT, and layer-wise relevance
propagation.

The exact computation of SHAP values is challenging. However, by combining insights from current
additive feature attribution methods, we can approximate them. We describe two model-agnostic
approximation methods, one that is already known (Shapley sampling values) and another that is
novel (Kernel SHAP). We also describe four model-type-specific approximation methods, two of
which are novel (Max SHAP, Deep SHAP). When using these methods, feature independence and
model linearity are two optional assumptions simplifying the computation of the expected values
(note that S̄ is the set of features not in S):

f(hx(z′)) = E[f(z) | zS ] SHAP explanation model simplified input mapping (9)
= EzS̄ |zS [f(z)] expectation over zS̄ | zS (10)

≈ EzS̄ [f(z)] assume feature independence (as in [9, 5, 7, 3]) (11)
≈ f([zS , E[zS̄ ]]). assume model linearity (12)

4.1 Model-Agnostic Approximations

If we assume feature independence when approximating conditional expectations (Equation 11), as
in [9, 5, 7, 3], then SHAP values can be estimated directly using the Shapley sampling values method
[9] or equivalently the Quantitative Input Influence method [3]. These methods use a sampling
approximation of a permutation version of the classic Shapley value equations (Equation 8). Separate
sampling estimates are performed for each feature attribution. While reasonable to compute for a
small number of inputs, the Kernel SHAP method described next requires fewer evaluations of the
original model to obtain similar approximation accuracy (Section 5).

Kernel SHAP (Linear LIME + Shapley values)

Linear LIME uses a linear explanation model to locally approximate f , where local is measured in the
simplified binary input space. At first glance, the regression formulation of LIME in Equation 2 seems
very different from the classical Shapley value formulation of Equation 8. However, since linear
LIME is an additive feature attribution method, we know the Shapley values are the only possible
solution to Equation 2 that satisfies Properties 1-3 – local accuracy, missingness and consistency. A
natural question to pose is whether the solution to Equation 2 recovers these values. The answer
depends on the choice of loss function L, weighting kernel πx′ and regularization term Ω. The LIME
choices for these parameters are made heuristically; using these choices, Equation 2 does not recover
the Shapley values. One consequence is that local accuracy and/or consistency are violated, which in
turn leads to unintuitive behavior in certain circumstances (see Section 5).
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Below we show how to avoid heuristically choosing the parameters in Equation 2 and how to find the
loss function L, weighting kernel πx′ , and regularization term Ω that recover the Shapley values.

Theorem 2 (Shapley kernel) Under Definition 1, the specific forms of πx′ , L, and Ω that make
solutions of Equation 2 consistent with Properties 1 through 3 are:

Ω(g) = 0,

πx′(z′) =
(M − 1)

(M choose |z′|)|z′|(M − |z′|) ,

L(f, g, πx′) =
∑

z′∈Z
[f(hx(z′))− g(z′)]

2
πx′(z′),

where |z′| is the number of non-zero elements in z′.

The proof of Theorem 2 is shown in the Supplementary Material.

It is important to note that πx′(z′) =∞when |z′| ∈ {0,M}, which enforces φ0 = fx(∅) and f(x) =∑M
i=0 φi. In practice, these infinite weights can be avoided during optimization by analytically

eliminating two variables using these constraints.

Since g(z′) in Theorem 2 is assumed to follow a linear form, and L is a squared loss, Equation 2
can still be solved using linear regression. As a consequence, the Shapley values from game theory
can be computed using weighted linear regression.2 Since LIME uses a simplified input mapping
that is equivalent to the approximation of the SHAP mapping given in Equation 12, this enables
regression-based, model-agnostic estimation of SHAP values. Jointly estimating all SHAP values
using regression provides better sample efficiency than the direct use of classical Shapley equations
(see Section 5).

The intuitive connection between linear regression and Shapley values is that Equation 8 is a difference
of means. Since the mean is also the best least squares point estimate for a set of data points, it is
natural to search for a weighting kernel that causes linear least squares regression to recapitulate
the Shapley values. This leads to a kernel that distinctly differs from previous heuristically chosen
kernels (Figure 2A).

4.2 Model-Specific Approximations

While Kernel SHAP improves the sample efficiency of model-agnostic estimations of SHAP values, by
restricting our attention to specific model types, we can develop faster model-specific approximation
methods.

Linear SHAP

For linear models, if we assume input feature independence (Equation 11), SHAP values can be
approximated directly from the model’s weight coefficients.

Corollary 1 (Linear SHAP) Given a linear model f(x) =
∑M

j=1 wjxj + b: φ0(f, x) = b and

φi(f, x) = wj(xj − E[xj ])

This follows from Theorem 2 and Equation 11, and it has been previously noted by Štrumbelj and
Kononenko [9].

Low-Order SHAP

Since linear regression using Theorem 2 has complexity O(2M +M3), it is efficient for small values
of M if we choose an approximation of the conditional expectations (Equation 11 or 12).

2During the preparation of this manuscript we discovered this parallels an equivalent constrained quadratic
minimization formulation of Shapley values proposed in econometrics [2].
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Figure 2: (A) The Shapley kernel weighting is symmetric when all possible z′ vectors are ordered
by cardinality there are 215 vectors in this example. This is distinctly different from previous
heuristically chosen kernels. (B) Compositional models such as deep neural networks are comprised
of many simple components. Given analytic solutions for the Shapley values of the components, fast
approximations for the full model can be made using DeepLIFT’s style of back-propagation.

Max SHAP

Using a permutation formulation of Shapley values, we can calculate the probability that each input
will increase the maximum value over every other input. Doing this on a sorted order of input values
lets us compute the Shapley values of a max function with M inputs in O(M2) time instead of
O(M2M ). See Supplementary Material for the full algorithm.

Deep SHAP (DeepLIFT + Shapley values)

While Kernel SHAP can be used on any model, including deep models, it is natural to ask whether
there is a way to leverage extra knowledge about the compositional nature of deep networks to improve
computational performance. We find an answer to this question through a previously unappreciated
connection between Shapley values and DeepLIFT [8]. If we interpret the reference value in Equation
3 as representing E[x] in Equation 12, then DeepLIFT approximates SHAP values assuming that
the input features are independent of one another and the deep model is linear. DeepLIFT uses a
linear composition rule, which is equivalent to linearizing the non-linear components of a neural
network. Its back-propagation rules defining how each component is linearized are intuitive but were
heuristically chosen. Since DeepLIFT is an additive feature attribution method that satisfies local
accuracy and missingness, we know that Shapley values represent the only attribution values that
satisfy consistency. This motivates our adapting DeepLIFT to become a compositional approximation
of SHAP values, leading to Deep SHAP.

Deep SHAP combines SHAP values computed for smaller components of the network into SHAP
values for the whole network. It does so by recursively passing DeepLIFT’s multipliers, now defined
in terms of SHAP values, backwards through the network as in Figure 2B:

mxjf3
=

φi(f3, x)

xj − E[xj ]
(13)

∀j∈{1,2} myifj =
φi(fj , y)

yi − E[yi]
(14)

myif3
=

2∑

j=1

myifjmxjf3
chain rule (15)

φi(f3, y) ≈ myif3
(yi − E[yi]) linear approximation (16)

Since the SHAP values for the simple network components can be efficiently solved analytically
if they are linear, max pooling, or an activation function with just one input, this composition
rule enables a fast approximation of values for the whole model. Deep SHAP avoids the need to
heuristically choose ways to linearize components. Instead, it derives an effective linearization from
the SHAP values computed for each component. The max function offers one example where this
leads to improved attributions (see Section 5).
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Figure 3: Comparison of three additive feature attribution methods: Kernel SHAP (using a debiased
lasso), Shapley sampling values, and LIME (using the open source implementation). Feature
importance estimates are shown for one feature in two models as the number of evaluations of the
original model function increases. The 10th and 90th percentiles are shown for 200 replicate estimates
at each sample size. (A) A decision tree model using all 10 input features is explained for a single
input. (B) A decision tree using only 3 of 100 input features is explained for a single input.

5 Computational and User Study Experiments

We evaluated the benefits of SHAP values using the Kernel SHAP and Deep SHAP approximation
methods. First, we compared the computational efficiency and accuracy of Kernel SHAP vs. LIME
and Shapley sampling values. Second, we designed user studies to compare SHAP values with
alternative feature importance allocations represented by DeepLIFT and LIME. As might be expected,
SHAP values prove more consistent with human intuition than other methods that fail to meet
Properties 1-3 (Section 2). Finally, we use MNIST digit image classification to compare SHAP with
DeepLIFT and LIME.

5.1 Computational Efficiency

Theorem 2 connects Shapley values from game theory with weighted linear regression. Kernal SHAP
uses this connection to compute feature importance. This leads to more accurate estimates with fewer
evaluations of the original model than previous sampling-based estimates of Equation 8, particularly
when regularization is added to the linear model (Figure 3). Comparing Shapley sampling, SHAP, and
LIME on both dense and sparse decision tree models illustrates both the improved sample efficiency
of Kernel SHAP and that values from LIME can differ significantly from SHAP values that satisfy
local accuracy and consistency.

5.2 Consistency with Human Intuition

Theorem 1 provides a strong incentive for all additive feature attribution methods to use SHAP
values. Both LIME and DeepLIFT, as originally demonstrated, compute different feature importance
values. To validate the importance of Theorem 1, we compared explanations from LIME, DeepLIFT,
and SHAP with user explanations of simple models (using Amazon Mechanical Turk). Our testing
assumes that good model explanations should be consistent with explanations from humans who
understand that model.

We compared LIME, DeepLIFT, and SHAP with human explanations for two settings. The first
setting used a sickness score that was higher when only one of two symptoms was present (Figure 4A).
The second used a max allocation problem to which DeepLIFT can be applied. Participants were told
a short story about how three men made money based on the maximum score any of them achieved
(Figure 4B). In both cases, participants were asked to assign credit for the output (the sickness score
or money won) among the inputs (i.e., symptoms or players). We found a much stronger agreement
between human explanations and SHAP than with other methods. SHAP’s improved performance for
max functions addresses the open problem of max pooling functions in DeepLIFT [7].

5.3 Explaining Class Differences

As discussed in Section 4.2, DeepLIFT’s compositional approach suggests a compositional approxi-
mation of SHAP values (Deep SHAP). These insights, in turn, improve DeepLIFT, and a new version
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Figure 4: Human feature impact estimates are shown as the most common explanation given among
30 (A) and 52 (B) random individuals, respectively. (A) Feature attributions for a model output value
(sickness score) of 2. The model output is 2 when fever and cough are both present, 5 when only
one of fever or cough is present, and 0 otherwise. (B) Attributions of profit among three men, given
according to the maximum number of questions any man got right. The first man got 5 questions
right, the second 4 questions, and the third got none right, so the profit is $5.
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Figure 5: Explaining the output of a convolutional network trained on the MNIST digit dataset. Orig.
DeepLIFT has no explicit Shapley approximations, while New DeepLIFT seeks to better approximate
Shapley values. (A) Red areas increase the probability of that class, and blue areas decrease the
probability. Masked removes pixels in order to go from 8 to 3. (B) The change in log odds when
masking over 20 random images supports the use of better estimates of SHAP values.

includes updates to better match Shapley values [7]. Figure 5 extends DeepLIFT’s convolutional
network example to highlight the increased performance of estimates that are closer to SHAP values.
The pre-trained model and Figure 5 example are the same as those used in [7], with inputs normalized
between 0 and 1. Two convolution layers and 2 dense layers are followed by a 10-way softmax
output layer. Both DeepLIFT versions explain a normalized version of the linear layer, while SHAP
(computed using Kernel SHAP) and LIME explain the model’s output. SHAP and LIME were both
run with 50k samples (Supplementary Figure 1); to improve performance, LIME was modified to use
single pixel segmentation over the digit pixels. To match [7], we masked 20% of the pixels chosen to
switch the predicted class from 8 to 3 according to the feature attribution given by each method.

6 Conclusion

The growing tension between the accuracy and interpretability of model predictions has motivated
the development of methods that help users interpret predictions. The SHAP framework identifies
the class of additive feature importance methods (which includes six previous methods) and shows
there is a unique solution in this class that adheres to desirable properties. The thread of unity that
SHAP weaves through the literature is an encouraging sign that common principles about model
interpretation can inform the development of future methods.

We presented several different estimation methods for SHAP values, along with proofs and ex-
periments showing that these values are desirable. Promising next steps involve developing faster
model-type-specific estimation methods that make fewer assumptions, integrating work on estimating
interaction effects from game theory, and defining new explanation model classes.
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d o  o n l i n e  a d s  suggestive of arrest records appear  
more often with searches of black-sounding names than 
white-sounding names? What is a black-sounding name 
or white-sounding name, anyway? How do you design 
technology to reason about societal consequences like 
structural racism? Let’s take a scientific dive into online 
ad delivery to find answers. 

“Have you ever been arrested?” Imagine this 
question appearing whenever someone enters 
your name in a search engine. Perhaps you are in 
competition for an award or a new job, or maybe 
you are in a position of trust, such as a professor or a 
volunteer. Perhaps you are dating or engaged in any 
one of hundreds of circumstances for which someone 
wants to learn more about you online. Appearing 
alongside your accomplishments is an advertisement 
implying you may have a criminal record, whether 
you actually have one or not. Worse, the ads may not 
appear for your competitors.

Employers frequently ask whether 
applicants have ever been arrested or 
charged with a crime, but if an em-
ployer disqualifies a job applicant 
based solely upon information indi-
cating an arrest record, the company 
may face legal consequences. The U.S. 
Equal Employment Opportunity Com-
mission (EEOC) is the federal agency 
charged with enforcing Title VII of the 
Civil Rights Act of 1964, a law that ap-
plies to most employers, prohibiting 
employment discrimination based on 
race, color, religion, sex, or national 
origin, and extended to those having 
criminal records.5,11 Title VII does not 
prohibit employers from obtaining 
criminal background information, but 
a blanket policy of excluding appli-
cants based solely upon information 
indicating an arrest record can result 
in a charge of discrimination. 

To make a determination, the 
EEOC uses an adverse impact test that 
measures whether certain practices, 
intentional or not, have a dispropor-
tionate effect on a group of people 
whose defining characteristics are 
covered by Title VII. To decide, you 
calculate the percentage of people af-
fected in each group and then divide 
the smaller value by the larger to get 
the ratio and compare the result to 
80. If the ratio is less than 80, then the 
EEOC considers the effect dispropor-
tionate and may hold the employer re-
sponsible for discrimination.6 

What about online ads suggesting 
someone with your name has an ar-
rest record? Title VII only applies if you 
have an arrest record and can prove the 
employer inappropriately used the ads.

Are the ads commercial free 
speech—a constitutional right to dis-
play the ad associated with your name? 
The First Amendment of the U.S. Con-
stitution protects advertising, but the 
U.S. Supreme Court set out a test for 
assessing restrictions on commercial 
speech, which begins by determining 
whether the speech is misleading.3 Are 
online ads suggesting the existence of 
an arrest record misleading if no one 
by that name has an arrest record? 

Discrimination 
in online  
ad Delivery

Doi:10.1145/2447976.2447990

  Article development led by  
        queue.acm.org

Google ads, black names and white names, 
racial discrimination, and click advertising.
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Assume the ads are free speech: 
what happens when these ads appear 
more often for one racial group than 
another? Not everyone is being equal-
ly affected by free speech. Is that free 
speech or racial discrimination? 

Racism, as defined by the U.S. Com-
mission on Civil Rights, is “any atti-
tude, action, or institutional structure 
which subordinates a person or group 
because of their color.”16 Racial dis-
crimination results when a person or 
group of people is treated differently 
based on their racial origins, accord-
ing to the Panel on Methods for As-
sessing Discrimination of the National 
Research Council.12 Power is a neces-
sary precondition, for it depends on 
the ability to give or withhold benefits, 
facilities, services, and opportunities 
from someone who should be entitled 
to them and is denied on the basis of 
race. Institutional or structural racism, 
as defined in The Social Work Diction-
ary, is a system of procedures/patterns 
whose effect is to foster discriminatory 
outcomes or give preferences to mem-
bers of one group over another.1 

These considerations frame the 
relevant socio-legal landscape. Now 
we turn to whether online ads sugges-
tive of arrest records appear more of-
ten for one racial group than another 
among a sample of racially associated 
names, and if so, how technology can 
solve the problem.

the Pattern
What is the suspected pattern of ad de-
livery? Here is an overview using real-
world examples.

Earlier this year, a Google search for 
Latanya Farrell, Latanya Sweeney, and 
Latanya Lockett yielded ads and crimi-
nal reports like those shown in Figure 
1. The ads appeared on Google.com 
(Figure 1a, 1c) and on a news website, 
Reuters.com, to which Google supplies 
ads (Figure 1c), All the ads in question 
linked to instantcheckmate.com (Fig-
ure 1b, 1d). The first ad implied Lat-
anya Farrell might have been arrested. 
Was she? Clicking on the link and pay-
ing the requisite fee revealed the com-
pany had no arrest record for her or 
Latanya Sweeney, but there is a record 
for Latanya Lockett. 

In comparison, searches for Kristen 
Haring, Kristen Sparrow, and Kristen 
Lindquist did not yield any instant-

figure 1. ads from a Google search of three different names beginning with first name 
“Latanya.” 

(a)

(b)

(c)

(d)
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checkmate.com ads, even though the 
company’s database reported having 
records for all three names and arrest 
records for Sparrow and Lindquist. 

Searches for Jill Foley, Jill Schneider, 
and Jill James displayed instantcheck-
mate.com ads with neutral copy; the 
word arrest did not appear in the ads 
even though arrest records for all three 
names appeared in the company’s da-
tabase. Figure 2 shows ads appearing 
on Google.com and Reuters.com and 
criminal reports from instantcheck-
mate.com for the first two names.

Finally, we considered a proxy for 
race associated with these names. Fig-
ure 3 shows racial distinction in Google 
image search results for Latanya, Lati-
sha, Kristen, and Jill, respectively. The 
faces associated with Latanya and Lati-
sha tend to be black, while white faces 
dominate the images of Kristen and Jill.

These handpicked examples de-
scribe the suspected pattern: ads sug-
gesting arrest tend to appear with 
names associated with blacks, and 
neutral or no ads appear with names 
associated with whites, regardless of 
whether the company placing the ad 
has an arrest record associated with 
the name. 

Google adsense
Who generates the ad’s text? Who de-
cides when and where an ad will ap-
pear? What is the relationship among 
Google, a news website such as Reuters, 
and Instant Checkmate in the previous 
examples? An overview of Google Ad-
Sense, the program that delivered the 
ads, provides the answers.

In printed newspapers, everyone 
who reads the publication sees the 
same ad in the same space. Online ads 
can be tailored to the reader’s search 
criteria, interests, geographical loca-
tion, and so on. Any two readers (or 
even the same reader returning to the 
same website) might view different ads. 

Google AdSense is the largest provid-
er of dynamic online advertisements, 
placing ads for millions of sponsors on 
millions of websites.9 In the first quar-
ter of 2011, Google earned $2.43 billion 
through Google AdSense.10 Several dif-
ferent advertising arrangements exist, 
but for simplicity this article describes 
only those features of Google AdSense 
specific to the Instant Checkmate ads 
in question. 

figure 2. ad from a search of three different names beginning with the first name “Jill.”

(a)

(b)

(c)

(d)
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When a reader enters search crite-
ria in an enrolled website, Google Ad-
Sense embeds into the Web page of re-
sults ads believed to be relevant to the 
search. Figures 1 and 2 show ads deliv-
ered by Google AdSense in response to 
various firstname lastname searches. 

An advertiser provides Google with 
search criteria, copies of possible ads 
to deliver, and a bid to pay if a reader 
clicks the delivered ad. (For conve-
nience, this article conflates Google 
AdSense with the related Google Ad-
words.) Google operates a real-time 
auction across bids for the same 
search criteria based on a “quality 
score” for each bid. A quality score in-
cludes many factors such as the past 
performance of the ad and character-
istics of the company’s website.10 The 
ad having the highest quality score ap-
pears first, the second-highest second, 
and so on, and Google may elect not 
to show any ad if it considers the bid 
too low or if showing the ad exceeds a 
threshold (For example, a maximum 
account total for the advertiser). The 
Instant Checkmate ads in figures 1 
and 2 often appeared first among ads, 
implying Instant Checkmate ads had 
the highest quality scores.

A website owner wanting to “host” 
online ads enrolls in AdSense and 
modifies the website to send a user’s 
search criteria to Google and to display 
returning ads under a banner “Ads by 
Google” among search results. For ex-
ample, Reuters.com hosts AdSense, 
and entering Latanya Sweeney in the 

search bar generated a new Web page 
with ads under the banner “Ads by 
Google” (Figure 1c). 

There is no cost for displaying an 
ad, but if the user actually clicks on 
the ad, the advertiser pays the auc-
tion price. This may be as little as a 
few pennies, and the amount is split 
between Google and the host. Click-
ing the Latanya Sweeney ad on Reuters.
com (Figure 1c) would cause Instant 
Checkmate to pay its auction amount 
to Google, and Google would split the 
amount with Reuters.

Search Criteria
What search criteria did Instant Check-
mate specify? Will ads be delivered for 
made-up names? Ads displayed on 
Google.com allow users to learn why a 
specific ad appeared. Clicking the cir-
cled “i” in the ad banner (for example, 
Figure 1c) leads to a Web page explain-
ing the ads. Doing so for ads in figures 
1 and 2 reveals that the ads appeared 
because the search criteria matched 
the exact first- and last-name combina-
tion searched. 

So, the search criteria must consist 
of both first and last names; and the 
names should belong to real people be-
cause a company presumably bids on 
records it sells. 

The next steps describe the system-
atic construction of a list of racially as-
sociated first and last names for real 
people to use as search criteria. Nei-
ther Instant Checkmate nor Google 
are presumed to have used such a list. 

Rather, the list provides a qualified 
sample of names to use in testing ad-
delivery systems.

Black- and White-identifying Names
Black-identifying and white-identifying 
first names occur with sufficiently high-
er frequency in one race than the other. 

In 2003 Marianne Bertrand and 
Sendhil Mullainathan of the National 
Bureau of Economic Research (NBER) 
conducted an experiment in which 
they provided resumes to job posts that 
were virtually identical, except some 
of the resumes had black-identifying 
names and others had white-identi-
fying names. Results showed white 
names received 50% more interviews.2 

The study used names given to 
black and white babies in Massachu-
setts between 1974 and 1979, defining 
black-identifying and white-identifying 
names as those that have the highest 
ratio of frequency in one racial group to 
frequency in the other racial group.

In the popular book Freakonomics, 
Steven Levitt and Stephen Dubner re-
port the top 20 whitest- and blackest-
identifying girl and boy names. The list 
comes from earlier work by Levitt and 
Roland Fryer, which shows a pattern 
change in the way blacks named their 
children starting in the 1970s.7 It was 
compiled from names given to black 
and white children recorded in Cali-
fornia birth records from 1961–2000 
(more than 16 million births). 

To test ad delivery, I combined the 
lists from these prior studies and add-
ed two black female names, Latanya 
and Latisha. Table 1 lists the names 
used here, consisting of eight for each 
of the categories: white female, black 
female, white male, and black male 
from the Bertrand and Mullainathan 
study (first row in Table 1); and the first 
eight names for each category from the 
Fryer and Levitt work (second row in 
Table 1). Emily, a white female name, 
Ebony, a black female name, and Dar-
nell, a black male name, appear in both 
rows. The third row includes the obser-
vation shown in Figure 3. Removing 
duplicates leaves a total of 63 distinct 
first names.

full Names of Real People
Web searches provide a means of locat-
ing and harvesting a real person’s first 
and last name (full name) by sampling 

table 1. Black-identifying names and white-identifying first names.

White female Black female White male Black male

Allison
Anne
Carrie
Emily
Jill
laurie
Kristen
Meredith

Aisha
Ebony
Keisha
Kenya
latonya
lakisha
latoya
Tamika

Brad
Brendan
geoffrey
greg
Brett
Jay
Matthew
neil

Darnell
hakim
Jermaine
Kareem
Jamal
leroy
rasheed
Tremayne

Molly
Amy
Claire
Emily*
Katie
Madeline
Katelyn
Emma

imani
Ebony*
shanice
Aaliyah
Precious
nia
Deja
Diamond

Jake
Connor
Tanner
Wyatt
Cody
Dustin
luke
Jack

Deshawn
DeAndre
Marquis
Darnell*
Terrell
Malik
Trevon
Tyrone

latanya
latisha

(a)

(b)

(c)



practice

MAy 2013  |   VOl.  56  |   nO.  5  |   CommuNiCatioNS of the aCm     49

names of professionals appearing on 
the Web; and sampling names of peo-
ple active on social media sites and 
blogs (netizens). 

Professionals often have their own 
Web pages that list positions and de-
scribe prior accomplishments. Sev-
eral professions have degree designa-
tions (for example, Ph.D., M.D., J.D., 
or MBA) associated with people in that 
profession. A Google search for a first 
name and a degree designation can 
yield lists of people having that first 
name and degree. 

The next step is to visit the Web 
page associated with each full name, 
and if an image is discernible, record 
whether the person appears black, 
white, or other. 

Here are two examples from my test. 
A Google search for Ebony PhD revealed 
links for real people having Ebony as a 
first name—specifically, Ebony Book-
man, Ebony Glover, Ebony Baylor, and 
Ebony Utley. I harvested the full names 
appearing on the first three pages of 
search results, using searches with oth-
er degree designations to find at least 
10 full names for Ebony. Clicking on 
the link associated with Ebony Glover 
displayed an image.8 The Ebony Glover 
in this study appeared black. 

Similarly, search results for Jill PhD 
listed professionals whose first name 
is Jill. Visiting links yielded Web pag-
es with more information about each 
person. For example, Jill Schneider’s 
Web page had an image showing that 
she is white.14

PeekYou searches were used to har-
vest a sample of full names of netizens 
having racially associated first names. 
The website peekyou.com compiles on-
line and offline information on individ-
uals—thereby connecting residential 
information with Facebook and Twitter 
users, bloggers, and others—then as-
signs its own rating to reflect the size of 
each person’s online footprint. Search 
results from peekyou.com list people 
having the highest score first, and in-
clude an image of the person. 

A PeekYou search of Ebony listed Eb-
ony Small, Ebony Cams, Ebony King, Eb-
ony Springer, and Ebony Tan. A PeekYou 
search for Jill listed Jill Christopher, Jill 
Spivack, Jill English, Jill Pantozzi, and 
Jill Dobson. After harvesting these and 
other full names, I reported the race of 
the person if discernible. 

Armed with the approach just de-
scribed, I harvested 2,184 racially as-
sociated full names of people with an 
online presence from September 24 
through October 22, 2012. Most im-
ages associated with black-identifying 
names were of black people (88%), 

and an even greater percentage of im-
ages associated with white-identifying 
names were of white people (96%).15 

Google searches of first names 
and degree designations were not 
as productive as first name lookups 
on PeekYou. On Google, white male 

figure 3. image search results for first names Latanya, Latisha, Kirsten, and Jill.

(a)

(b)

(c)

(d)
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names, Cody, Connor, Tanner, and 
Wyatt retrieved results with those as 
last names rather than first names; 
the black male name, Kenya, was 
confused with the country; and black 
names Aaliyah, Deja, Diamond, Ha-
kim, Malik, Marquis, Nia, Precious, and 
Rasheed retrieved fewer than 10 full 
names. Only Diamond posed a prob-
lem with PeekYou searches, seeming-
ly confused with other online entities. 
Diamond was therefore excluded from 
further consideration.

Some black first names had perfect 
predictions (100%): Aaliyah, DeAndre, 
Imani, Jermaine, Lakisha, Latoya, Ma-
lik, Tamika, and Trevon. The worst pre-
dictors of blacks were Jamal (48%) and 
Leroy (50%). Among white first names, 
12 of 31 names made perfect predic-
tions: Brad, Brett, Cody, Dustin, Greg, 
Jill, Katelyn, Katie, Kristen, Matthew, 
Tanner, and Wyatt; the worst predic-
tors of whites were Jay (78%) and Bren-
dan (83%). These findings strongly sup-
port the use of these names as racial 
indicators in this study. 

Sixty-two full names appeared in the 
list twice even though the people were 
not necessarily the same. No name 
appeared more than twice. Overall, 
Google and PeekYou searches tended 
to yield different names.

ad Delivery
With this list of names suggestive of 
race, I was ready to test which ads ap-
pear when these names are searched. 
To do this, I examined ads delivered 
on two sites, Google.com and Reuters.
com, in response to searches of each 
full name, once at each site. The brows-
er’s cache and cookies were cleared 
before each search, and copies of Web 
pages received were preserved. Figures 
1, 2, 5, and 6 provide examples. 

From September 24 through Oc-
tober 23, 2012, I searched 2,184 full 
names on Google.com and Reuters.
com. The searches took place at differ-
ent times of day, different days of the 
week, with different IP and machine 
addresses operating in different parts 
of the United States using different 
browsers. I manually searched 1,373 
of the names and used automated 
means17 for the remaining 812 names. 
Here are nine observations. 

1. Fewer ads appeared on Google.com 
than Reuters.com—about five times 

fewer. When ads did appear on Google.
com, typically only one ad showed, 
compared with three ads routinely ap-
pearing on Reuters.com. This suggests 
Google may be sensitive to the number 
of ads appearing on Google.com. 

2. Of 5,337 ads captured, 78% were for 
government-collected information (pub-
lic records) about the person whose name 
was searched. Public records in the U.S. 
often include a person’s address, phone 
number, and criminal history. Of the 
more than 2,000 names searched, 78% 
had at least one ad for public records 
about the person being searched. 

3. Four companies had more than half 
of all the ads captured. These compa-
nies were Instant Checkmate, PublicRe-
cords (which is owned by Intelius), Peo-
pleSmart, and PeopleFinders, and all 
their ads were selling public records. 
Instant Checkmate ads appeared more 
than any other: 29% of all ads. Ad distri-
bution was different on Google’s site; 
Instant Checkmate still had the most 
ads (50%), but Intelius.com, while not 
in the top four overall, had the second 
most ads on Google.com. These com-
panies dominate the advertising space 
for online ads selling public records.

4. Ads for public records on a per-
son appeared more often for those with 
black-associated names than white-as-
sociated names, regardless of company. 
PeopleSmart ads appeared dispropor-
tionately higher for black-identifying 
names—41% as opposed to 29% for 
white names. PublicRecords ads ap-
peared 10% more often for those with 
black first names than white. Instant 
Checkmate ads displayed only slightly 
more often for black-associated names 
(2% difference). This is an interesting 
finding and it spawns the question: 
Public records contain information on 
everyone, so why more ads for black-
associated names? 

5. Instant Checkmate ads dominated 
the topmost ad position. They occupied 
that spot in almost half of all searches 
on Reuters.com. This suggests Instant 
Checkmate offers Google more money 
or has higher quality scores than do its 
competitors.

6. Instant Checkmate had the largest 
percentage of ads in virtually every first-
name category, except for Kristen, Con-
nor, and Tremayne. For those names, 
Instant Checkmate had uncharacter-
istically fewer ads (less than 25%). Pub-

of the more  
than 2,000 names 
searched,  
78% had at least 
one ad for public 
records about  
the person  
being searched.
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licRecords had ads for 80% of names 
beginning with Tremayne, and Connor, 
and 58% for Kristen, compared to 20% 
and less for Instant Checkmate. Why 
the underrepresentation in these first 
names? During a conference call with 
company’s representatives, they as-
serted that Instant Checkmate gave the 
same ad text to Google for groups of 
last names (not first names). 

7. Almost all ads for public records 
included the name of the person, making 
each ad virtually unique, but beyond per-
sonalization, the ad templates showed 
little variability. The only exception was 
Instant Checkmate. Almost all People-
Finder ads appearing on Reuters.com 
used the same personalized template. 
PublicRecords used five templates and 
PeopleSmart seven, but Instant Check-
mate used 18 different ad templates 
on Reuters.com. Figure 4 enumerates 
ad templates for frequencies of 10 or 
more for all four companies (replace 
fullname with the person’s first and 
last name).

While Instant Checkmate’s compet-
itors also sell criminal history informa-
tion, only Instant Checkmate ads used 
the word arrest.

8. A greater percentage of Instant 
Checkmate ads using the word “arrest” 
appeared for black-identifying first names 
than for white first names. More than 
1,100 Instant Checkmate ads appeared 
on Reuters.com, with 488 having black-
identifying first names; of these, 60% 
used arrest in the ad text. Of the 638 
ads displayed with white-identifying 
names, 48% used arrest. This difference 
is statistically significant, with less than 
a 0.1% probability that the data can be 
explained by chance (chi-square test: 
X2(1)=14.32, p < 0.001). The EEOC’s and 
U.S. Department of Labor’s adverse 
impact test for measuring discrimina-
tion is 77 in this case, so if this were an 
employment situation, a charge of dis-
crimination might result. (The adverse 
impact test uses the ratio of neutral ads, 
or 100 minus the percentages given, to 
compute disparity: 100-60=40 and 100-
48=52; dividing 40 by 52 equals 77.)

The highest percentage of neutral 
ads (where the word arrest does not ap-
pear in ad text) on Reuters.com were 
those for Jill (77%) and Emma (75%), 
both white-identifying names. Names 
receiving the highest percentage of 
ads with arrest in the text were Darnell 

(84%), Jermaine (81%), and DeShawn 
(86%), all black-identifying first names. 
Some names appeared counter to this 
pattern: Dustin, a white-identifying 
name, generated arrest ads in 81% of 
searches; and Imani, a black-identi-
fying name, resulted in neutral ads in 
75% of searches.

9. Discrimination results on Google’s 
site were similar, but, interestingly, ad 
text and distributions were different. 
While the same neutral and arrest ads 
having dominant appearances on Re-
uters.com also appeared frequently on 
Google.com, Instant Checkmate ads 
on Google included an additional 10 
templates, all using the word criminal 
or arrest.

More than 400 Instant Checkmate 
ads appeared on Google, and 90% of 
these were suggestive of arrest, regard-
less of race. Still, a greater percentage 
of Instant Checkmate ads suggestive 
of arrest displayed for black-associated 
first names than for whites. Of the 366 

ads that appeared for black-identifying 
names, 92% were suggestive of arrest. 
Far fewer ads displayed for white-iden-
tifying names (66 total), but 80% were 
suggestive of arrest. This difference in 
the ratios 92 and 80 is statistically sig-
nificant, with less than a 1% probabil-
ity that the data can be explained by 
chance (chi-square test: X2(1)=7.71, p < 
0.01). The EEOC’s adverse impact test 
for measuring discrimination is 40%, 
so if this were employment, a charge 
of discrimination might result. (The 
adverse impact test gives 100-92=8 and 
100-80=20; dividing 8 by 20 equals 40.)

A greater percentage of Instant 
Checkmate ads having the word arrest 
in ad text appeared for black-identify-
ing first names than for white-identify-
ing first names within professional and 
netizen subsets, too. On Reuters.com, 
which hosts Google AdSense ads, a 
black-identifying name was 25% more 
likely to generate an ad suggestive of an 
arrest record.

figure 4. template for ads for public records on Reuters for frequencies less than 10. full 
list is available.15

instantcheckmate Peoplesmart

382 Located: fullname
information found on fullname 
fullname found in database.

87 We found: fullname
1) get Aisha’s Background report  
2) Current Contact info—Try Free!

96 We found fullname
search Arrests, Address, Phone, etc. 
search records for fullname.

105 We found: fullname
1) Contact fullname—Free info! 2) 
Current Address, Phone & More.

40 Background of fullname
search instant Checkmate  
for the records of fullname

348 We found: fullname
1) Contact fullname—Free info!  
2) Current Phone, Address & More.

17 fullname’s Records
1) Enter name and state.  
2) Access Full Background  
Checks instantly. Publicrecords

195 fullname: Truth
Arrests and Much More.  
Everything About fullname

570 fullname
Public records Found For: fullname. 
View now.

67 fullname Truth
looking for fullname?  
Check fullname’s Arrests 

128 fullname
Public records Found For: fullname. 
search now.

176 fullname, Arrested?
1) Enter name and state.  
2) Access Full Background  
Checks instantly.

13 Records: fullname
Database of all lastname’s in  
the Country. search now.

55 fullname Located
Background Check, Arrest records, 
Phone, & Address. instant, Accurate

56 fullname
We have Public records For: fullname. 
search now.

62 Looking for fullname?
Comprehensive Background report  
and More on fullname Peoplefinders

523 We found fullname
Current Address, Phone and Age.  
Find fullname, Anywhere.
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ate in Missouri appeared alongside an 
Instant Checkmate ad using the word 
arrest (Figure 5). Names mined from 
academic websites included graduate 
students, staff, and accomplished aca-
demics, such as Amy Gutmann, presi-
dent of the University of Pennsylvania. 
Dustin Hoffman (arrest ad) was among 
names of celebrities used. A smorgas-
bord of athletes appeared, from local 
to national fame (assorted neutral and 
arrest ads). The youngest person whose 
name was used in the study was a miss-
ing 11-year-old black girl. 

More than 1,100 of the names har-
vested for this study were from PeekYou, 
with scores estimating the name’s over-
all presence on the Web. As expected, 
celebrities get the highest scores of 
10s and 9s. Only four names used here 
had a PeekYou score of 10, and 12 had 
a score of 9, including Dustin Hoffman. 
Only two ads appeared for these high-
scoring names; an abundance of ads ap-
peared across the remaining spectrum 
of PeekYou scores. We might presume 
that the bid price needed to display an 
ad is greater for more popular names 
with higher PeekYou scores. Knowing 
that very few high-scoring people were 
in the study and that ads appeared 
across the full spectrum of PeekYou 
scores reduces concern about varia-
tions in bid prices. 

Different Instant Checkmate ads 
sometimes appeared for the same 
person. About 200 names had Instant 
Checkmate ads on both Reuters.com 
and Google.com, but only 42 of these 
names received the same ad. The other 
82% of names received different ads 
across the two sites. At most, three dis-
tinct ads appeared across Reuters.com 
and Google.com for the same name. 
Figure 6 shows the assortment of ads 
appearing for Latisha Smith. Having 
different possible ad texts for a name 
reminds us that while Instant Check-
mate provided the ad texts, Google’s 
technology selected among the pos-
sible texts in deciding which to display. 
Figure 6 shows ads both suggestive of 
arrest and not, though more ads ap-
pear suggestive of arrest than not.

more about the Problem
Why is this discrimination occurring? 
Is Instant Checkmate, Google, or so-
ciety to blame? We do not yet know. 
Google understands that an advertiser 

may not know which ad copy will work 
best, so the advertiser may provide 
multiple templates for the same search 
string, and the “Google algorithm” 
learns over time which ad text gets the 
most clicks from viewers. It does this 
by assigning weights (or probabilities) 
based on the click history of each ad. At 
first, all possible ad texts are weighted 
the same and are equally likely to pro-
duce a click. Over time, as people tend 
to click one ad copy over others, the 
weights change, so the ad text getting 
the most clicks eventually displays 
more frequently. 

Did Instant Checkmate provide 
ad templates suggestive of arrest dis-
proportionately to black-identifying 
names? Or did Instant Checkmate 
provide roughly the same templates 
evenly across racially associated names 
but users clicked ads suggestive of ar-
rest more often for black-identifying 
names? As mentioned earlier, during 
a conference call with the founders of 
Instant Checkmate and their lawyer, 
the company’s representatives assert-
ed that Instant Checkmate gave the 
same ad text to Google for groups of 
last names (not first names) in its da-
tabase; they expressed no other criteria 
for name and ad selection.

This study is a start, but more re-
search is needed. To preserve research 
opportunities, I captured additional re-
sults for 50 hits on 2,184 names across 
30 Web sites serving Google Ads to 
learn the underlying distributions of 
ad occurrences per name. While ana-
lyzing the data may prove illuminating, 
in the end the basic message presented 
in this study does not change: there is 
discrimination in delivery of these ads. 

technical Solutions
How can technology solve this prob-
lem? One answer is to change the 
quality scores of ads to discount for 
unwanted bias. The idea is to mea-
sure real-time bias in an ad’s delivery 
and then adjust the weight of the ad 
accordingly at auction. The general 
term for Google’s technology is ad ex-
change. This approach generalizes to 
other ad exchanges (not just Google’s); 
integrates seamlessly into the way ad 
exchanges operate, allowing minimal 
modifications to harmonize ad deliv-
eries with societal norms; and, works 
regardless of the cause of the discrimi-

These findings reject the hypothesis 
that no difference exists in the delivery 
of ads suggestive of an arrest record 
based on searches of racially associ-
ated names. 

additional observations
The people behind the names used 
in this study are diverse. Political fig-
ures included Maryland State Repre-
sentatives Aisha Braveboy (arrest ad) 
and Jay Jacobs (neutral ad); Jill Biden 
(neutral ad), wife of U.S. Vice Presi-
dent Joe Biden; and Claire McCaskill, 
whose campaign ad for the U.S. Sen-

figure 6. an assortment of ads appearing 
for Latisha Smith.

(d)

(a)

(b)

(c)

figure 5. Senator Claire mcCaskill’s  
campaign ad appeared next to an ad  
using the word “arrest.”
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nation—advertiser bias in placing ads 
or society bias in selecting ads. 

Discrimination, however, is at the 
heart of online advertising. Differen-
tial delivery is the very idea behind it. 
For example, if young women with chil-
dren tend to purchase baby products 
and retired men with bass boats tend 
to purchase fishing supplies, and you 
know the viewer is one of these two 
types, then it is more efficient to of-
fer ads for baby products to the young 
mother and fishing rods to the fisher-
man, not the other way around. 

On the other hand, not all discrimi-
nation is desirable. Societies have 
identified groups of people to protect 
from specific forms of discrimination. 
Delivering ads suggestive of arrest 
much more often for searches of black-
identifying names than for white-
identifying names is an example of 
unwanted discrimination, according 
to American social and legal norms. 
This is especially true because the ads 
appear regardless of whether actual ar-
rest records exist for the names in the 
company’s database. 

The good news is that we can use the 
mechanics and legal criteria described 
earlier to build technology that distin-
guishes between desirable and unde-
sirable discrimination in ad delivery. 
Here I detail the four key components: 

1. Identifying Affected Groups. A set 
of predicates can be defined to identify 
members of protected and comparison 
groups. Given an ad’s search string and 
text, a predicate returns true if the ad 
can impact the group that is the sub-
ject of the predicate and returns false 
otherwise. Statistics of baby names can 
identify first names for constructing 
race and gender groups and last names 
for grouping some ethnicities. Special 
word lists or functions that report de-
gree of membership may be helpful for 
other comparisons.

In this study, ads appeared on 
searches of full names for real people, 
and first names assigned to more black 
or white babies formed groups for test-
ing. These black and white predicates 
evaluate to true or false based on the 
first name of the search string. 

2. Specifying the Scope of Ads to As-
sess. The focus should be on those 
ads capable of impacting a protected 
group in a form of discrimination pro-
hibited by law or social norm. Protec-

tion typically concerns the ability to 
give or withhold benefits, facilities, ser-
vices, employment, or opportunities. 
Instead of lumping all ads together, it 
is better to use search strings, ad texts, 
products, or URLs that display with ads 
to decide which ads to assess.

This study assessed search strings 
of first and last names of real people, 
ads for public records, and ads having 
a specific display URL (instantcheck-
mate.com), the latter being the most 
informative because the adverse ads all 
had the same display URL. 

Of course, the audience for the ads 
is not necessarily the people who are 
the subject of the ads. In this study, the 
audience is a person inquiring about 
the person whose name is the subject 
of the ad. This distinction is impor-
tant when thinking about the identity 
of groups that might be impacted by 
an ad. Group membership is based on 
the ad’s search string and text. The au-
dience may resonate more with a dis-
tinctly positive or negative character-
ization of the group.

3. Determining Ad Sentiment. Origi-
nally associated with summarizing 
product and movie reviews, sentiment 
analysis is an area of computer science 
that uses natural-language process-
ing and text analytics to determine the 
overall attitude of a writing.13 Senti-
ment analysis can measure whether an 
ad’s search string and accompanying 
text has positive, negative, or neutral 
sentiment. A literature search does not 
find any prior application to online ads, 
but a lot of research has been done as-
sessing sentiment in social media (sen-
timent140.com, for example, reports 
the sentiment of tweets, which like ad-
vertisements have limited words). 

In this study, ads containing the 
word arrest or criminal were classified as 
having negative sentiment; ads without 
those words were classified as neutral. 

4. Testing for Adverse Impact. Con-
sider a table where columns are com-
parative groups, rows are sentiment, 
and values are the number of ad im-
pressions (the number of times an 
ad appears, though the ad is not nec-
essarily clicked). Ignore neutral ads. 
Comparing the percentage of ads hav-
ing the same positive or negative senti-
ment across groups reveals the degree 
to which one group may be impacted 
more or less by the ad’s sentiment. 

Discrimination  
is at the heart of 
online advertising. 
Differential  
delivery is  
the very idea  
behind it. 
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placed by a disgruntled customer or 
ads placed by competitors on brand 
names of the competition, unless these 
are deemed to be protected groups. 

Nonprotected marketing discrimi-
nation can continue even to protected 
groups. For example, suppose search 
terms associated with blacks tend to 
get neutral ads for some music artists, 
while those associated with whites 
tend to get neutral ads for other music 
artists. All ads would appear regard-
less of the disproportionate distribu-
tion because the ads are not subject to 
suppression.

As a final example, this approach 
allows everyone to be negatively im-
pacted as long as the impact is approxi-
mately the same. Suppose all ads for 
public records on all names, regardless 
of race, were equally suggestive of ar-
rest and had almost the same number 
of impressions; then no ads suggestive 
of arrest would be suppressed. 

Computer scientist Cynthia Dwork 
and her colleagues have been work-
ing on algorithms that assure racial 
fairness.4 Their general notion is to 
ensure similar groups receive similar 
ads in proportions consistent with the 
population. Utility is the critical con-
cern with this direction because not all 
forms of discrimination are bad, and 
unusual and outlier ads could be un-
necessarily suppressed. Still, their re-
search direction looks promising.

In conclusion, this study demon-
strates that technology can foster 
discriminatory outcomes, but it also 
shows that technology can thwart un-
wanted discrimination.
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A chi-square test can determine sta-
tistical significance, and the adverse 
impact test used by the EEOC and the 
U.S. Department of Labor can alert 
whether in some circumstances legal 
risks may result.

In this study the groups are black 
and white, and the sentiments are neg-
ative and neutral. Table 2 shows a sum-
mary chart. Of the 488 ads that appeared 
for the black group, 291 (or 60%) had 
negative sentiment. Of the 638 ads dis-
played for the white group, 308 (or 48%) 
had negative sentiment. The difference 
is statistically significant (X2(1)=14.32, p 
< 0.001) and has an adverse impact mea-
sure of (40/52), or 77%.

An easy way of incorporating this 
analysis into an ad exchange is to de-
cide which bias test is critical (for ex-
ample, statistical significance or ad-
verse impact test) and then factor the 
test result into the quality score for the 
ad at auction. For example, if we were to 
modify the ad exchange not to display 
any ad having an adverse impact score 
of less than 80, which is the EEOC stan-
dard, then arrest ads for blacks would 
sometimes appear, but would not be 
overly disproportionate to whites, re-
gardless of advertiser or click bias.

Though this study served as an ex-
ample throughout, the approach gen-
eralizes to many other forms of dis-
crimination and combats other ways ad 
exchanges may foster discrimination.

Suppose female names tend to get 
neutral ads such as “Buy now,” while 
male names tend to get positive ads 
such as “Buy now. 50% off!” Or sup-
pose black names tend to get neutral 
ads such as “Looking for Ebony Jones,” 
while white names tend to get positive 
ads such as “Meredith Jones. Fantastic!” 
Then the same analysis would suppress 
some occurrences of the positive ads so 
as not to foster a discriminatory effect. 

This approach does not stop the 
appearance of negative ads for a store 

table 2. Negative and neutral sentiments 
of black and white groups.

Black White

negative 291 60% 308 48%

neutral 197 40% 330 52%

Positive

totals 488 638
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Abstract: To partly address people’s concerns over web
tracking, Google has created the Ad Settings webpage
to provide information about and some choice over the
profiles Google creates on users. We present AdFisher,
an automated tool that explores how user behaviors,
Google’s ads, and Ad Settings interact. AdFisher can
run browser-based experiments and analyze data using
machine learning and significance tests. Our tool uses a
rigorous experimental design and statistical analysis to
ensure the statistical soundness of our results. We use
AdFisher to find that the Ad Settings was opaque about
some features of a user’s profile, that it does provide
some choice on ads, and that these choices can lead to
seemingly discriminatory ads. In particular, we found
that visiting webpages associated with substance abuse
changed the ads shown but not the settings page. We
also found that setting the gender to female resulted in
getting fewer instances of an ad related to high paying
jobs than setting it to male. We cannot determine who
caused these findings due to our limited visibility into
the ad ecosystem, which includes Google, advertisers,
websites, and users. Nevertheless, these results can form
the starting point for deeper investigations by either the
companies themselves or by regulatory bodies.
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1 Introduction

Problem and Overview. With the advancement of
tracking technologies and the growth of online data ag-
gregators, data collection on the Internet has become a
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serious privacy concern. Colossal amounts of collected
data are used, sold, and resold for serving targeted
content, notably advertisements, on websites (e.g., [1]).
Many websites providing content, such as news, out-
source their advertising operations to large third-party
ad networks, such as Google’s DoubleClick. These net-
works embed tracking code into webpages across many
sites providing the network with a more global view of
each user’s behaviors.

People are concerned about behavioral marketing
on the web (e.g., [2]). To increase transparency and con-
trol, Google provides Ad Settings, which is “a Google
tool that helps you control the ads you see on Google
services and on websites that partner with Google” [3].
It displays inferences Google has made about a user’s
demographics and interests based on his browsing be-
havior. Users can view and edit these settings at

http://www.google.com/settings/ads
Yahoo [4] and Microsoft [5] also offer personalized ad
settings.

However, they provide little information about how
these pages operate, leaving open the question of how
completely these settings describe the profile they have
about a user. In this study, we explore how a user’s be-
haviors, either directly with the settings or with content
providers, alter the ads and settings shown to the user
and whether these changes are in harmony. In particu-
lar, we study the degree to which the settings provides
transparency and choice as well as checking for the pres-
ence of discrimination. Transparency is important for
people to understand how the use of data about them
affects the ads they see. Choice allows users to control
how this data gets used, enabling them to protect the
information they find sensitive. Discrimination is an in-
creasing concern about machine learning systems and
one reason people like to keep information private [6, 7].

To conduct these studies, we developed AdFisher, a
tool for automating randomized, controlled experiments
for studying online tracking. Our tool offers a combi-
nation of automation, statistical rigor, scalability, and
explanation for determining the use of information by
web advertising algorithms and by personalized ad set-
tings, such as Google Ad Settings. The tool can simulate
having a particular interest or attribute by visiting web-
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pages associated with that interest or by altering the ad
settings provided by Google. It collects ads served by
Google and also the settings that Google provides to
the simulated users. It automatically analyzes the data
to determine whether statistically significant differences
between groups of agents exist. AdFisher uses machine
learning to automatically detect differences and then ex-
ecutes a test of significance specialized for the difference
it found.

Someone using AdFisher to study behavioral tar-
geting only has to provide the behaviors the two groups
are to perform (e.g., visiting websites) and the measure-
ments (e.g., which ads) to collect afterwards. AdFisher
can easily run multiple experiments exploring the causal
connections between users’ browsing activities, and the
ads and settings that Google shows.

The advertising ecosystem is a vast, distributed, and
decentralized system with several players including the
users consuming content, the advertisers, the publishers
of web content, and ad networks. With the exception of
the user, we treat the entire ecosystem as a blackbox. We
measure simulated users’ interactions with this black-
box including page views, ads, and ad settings. With-
out knowledge of the internal workings of the ecosystem,
we cannot assign responsibility for our findings to any
single player within it nor rule out that they are un-
intended consequences of interactions between players.
However, our results show the presence of concerning
effects illustrating the existence of issues that could be
investigated more deeply by either the players them-
selves or by regulatory bodies with the power to see the
internal dynamics of the ecosystem.
Motivating Experiments. In one experiment, we ex-
plored whether visiting websites related to substance
abuse has an impact on Google’s ads or settings. We
created an experimental group and a control group of
agents. The browser agents in the experimental group
visited websites on substance abuse while the agents in
the control group simply waited. Then, both groups of
agents collected ads served by Google on a news website.

Having run the experiment and collected the data,
we had to determine whether any difference existed in
the outputs shown to the agents. One way would be to
intuit what the difference could be (e.g. more ads con-
taining the word “alcohol”) and test for that difference.
However, developing this intuition can take consider-
able effort. Moreover, it does not help find unexpected
differences. Thus, we instead used machine learning to
automatically find differentiating patterns in the data.
Specifically, AdFisher finds a classifier that can pre-

dict which group an agent belonged to, from the ads
shown to an agent. The classifier is trained on a subset
of the data. A separate test subset is used to deter-
mine whether the classifier found a statistically signif-
icant difference between the ads shown to each group
of agents. In this experiment, AdFisher found a clas-
sifier that could distinguish between the two groups of
agents by using the fact that only the agents that visited
the substance abuse websites received ads for Watershed
Rehab.

We also measured the settings that Google provided
to each agent on its Ad Settings page after the experi-
mental group of agents visited the webpages associated
with substance abuse. We found no differences (signif-
icant or otherwise) between the pages for the agents.
Thus, information about visits to these websites is in-
deed being used to serve ads, but the Ad Settings page
does not reflect this use in this case. Rather than provid-
ing transparency, in this instance, the ad settings were
opaque as to the impact of this factor.

In another experiment, we examined whether the
settings provide choice to users. We found that removing
interests from the Google Ad Settings page changes the
ads that a user sees. In particular, we had both groups
of agents visit a site related to online dating. Then, only
one of the groups removed the interest related to online
dating. Thereafter, the top ads shown to the group that
kept the interest were related to dating but not the top
ads shown to the other group. Thus, the ad settings do
offer the users a degree of choice over the ads they see.

We also found evidence suggestive of discrimina-
tion from another experiment. We set the agents’ gen-
der to female or male on Google’s Ad Settings page. We
then had both the female and male groups of agents
visit webpages associated with employment. We estab-
lished that Google used this gender information to se-
lect ads, as one might expect. The interesting result was
how the ads differed between the groups: during this ex-
periment, Google showed the simulated males ads from
a certain career coaching agency that promised large
salaries more frequently than the simulated females, a
finding suggestive of discrimination. Ours is the first
study that provides statistically significant evidence of
an instance of discrimination in online advertising when
demographic information is supplied via a transparency-
control mechanism (i.e., the Ad Settings page).

While neither of our findings of opacity or discrimi-
nation are clear violations of Google’s privacy policy [8]
and we do not claim these findings to generalize or im-
ply widespread issues, we find them concerning and war-
ranting further investigation by those with visibility into
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the ad ecosystem. Furthermore, while our finding of dis-
crimination in the non-normative sense of the word is
on firm statistical footing, we acknowledge that people
may disagree about whether we found discrimination in
the normative sense of the word. We defer discussion of
whether our findings suggest unjust discrimination until
Section 7.
Contributions. In addition to the experimental find-
ings highlighted above, we provide AdFisher, a tool for
automating such experiments. AdFisher is structured as
a Python API providing functions for setting up, run-
ning, and analyzing experiments. We use Selenium to
drive Firefox browsers and the scikit-learn library [9]
for implementations of classification algorithms. We use
the SciPy library [10] for implementing the statistical
analyses of the core methodology.

AdFisher offers rigor by performing a carefully de-
signed experiment. The statistical analyses techniques
applied do not make questionable assumptions about
the collected data. We base our design and analysis on
a prior proposal that makes no assumptions about the
data being independent or identically distributed [11].
Since advertisers update their behavior continuously in
response to unobserved inputs (such as ad auctions) and
the experimenters’ own actions, such assumptions may
not always hold. Indeed, in practice, the distribution of
ads changes over time and simulated users, or agents,
interfere with one another [11].

Our automation, experimental design, and statisti-
cal analyses allow us to scale to handling large numbers
of agents for finding subtle differences. In particular, we
modify the prior analysis of Tschantz et al. [11] to allow
for experiments running over long periods of time. We
do so by using blocking (e.g., [12]), a nested statistical
analysis not previously applied to understanding web
advertising. The blocking analysis ensures that agents
are only compared to the agents that start out like it and
then aggregates together the comparisons across blocks
of agents. Thus, AdFisher may run agents in batches
spread out over time while only comparing those agents
running simultaneously to one another.

AdFisher also provides explanations as to how
Google alters its behaviors in response to different user
actions. It uses the trained classifier model to find which
features were most useful for the classifier to make
its predictions. It provides the top features from each
group to provide the experimenter/analyst with a qual-
itative understanding of how the ads differed between
the groups.

To maintain statistical rigor, we carefully circum-
scribe our claims. We only claim statistical soundness
of our results: if our techniques detect an effect of the
browsing activities on the ads, then there is indeed one
with high likelihood (made quantitative by a p-value).
We do not claim that we will always find a difference
if one exists, nor that the differences we find are typi-
cal of those experienced by users. Furthermore, while we
can characterize the differences, we cannot assign blame
for them since either Google or the advertisers working
with Google could be responsible.
Contents. After covering prior work next, we present,
in Section 3, privacy properties that our tool AdFisher
can check: nondiscrimination, transparency, and choice.
Section 4 explains the methodology we use to en-
sure sound conclusions from using AdFisher. Section 5
presents the design of AdFisher. Section 6 discusses our
use of AdFisher to study Google’s ads and settings. We
end with conclusions and future work.

Raw data and additional details about AdFisher
and our experiments can be found at

http://www.cs.cmu.edu/~mtschant/ife/
AdFisher is freely available at
https://github.com/tadatitam/info-flow-experiments/

2 Prior Work
We are not the first to study how Google uses infor-
mation. The work with the closest subject of study to
ours is by Wills and Tatar [13]. They studied both the
ads shown by Google and the behavior of Google’s Ad
Settings (then called the “Ad Preferences”). Like us,
they find the presence of opacity: various interests im-
pacted the ads and settings shown to the user and that
ads could change without a corresponding change in Ad
Settings. Unlike our study, theirs was mostly manual,
small scale, lacked any statistical analysis, and did not
follow a rigorous experimental design. Furthermore, we
additionally study choice and discrimination.

Other related works differ from us in both goals
and methods. They all focus on how visiting webpages
change the ads seen. While we examine such changes in
our work, we do so as part of a larger analysis of the
interactions between ads and personalized ad settings,
a topic they do not study.

Barford et al. come the closest in that their recent
study looked at both ads and ad settings [14]. They do
so in their study of the “adscape”, an attempt to un-
derstand each ad on the Internet. They study each ad
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individually and cast a wide net to analyze many ads
from many websites while simulating many different in-
terests. They only examine the ad settings to determine
whether they successfully induced an interest. We rig-
orously study how the settings affects the ads shown
(choice) and how behaviors can affect ads without af-
fecting the settings (transparency). Furthermore, we use
focused collections of data and an analysis that consid-
ers all ads collectively to find subtle causal effects within
Google’s advertising ecosystem. We also use a random-
ized experimental design and analysis to ensure that our
results imply causation.

The usage study closest to ours in statistical
methodology is that of Tschantz et al. [11]. They devel-
oped a rigorous methodology for determining whether a
system like Google uses information. Due to limitations
of their methodology, they only ran small-scale studies.
While they observed that browsing behaviors could af-
fect Ad Settings, they did not study how this related to
the ads received. Furthermore, while we build upon their
methodology, we automate the selection of an appropri-
ate test statistic by using machine learning whereas they
manually selected test statistics.

The usage study closest to ours in terms of imple-
mentation is that of Liu et al. in that they also use ma-
chine learning [15]. Their goal is to determine whether
an ad was selected due to the content of a page, by
using behavioral profiling, or from a previous webpage
visit. Thus, rather than using machine learning to select
a statistical test for finding causal relations, they do so
to detect whether an ad on a webpage matches the con-
tent on the page to make a case for the first possibility.
Thus, they have a separate classifier for each interest a
webpage might cover. Rather than perform a statistical
analysis to determine whether treatment groups have a
statistically significant difference, they use their classi-
fiers to judge the ratio of ads on a page unrelated to the
page’s content, which they presume indicates that the
ads were the result of behavioral targeting.

Lécuyer et al. present XRay, a tool that looks for
correlations between the data that web services have
about users and the ads shown to users [16]. While their
tool may check many changes to a type of input to de-
termine whether any of them has a correlation with the
frequency of a single ad, it does not check for causation,
as ours does.

Englehardt et al. study filter bubbles with an
analysis that assumes independence between observa-
tions [17], an assumption we are uncomfortable making.
(See Section 4.4.)

Guha et al. compare ads seen by three agents to see
whether Google treats differently the one that behaves
differently from the other two [18]. We adopt their sug-
gestion of focusing on the title and URL displayed on
ads when comparing ads to avoid noise from other less
stable parts of the ad. Our work differs by studying the
ad settings in addition to the ads and by using larger
numbers of agents. Furthermore, we use rigorous statis-
tical analyses. Balebako et al. run similar experiments
to study the effectiveness of privacy tools [19].

Sweeney ran an experiment to determine that
searching for names associated with African-Americans
produced more search ads suggestive of an arrest record
than names associated with European-Americans [20].
Her study required considerable insight to determine
that suggestions of an arrest was a key difference. Ad-
Fisher can automate not just the collection of the ads,
but also the identification of such key differences by us-
ing its machine learning capabilities. Indeed, it found on
its own that simulated males were more often shown ads
encouraging the user to seek coaching for high paying
jobs than simulated females.

3 Privacy Properties
Motivating our methodology for finding causal relation-
ships, we present some properties of ad networks that we
can check with such a methodology in place. As a fun-
damental limitation of science, we can only prove the
existence of a causal effect; we cannot prove that one
does not exist (see Section 4.5). Thus, experiments can
only demonstrate violations of nondiscrimination and
transparency, which require effects. On the other hand,
we can experimentally demonstrate that effectful choice
and ad choice are complied with in the cases that we
test since compliance follows from the existence of an
effect. Table 1 summarizes these properties.

3.1 Discrimination

At its core, discrimination between two classes of indi-
viduals (e.g., one race vs. another) occurs when the at-
tribute distinguishing those two classes causes a change
in behavior toward those two classes. In our case, dis-
crimination occurs when membership in a class causes
a change in ads. Such discrimination is not always bad
(e.g., many would be comfortable with men and women
receiving different clothing ads). We limit our discus-
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Property Name Requirement Causal Test Finding

Nondiscrimination Users differing only on protected attributes are
treated similarly

Find that presence of protected attribute
causes a change in ads

Violation

Transparency User can view all data about him used for ad
selection

Find attribute that causes a change in ads, not
in settings

Violation

Effectful choice Changing a setting has an effect on ads Find that changing a setting causes a change
in ads

Compliance

Ad choice Removing an interest decreases the number
ads related to that interest Find setting causes a decease in relevant ads Compliance

Table 1. Privacy Properties Tested on Google’s Ad Settings

sion of whether the discrimination we found is unjust
to the discussion section (§7) and do not claim to have
a scientific method of determining the morality of dis-
crimination.

Determining whether class membership causes a
change in ads is difficult since many factors not under
the experimenter’s control or even observable to the ex-
perimenter may also cause changes. Our experimental
methodology determines when membership in certain
classes causes significant changes in ads by comparing
many instances of each class.

We are limited in the classes we can consider since
we cannot create actual people that vary by the tradi-
tional subjects of discrimination, such as race or gender.
Instead, we look at classes that function as surrogates
for those classes of interest. For example, rather than
directly looking at how gender affects people’s ads, we
instead look at how altering a gender setting affects ads
or at how visiting websites associated with each gender
affects ads.

3.2 Transparency

Transparency tools like Google Ad Settings provide on-
line consumers with some understanding of the infor-
mation that ad networks collect and use about them.
By displaying to users what the ad network may have
learned about the interests and demographics of a user,
such tools attempt to make targeting mechanisms more
transparent.

However the technique for studying transparency is
not clear. One cannot expect an ad network to be com-
pletely transparent to a user. This would involve the tool
displaying all other users’ interests as well. A more rea-
sonable expectation is for the ad network to display any
inferred interests about that user. So, if an ad network
has inferred some interest about a user and is serving

ads relevant to that interest, then that interest should
be displayed on the transparency tool. However, even
this notion of transparency cannot be checked precisely
as the ad network may serve ads about some other in-
terest correlated with the original inferred interest, but
not display the correlated interest on the transparency
tool.

Thus, we only study the extreme case of the lack
of transparency — opacity, and leave complex notions
of transparency open for future research. We say that
a transparency tool has opacity if some browsing activ-
ity results in a significant effect on the ads served, but
has no effect on the ad settings. If there is a difference
in the ads, we can argue that prior browsing activities
must have been tracked and used by the ad network to
serve relevant ads. However, if this use does not show
up on the transparency tool, we have found at least one
example which demonstrates a lack of transparency.

3.3 Choice

The Ad Settings page offers users the option of edit-
ing the interests and demographics inferred about them.
However, the exact nature of how these edits impact the
ad network is unclear. We examine two notions of choice.

A very coarse form is effectful choice, which requires
that altering the settings has some effect on the ads
seen by the user. This shows that altering settings is
not merely a “placebo button”: it has a real effect on
the network’s ads. However, effectful choice does not
capture whether the effect on ads is meaningful. For
example, even if a user adds interests for cars and starts
receiving fewer ads for cars, effectful choice is satisfied.
Moreover, we cannot find violations of effectful choice.
If we find no differences in the ads, we cannot conclude
that users do not have effectful choice since it could be
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the result of the ad repository lacking ads relevant to
the interest.

Ideally, the effect on ads after altering a setting
would be meaningful and related to the changed set-
ting. One way such an effect would be meaningful, in
the case of removing an inferred interest, is a decrease
in the number of ads related to the removed interest.
We call this requirement ad choice. One way to judge
whether an ad is relevant is to check it for keywords as-
sociated with the interest. If upon removing an interest,
we find a statistically significant decrease in the number
of ads containing some keywords, then we will conclude
that the choice was respected. In addition to testing for
compliance in ad choice, we can also test for a violation
by checking for a statistically significant increase in the
number of related ads to find egregious violations. By
requiring the effect to have a fixed direction, we can find
both compliance and violations of ad choice.

4 Methodology
The goal of our methodology is to establish that a cer-
tain type of input to a system causes an effect on a
certain type of output of the system. For example, in
our experiments, we study the system of Google. The
inputs we study are visits to content providing websites
and users’ interactions with the Ad Settings page. The
outputs we study are the settings and ads shown to the
users by Google. However, nothing in our methodology
limits ourselves to these particular topics; it is appropri-
ate for determining I/O properties of any web system.
Here, we present an overview of our methodology; Ap-
pendix B provides details of the statistical analysis.

4.1 Background: Significance Testing

To establish causation, we start with the approach of
Fisher (our tool’s namesake) for significance testing [21]
as specialized by Tschantz et al. for the setting of on-
line systems [11]. Significance testing examines a null
hypothesis, in our case, that the inputs do not affect the
outputs. To test this hypothesis the experimenter se-
lects two values that the inputs could take on, typically
called the control and experimental treatments. The ex-
perimenter applies the treatments to experimental units.
In our setting, the units are the browser agents, that is,
simulated users. To avoid noise, the experimental units
should initially be as close to identical as possible as
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Fig. 1. Experimental setup to carry out significance testing on
eight browser agents comparing the effects of two treatments.
Each agent is randomly assigned a treatment which specifies
what actions to perform on the web. After these actions are com-
plete, they collect measurements which are used for significance
testing.

far as the inputs and outputs in question are concerned.
For example, an agent created with the Firefox browser
should not be compared to one created with the Internet
Explorer browser since Google can detect the browser
used.

The experimenter randomly applies the experimen-
tal (control) treatment to half of the agents, which form
the experimental (control) group. (See Figure 1.) Each
agent carries out actions specified in the treatment ap-
plied to it. Next, the experimenter takes measurements
of the outputs Google sends to the agents, such as ads.
At this point, the experiment is complete and data anal-
ysis begins.

Data analysis starts by computing a test statistic
over the measurements. The experimenter selects a test
statistic that she suspects will take on a high value when
the outputs to the two groups differ. That is, the statis-
tic is a measure of distance between the two groups. She
then uses the permutation test to determine whether the
value the test statistic actually took on is higher than
what one would expect by chance unless the groups ac-
tually differ. The permutation test randomly permutes
the labels (control and experimental) associated with
each observation, and recomputes a hypothetical test
statistic. Since the null hypothesis is that the inputs
have no effect, the random assignment should have no
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effect on the value of the test statistic. Thus, under the
null hypothesis, it is unlikely that the actual value of
the test statistic is larger than the vast majority of hy-
pothetical values.

The p-value of the permutation test is the propor-
tion of the permutations where the test statistic was
greater than or equal to the actual observed statistic. If
the value of the test statistic is so high that under the
null hypothesis it would take on as high of a value in
less than 5% of the random assignments, then we con-
clude that the value is statistically significant (at the
5% level) and that causation is likely.

4.2 Blocking

In practice, the above methodology can be difficult to
use since creating a large number of nearly identical
agents might not be possible. In our case, we could
only run ten agents in parallel given our hardware and
network limitations. Comparing agents running at dif-
ferent times can result in additional noise since ads
served to an agent change over time. Thus, with the
above methodology, we were limited to just ten compa-
rable units. Since some effects that the inputs have on
Google’s outputs can be probabilistic and subtle, they
might be missed looking at so few agents.

To avoid this limitation, we extended the above
methodology to handle varying units using blocking [12].
To use blocking, we created blocks of nearly identical
agents running in parallel. These agents differ in terms
their identifiers (e.g., process id) and location in mem-
ory. Despite the agents running in parallel, the operating
system’s scheduler determines the exact order in which
the agents operate. Each block’s agents were randomly
partitioned into the control and experimental groups.
This randomization ensures that the minor differences
between agents noted above should have no systematic
impact upon the results: these differences become noise
that probably disappears as the sample size increases.
Running these blocks in a staged fashion, the experi-
ment proceeds on block after block. A modified permu-
tation test now only compares the actual value of the
test statistic to hypothetical values computed by reas-
signments of agents that respect the blocking structure.
These reassignments do not permute labels across blocks
of observations.

Using blocking, we can scale to any number of
agents by running as many blocks as needed. However,
the computation of the permutation test increases expo-
nentially with the number of blocks. Thus, rather than
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Fig. 2. Our experimental setup with training and testing blocks.
Measurements from the training blocks are used to build a classi-
fier. The trained classifier is used to compute the test statistic on
the measurements from the testing blocks for significance testing.

compute the exact p-value, we estimate it by randomly
sampling the possible reassignments. We can use a con-
fidence interval to characterize the quality of the estima-
tion [12]. The p-values we report are actually the upper
bounds of the 99% confidence intervals of the p-values
(details in Appendix B).

4.3 Selecting Test Statistics

The above methodology leaves open the question of how
to select the test statistic. In some cases, the experi-
menter might be interested in a particular test statistic.
For example, an experimenter testing ad choice could
use a test statistic that counts the number of ads related
to the removed interest. In other cases, the experimenter
might be looking for any effect. AdFisher offers the abil-
ity to automatically select a test statistic. To do so, it
partitions the collected data into training and testing
subsets, and uses the training data to train a classifier.
Figure 2 shows an overview of AdFisher’s workflow.

To select a classifier, AdFisher uses 10-fold cross
validation on the training data to select among sev-
eral possible parameters. The classifier predicts which
treatment an agent received, only from the ads that get
served to that agent. If the classifier is able to make
this prediction with high accuracy, it suggests a system-
atic difference between the ads served to the two groups
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that the classifier was able to learn. If no difference ex-
ists, then we would expect the number to be near the
guessing rate of 50%. AdFisher uses the accuracy of this
classifier as its test statistic.

To avoid the possibility of seeing a high accuracy
due to overfitting, AdFisher evaluates the accuracy of
the classifier on a testing data set that is disjoint from
the training data set. That is, in the language of statis-
tics, we form our hypothesis about the test statistic
being able to distinguish the groups before seeing the
data on which we test it to ensure that it has predictive
power. AdFisher uses the permutation test to determine
whether the degree to which the classifier’s accuracy on
the test data surpasses the guessing rate is statistically
significant. That is, it calculates the p-value that mea-
sures the probability of seeing the observed accuracy
given that the classifier is just guessing. If the p-value
is below 0.05, we conclude that it is unlikely that classi-
fier is guessing and that it must be making use of some
difference between the ads shown to the two groups.

4.4 Avoiding Pitfalls

The above methodology avoids some pitfalls. Most fun-
damentally, we use a statistical analysis whose assump-
tions match those of our experimental design. Assump-
tions required by many statistical analyses appear un-
justifiable in our setting. For example, many analyses as-
sume that the agents do not interact or that the ads are
independent and identically distributed (e.g., [14, 17]).
Given that all agents receive ads from the same pool of
possible ads governed by the same advertisers’ budgets,
these assumptions appear unlikely to hold. Indeed, em-
pirical evidence suggests that it does not [11]. The per-
mutation test, which does not require this assumption,
allows us to ensure statistical soundness of our analysis
without making these assumptions [22].

Our use of randomization implies that many factors
that could be confounding factors in an unrandomized
design become noise in our design (e.g., [12]). While such
noise may require us to use a large sample size to find an
effect, it does not affect the soundness of our analysis.

Our use of two data sets, one for training the clas-
sifier to select the test statistic and one for hypothesis
testing ensures that we do not engage in overfitting, data
dredging, or multiple hypothesis testing (e.g., [23]). All
these problems result from looking for so many possible
patterns that one is found by chance. While we look for
many patterns in the training data, we only check for
one in the testing data.

Relatedly, by reporting a p-value, we provide a
quantitative measure of the confidence we have that the
observed effect is genuine and not just by chance [24].
Reporting simply the classifier accuracy or that some
difference occurred fails to quantify the possibility that
the result was a fluke.

4.5 Scope

We restrict the scope of our methodology to making
claims that an effect exists with high likelihood as quan-
tified by the p-value. That is, we expect our methodol-
ogy to only rarely suggest that an effect exists when one
does not.

We do not claim “completeness” or “power”: we
might fail to detect some use of information. For exam-
ple, Google might not serve different ads upon detecting
that all the browser agents in our experiment are run-
ning from the same IP address. Despite this limitation
in our experiments, we found interesting instances of
usage.

Furthermore, we do not claim that our results gen-
eralize to all users. To do so, we would need to a take a
random sample of all users, their IP addresses, browsers,
and behaviors, which is prohibitively expensive. We can-
not generalize our results if for example, instead of
turning off some usage upon detecting our experiments,
Google turns it on. While our experiments would detect
this usage, it might not be experienced by normal users.
However, it would be odd if Google purposefully per-
forms questionable behaviors only with those attempt-
ing to find it.

While we use webpages associated with various in-
terests to simulate users with those interests, we cannot
establish that having the interest itself caused the ads
to change. It is possible that other features of the visited
webpages causes change - a form of confounding called
“profile contamination” [14], since the pages cover other
topics as well. Nevertheless, we have determined that
visiting webpages associated with the interest does re-
sult in seeing a change, which should give pause to users
visiting webpages associated with sensitive interests.

Lastly, we do not attempt to determine how the in-
formation was used. It could have been used by Google
directly for targeting or it could have been used by ad-
vertisers to place their bids. We cannot assign blame.
We hope future work will shed light on these issues, but
given that we cannot observe the interactions between
Google and advertisers, we are unsure whether it can be
done.
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5 AdFisher
In this section, we describe AdFisher - a tool imple-
menting our methodology. AdFisher makes it easy to
run experiments using the above methodology for a set
of treatments, measurements, and classifiers (test statis-
tics) we have implemented. AdFisher is also extensi-
ble allowing the experimenter to implement additional
treatments, measurements, or test statistics. For exam-
ple, an experimenter interested in studying a different
online platform only needs to add code to perform ac-
tions and collect measurements on that platform. They
need not modify methods that randomize the treat-
ments, carry out the experiment, or perform the data
analysis.

To simulate a new person on the network, AdFisher
creates each agent from a fresh browser instance with
no browsing history, cookies, or other personalization.
AdFisher randomly assigns each agent to a group and
applies the appropriate treatment, such as having the
browser visit webpages. Next, AdFisher makes measure-
ments of the agent, such as collecting the ads shown to
the browser upon visiting another webpage. All of the
agents within a block execute and finish the treatments
before moving on to collect the measurements to remove
time as a factor. AdFisher runs all the agents on the
same machine to prevent differences based on location,
IP address, operating system, or other machine specific
differences between agents.

Next, we detail the particular treatments, measure-
ments, and test statistics that we have implemented in
AdFisher. We also discuss how AdFisher aids an exper-
imenter in understanding the results.
Treatments. A treatment specifies what actions are to
be performed by a browser agent. AdFisher automati-
cally applies treatments assigned to each agent. Typ-
ically, these treatments involve invoking the Selenium
WebDriver to make the agent interact with webpages.

AdFisher makes it easy to carry out common treat-
ments by providing ready-made implementations. The
simplest stock treatments we provide set interests, gen-
der, and age range in Google’s Ad Settings. Another
stock treatment is to visit a list of webpages stored on
a file.

To make it easy to see whether websites associated
with a particular interest causes a change in behavior,
we have provided the ability to create lists of webpages
associated with a category on Alexa. For each category,
Alexa tracks the top websites sorted according to their
traffic rank measure (a combination of the number of

users and page views) [25]. The experimenter can use
AdFisher to download the URLs of the top webpages
Alexa associates with an interest. By default, it down-
loads the top 100 URLs. A treatment can then spec-
ify that agents visit this list of websites. While these
treatments do not correspond directly to having such
an interest, it allows us to study how Google responds
to people visiting webpages associated with those inter-
ests.

Often in our experiments, we compared the ef-
fects of a certain treatment applied to the experimental
group against the null treatment applied to the con-
trol group. Under the null treatment, agents do nothing
while agents under a different treatment complete their
respective treatment phase.
Measurements. AdFisher can currently measure the
values set in Google’s Ad Settings page and the ads
shown to the agents after the treatments. It comes with
stock functionality for collecting and analyzing text ads.
Experimenters can add methods for image, video, and
flash ads.

To find a reasonable website for ad collection,
we looked to news sites since they generally show
many ads. Among the top 20 news websites on alexa.
com, only five displayed text ads served by Google:
theguardian.com/us, timesofindia.indiatimes.com, bbc.
com/news, reuters.com/news/us and bloomberg.com.
AdFisher comes with the built-in functionality to col-
lect ads from any of these websites. One can also specify
for how many reloads ads are to collected (default 10),
or how long to wait between successive reloads (default
5s). For each page reload, AdFisher parses the page to
find the ads shown by Google and stores the ads. The
experimenter can add parsers to collect ads from other
websites.

We run most of our experiments on Times of India
as it serves the most (five) text ads per page reload. We
repeat some experiments on the Guardian (three ads per
reload) to demonstrate that our results are not specific
to one site.
Classification. While the experimenter can provide
AdFisher with a test statistic to use on the collected
data, AdFisher is also capable of automatically select-
ing a test statistic using machine learning. It splits the
entire data set into training and testing subsets, and ex-
amines a training subset of the collected measurements
to select a classifier that distinguishes between the mea-
surements taken from each group. From the point of
view of machine learning, the set of ads collected by
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an agent corresponds to an instance of the concept the
classifier is attempting to learn.

Machine learning algorithms operate over sets of
features. AdFisher has functions for converting the text
ads seen by an agent into three different feature sets.
The URL feature set consists of the URLs displayed by
the ads (or occasionally some other text if the ad dis-
plays it where URLs normally go). Under this feature
set, the feature vector representing an agent’s data has
a value of n in the ith entry iff the agent received n ads
that display the ith URL where the order is fixed but
arbitrary.

The URL+Title feature set looks at both the dis-
played URL and the title of the ad jointly. It represents
an agent’s data as a vector where the ith entry is n iff
the agent received n ads containing the ith pair of a
URL and title.

The third feature set AdFisher has implemented is
the word feature set. This set is based on word stems,
the main part of the word with suffixes such as “ed”
or “ing” removed in a manner similar to the work of
Balebako et al. [19]. Each word stem that appeared in an
ad is assigned a unique id. The ith entry in the feature
vector is the number of times that words with the ith
stem appeared in the agent’s ads.

We explored a variety of classification algorithms
provided by the scikit-learn library [9]. We found
that logistic regression with an L2 penalty over the
URL+title feature set consistently performed well com-
pared to the others. At its core, logistic regression pre-
dicts a class given a feature vector by multiplying each
of the entries of the vector by its own weighting coef-
ficient (e.g., [26]). It then takes a the sum of all these
products. If the sum is positive, it predicts one class; if
negative, it predicts the other.

While using logistic regression, the training stage
consists of selecting the coefficients assigned to each fea-
ture to predict the training data. Selecting coefficients
requires balancing the training-accuracy of the model
with avoiding overfitting the data with an overly com-
plex model. We apply 10-fold cross-validation on the
training data to select the regularization parameter of
the logistic regression classifier. By default, AdFisher
splits the data into training and test sets by using the
last 10% of the data collected for testing.
Explanations. To explain how the learned classifier
distinguished between the groups, we explored several
methods. We found the most informative to be the
model produced by the classifier itself. Recall that lo-
gistic regression weighted the various features of the in-

stances with coefficients reflecting how predictive they
are of each group. Thus, with the URL+title feature
set, examining the features with the most extreme coef-
ficients identifies the URL+title pair most used to pre-
dict the group to which agents receiving an ad with that
URL+title belongs.

We also explored using simple metrics for providing
explanations, like ads with the highest frequency in each
group. However, some generic ads gets served in huge
numbers to both groups. We also looked at the propor-
tion of times an ad was served to agents in one group
to the total number of times observed by all groups.
However, this did not provide much insight since the
proportion typically reached its maximum value of 1.0
from ads that only appeared once. Another choice we
explored was to compute the difference in the number
of times an ad appears between the groups. However,
this metric is also highly influenced by how common
the ad is across all groups.

6 Experiments
In this section, we discuss experiments that we carried
out using AdFisher. In total, we ran 21 experiments,
each of which created its own testing data sets using in-
dependent random assignments of treatments to agents.
We analyze each test data set only once and report the
results of each experiment separately. Thus, we do not
test multiple hypotheses on any of our test data sets
ensuring that the probability of false positives (p-value)
are independent with the exception of our analyses for
ad choice. In that case, we apply a Bonferroni correc-
tion.

Each experiment examines one of the properties of
interest from Table 1. We found violations of nondis-
crimination and data transparency and cases of com-
pliance with effectful and ad choice. Since these sum-
maries each depend upon more than one experiment,
they are the composite of multiple hypotheses. To pre-
vent false positives for these summaries, for each prop-
erty, we report p-values adjusted by the number of ex-
periments used to explore that property. We use the
Holm-Bonferroni method for our adjustments, which is
uniformly more powerful than the commonly used Bon-
ferroni correction [27]. This method orders the compo-
nent hypotheses by their unadjusted p-values applying
a different correction to each until reaching a hypothesis
whose adjusted value is too large to reject. This hypoth-
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esis and all remaining hypotheses are rejected regardless
of their p-values. Appendix C provides details.

Table 2 in Appendix A summarizes our findings.

6.1 Nondiscrimination

We use AdFisher to demonstrate a violation in the
nondiscrimination property. If AdFisher finds a statis-
tically significant difference in how Google treats two
experimental groups, one consisting of members having
a protected attribute and one whose members do not,
then the experimenter has strong evidence that Google
discriminates on that attribute. In particular, we use
AdFisher’s ability to automatically select a test statistic
to check for possible differences to test the null hypothe-
sis that the two experimental groups have no differences
in the ads they receive.

As mentioned before, it is difficult to send a clear
signal about any attribute by visiting related webpages
since they may have content related to other attributes.
The only way to send a clear signal is via Ad Settings.
Thus, we focus on attributes that can be set on the
Ad Settings page. In a series of experiments, we set the
gender of one group to female and the other to male. In
one of the experiments, the agents went straight to col-
lecting ads; in the others, they simulated an interest in
jobs. In all but one experiment, they collected ads from
the Times of India (TOI); in the exception, they col-
lected ads from the Guardian. In one experiment, they
also visited the top 10 websites for the U.S. according
to alexa.com to fill out their interests.1 Table 3 in Ap-
pendix A summarizes results from these experiments.

AdFisher found a statistically significant difference
in the ads for male and female agents that simulated
an interest in jobs in May, 2014. It also found evidence
of discrimination in the nature of the effect. In partic-
ular, it found that females received fewer instances of
an ad encouraging the taking of high paying jobs than
males. AdFisher did not find any statistically significant
differences among the agents that did not visit the job-
related pages or those operating in July, 2014. We detail
the experiment finding a violation before discussing why
we think the other experiments did not result in signif-
icant results.
Gender and Jobs. In this experiment, we examine
how changing the gender demographic on Google Ad
Settings affects the ads served and interests inferred for

1 http://www.alexa.com/topsites/countries/US

agents browsing employment related websites. We set
up AdFisher to have the agents in one group visit the
Google Ad Settings page and set the gender bit to female
while agents in the other group set theirs to male. All
the agents then visited the top 100 websites listed under
the Employment category of Alexa 2. The agents then
collect ads from Times of India.

AdFisher ran 100 blocks of 10 agents each. (We used
blocks of size 10 in all our experiments.) AdFisher used
the ads of 900 agents (450 from each group) for training
a classifier using the URL+title feature set, and used the
remaining 100 agents’ ads for testing. The learned clas-
sifier attained a test-accuracy of 93%, suggesting that
Google did in fact treat the genders differently. To test
whether this response was statistically significant, Ad-
Fisher computed a p-value by running the permutation
test on a million randomly selected block-respecting per-
mutations of the data. The significance test yielded an
adjusted p-value of < 0.00005.

We then examined the model learned by AdFisher
to explain the nature of the difference. Table 4 shows
the five URL+title pairs that the model identifies as
the strongest indicators of being from the female or
male group. How ads for identifying the two groups dif-
fer is concerning. The two URL+title pairs with the
highest coefficients for indicating a male were for a ca-
reer coaching service for “$200k+” executive positions.
Google showed the ads 1852 times to the male group
but just 318 times to the female group. The top two
URL+title pairs for the female group was for a generic
job posting service and for an auto dealer.

The found discrimination in this experiment was
predominately from a pair of job-related ads for the
same service making the finding highly sensitive to
changes in the serving of these ads. A closer examina-
tion of the ads from the same experimental setup ran
in July, 2014, showed that the frequency of these ads
reduced from 2170 to just 48, with one of the ads com-
pletely disappearing. These 48 ads were only shown to
males, continuing the pattern of discrimination. This
pattern was recognized by the machine learning algo-
rithm, which selected the ad as the second most useful
for identifying males. However, they were too infrequent
to establish statistical significance. A longer running ex-
periment with more blocks might have succeeded.

2 http://www.alexa.com/topsites/category/Top/Business/
Employment
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6.2 Transparency

AdFisher can demonstrate violations of individual data
use transparency. AdFisher tests the null hypothesis
that two groups of agents with the same ad settings
receives ads from the same distribution despite being
subjected to different experimental treatments. Reject-
ing the null hypothesis implies that some difference ex-
ists in the ads that is not documented by the ad settings.

In particular, we ran a series of experiments to ex-
amine how much transparency Google’s Ad Settings
provided. We checked whether visiting webpages associ-
ated with some interest could cause a change in the ads
shown that is not reflected in the settings.

We ran such experiments for five interests: sub-
stance abuse, disabilities, infertility3, mental disorders4,
and adult websites5. Results from statistical analysis of
these experiments are shown in Table 5 of Appendix A.

We examined the interests found in the settings for
the two cases where we found a statistically significant
difference in ads, substance abuse and disability. We
found that settings did not change at all for substance
abuse and changed in an unexpected manner for disabil-
ities. Thus, we detail these two experiments below.
Substance Abuse. We were interested in whether
Google’s outputs would change in response to visiting
webpages associated with substance abuse, a highly sen-
sitive topic. Thus, we ran an experiment in which the
experimental group visited such websites while the con-
trol group idled. Then, we collected the Ad Settings and
the Google ads shown to the agents at the Times of In-
dia. For the webpages associated with substance abuse,
we used the top 100 websites on the Alexa list for sub-
stance abuse6.

AdFisher ran 100 blocks of 10 agents each. At the
end of visiting the webpages associated with substance
abuse, none of the 500 agents in the experimental group
had interests listed on their Ad Settings pages. (None
of the agents in the control group did either since the
settings start out empty.) If one expects the Ad Settings
page to reflect all learned inferences, then he would not
anticipate ads relevant to those website visits given the
lack of interests listed.

3 http://www.alexa.com/topsites/category/Top/Health/
Reproductive_Health/Infertility
4 http://www.alexa.com/topsites/category/Top/Health/
Mental_Health/Disorders
5 http://www.alexa.com/topsites/category/Top/Adult
6 http://www.alexa.com/topsites/category/Top/Health/
Addictions/Substance_Abuse

Fig. 3. Screenshot of an ad with the top URL+title for identifying
agents that visited webpages associated with substance abuse

However, the ads collected from the Times of In-
dia told a different story. The learned classifier at-
tained a test-accuracy of 81%, suggesting that Google
did in fact respond to the page visits. Indeed, using the
permutation test, AdFisher found an adjusted p-value
of < 0.00005. Thus, we conclude that the differences
are statistically significant: Google’s ads changed in re-
sponse to visiting the webpages associated with sub-
stance abuse. Despite this change being significant, the
Ad Settings pages provided no hint of its existence: the
transparency tool is opaque!

We looked at the URL+title pairs with the highest
coefficients for identifying the experimental group that
visited the websites related to substance abuse. Table 6
provides information on coefficients and URL+titles
learned. The three highest were for “Watershed Rehab”.
The top two had URLs for this drug and alcohol rehab
center. The third lacked a URL and had other text in
its place. Figure 3 shows one of Watershed’s ads. The
experimental group saw these ads a total of 3309 times
(16% of the ads); the control group never saw any of
them nor contained any ads with the word “rehab” or
“rehabilitation”. None of the top five URL+title pairs
for identifying the control group had any discernible re-
lationship with rehab or substance abuse.

These results remain robust across variations on this
design with statistical significance in three variations.
For example, two of these ads remain the top two ads for
identifying the agents that visited the substance abuse
websites in July using ads collected from the Guardian.

One possible reason why Google served Water-
shed’s ads could be remarketing, a marketing strategy
that encourages users to return to previously visited
websites [28]. The website thewatershed.com features
among the top 100 websites about substance-abuse on
Alexa, and agents visiting that site may be served Wa-
tershed’s ads as part of remarketing. However, these
users cannot see any changes on Google Ad Settings de-
spite Google having learnt some characteristic (visited
thewatershed.com) about them and serving ads relevant
to that characteristic.
Disabilities. This experiment was nearly identical in
setup but used websites related to disabilities instead of
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substance abuse. We used the top 100 websites on Alexa
on the topic.7

For this experiment, AdFisher found a classifier
with a test-accuracy of 75%. It found a statistically sig-
nificant difference with an adjusted p-value of less than
0.00005.

Looking at the top ads for identifying agents that
visited the webpages associated with disabilities, we see
that the top two ads have the URL www.abilitiesexpo.
com and the titles “Mobility Lifter” and “Standing
Wheelchairs”. They were shown a total of 1076 times to
the experimental group but never to the control group.
(See Table 7.)

This time, Google did change the settings in re-
sponse to the agents visiting the websites. None of them
are directly related to disabilities suggesting that Google
might have focused on other aspects of the visited pages.
Once again, we believe that the top ads were served due
to remarketing, as abilitiesexpo.com was among the top
100 websites related to disabilities.

6.3 Effectful Choice

We tested whether making changes to Ad Settings has
an effect on the ads seen, thereby giving the users a
degree of choice over the ads. In particular, AdFisher
tests the null hypothesis that changing some ad setting
has no effect on the ads.

First, we tested whether opting out of tracking actu-
ally had an effect by comparing the ads shown to agents
that opted out after visiting car-related websites to ads
from those that did not opt out. We found a statistically
significant difference.

We also tested whether removing interests from the
settings page actually had an effect. We set AdFisher
to have both groups of agents simulate some interest.
AdFisher then had the agents in one of the groups re-
move interests from Google’s Ad Settings related to the
induced interest. We found statistically significant dif-
ferences between the ads both groups collected from the
Times of India for two induced interests: online dating
and weight loss. We describe one in detail below.
Online Dating. We simulated an interest in online
dating by visiting the website www.midsummerseve.
com/, a website we choose since it sets Google’s ad set-
ting for “Dating & Personals” (this site no longer affects

7 http://www.alexa.com/topsites/category/Top/Society/
Disabled

the setting). AdFisher then had just the agents in the
experimental group remove the interest “Dating & Per-
sonals” (the only one containing the keyword “dating”).
All the agents then collected ads from the Times of In-
dia.

AdFisher found statistically significant differences
between the groups with a classifier accuracy of 74%
and an adjusted p-value of < 0.00003. Furthermore, the
effect appears related to the interests removed. The top
ad for identifying agents that kept the romantic inter-
ests has the title “Are You Single?” and the second ad’s
title is “Why can’t I find a date?”. None of the top five
for the control group that removed the interests were
related to dating (Table 9). Thus, the ad settings ap-
pear to actually give users the ability to avoid ads they
might dislike or find embarrassing. In the next set of
experiments, we explicitly test for this ability.

We repeated this experiment in July, 2014, using the
websites relationshipsurgery.com and datemypet.com,
which also had an effect on Ad Settings, but did not
find statistically significant differences.

6.4 Ad Choice

Whereas the other experiments tested merely for the
presence of an effect, testing for ad choice requires de-
termining whether the effect is an increase or decrease
in the number of relevant ads seen. Fortunately, since
AdFisher uses a one-sided permutation test, it tests for
either an increase or a decrease, but not for both simul-
taneously, making it usable for this purpose. In partic-
ular, after removing an interest, we check for a decrease
to test for compliance using the null hypothesis that ei-
ther no change or an increase occurred, since rejecting
this hypothesis would imply that a decrease in the num-
ber of related ads occurred. To check for a violation, we
test for the null hypothesis that either no change or a
decrease occurred. Due to testing two hypotheses, we
use an adjustment to the p-value cutoff considered sig-
nificant to avoid finding significant results simply from
testing multiple hypotheses. In particular, we use the
standard Bonferroni correction, which calls for multi-
plying the p-value by 2 (e.g., [29]).

We ran three experiments checking for ad choice.
The experiments followed the same setup as the effect-
ful choice ones, but this time we used all the blocks for
testing a given test statistic. The test statistic counted
the number of ads containing keywords. In the first, we
again test online dating using relationshipsurgery.com
and datemypet.com. In particular, we found that re-
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moving online dating resulted in a significant decrease
(p-value adjusted for all six experiments: 0.0456) in the
number of ads containing related keywords (from 109
to 34). We detail the inconclusive results for weight loss
below.
Weight Loss. We induced an interest in weight loss
by visiting dietingsucks.blogspot.com. Afterwards, the
agents in the experimental group removed the interests
“Fitness” and “Fitness Equipment and Accessories”, the
only ones related to weight loss. We then used a test
statistic that counted the number of ads containing
the keyword “fitness”. Interestingly, the test statistic
was higher on the group with the interests removed,
although not to a statistically significant degree. We
repeated the process with a longer keyword list and
found that removing interests decreased test statistic
this time, but also not to a statistically significant de-
gree.

7 Discussion and Conclusion
Using AdFisher, we conducted 21 experiments using
17,370 agents that collected over 600,000 ads. Our ex-
periments found instances of discrimination, opacity,
and choice in targeted ads of Google. Discrimination, is
at some level, inherent to profiling: the point of profil-
ing is to treat some people differently. While customiza-
tion can be helpful, we highlight a case where the cus-
tomization appears inappropriate taking on the negative
connotations of discrimination. In particular, we found
that males were shown ads encouraging the seeking of
coaching services for high paying jobs more than females
(§6.1).

We do not, however, claim that any laws or policies
were broken. Indeed, Google’s policies allow it to serve
different ads based on gender. Furthermore, we cannot
determine whether Google, the advertiser, or complex
interactions among them and others caused the dis-
crimination (§4.5). Even if we could, the discrimination
might have resulted unintentionally from algorithms op-
timizing click-through rates or other metrics free of big-
otry. Given the pervasive structural nature of gender
discrimination in society at large, blaming one party
may ignore context and correlations that make avoiding
such discrimination difficult. More generally, we believe
that no scientific study can demonstrate discrimination
in the sense of unjust discrimination since science can-
not demonstrate normative statements (e.g., [30])

Nevertheless, we are comfortable describing the
results as “discrimination”. From a strictly scientific
view point, we have shown discrimination in the non-
normative sense of the word. Personally, we also believe
the results show discrimination in the normative sense of
the word. Male candidates getting more encouragement
to seek coaching services for high-paying jobs could fur-
ther the current gender pay gap (e.g., [31]). Thus, we do
not see the found discrimination in our vision of a just
society even if we are incapable of blaming any partic-
ular parties for this outcome.

Furthermore, we know of no justification for such
customization of the ads in question. Indeed, our con-
cern about this outcome does not depend upon how the
ads were selected. Even if this decision was made solely
for economic reasons, it would continue to be discrimi-
nation [32]. In particular, we would remain concerned if
the cause of the discrimination was an algorithm ran by
Google and/or the advertiser automatically determin-
ing that males are more likely than females to click on
the ads in question. The amoral status of an algorithm
does not negate its effects on society.

However, we also recognize the possibility that no
party is at fault and such unjust effects may be inad-
vertent and difficult to prevent. We encourage research
developing tools that ad networks and advertisers can
use to prevent such unacceptable outcomes (e.g., [33]).

Opacity occurs when a tool for providing trans-
parency into how ads are selected and the profile kept on
a person actually fails to provide such transparency. Our
experiment on substance abuse showed an extreme case
in which the tool failed to show any profiling but the ad
distributions were significantly different in response to
behavior (§6.2). In particular, our experiment achieved
an adjusted p-value of < 0.00005, which is 1000 times
more significant than the standard 0.05 cutoff for statis-
tical significance. This experiment remained robust to
variations showing a pattern of such opacity.

Ideally, tools, such as Ad Settings, would provide a
complete representation of the profile kept on a person,
or at least the portion of the profile that is used to se-
lect ads shown to the person. Two people with identical
profiles might continue to receive different ads due to
other factors affecting the choice of ads such as A/B
testing or the time of day. However, systematic differ-
ences between ads shown at the same time and in the
same context, such as those we found, would not exist
for such pairs of people.

In our experiments testing transparency, we suspect
that Google served the top ads as part of remarketing,
but our blackbox experiments do not determine whether
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this is the case. While such remarketing may appear less
concerning than Google inferring a substance abuse is-
sue about a person, its highly targeted nature is wor-
risome particularly in settings with shared computers
or shoulder surfing. There is a need for a more inclusive
transparency/control mechanism which encompasses re-
marketed ads as well. Additionally, Google states that
“we prohibit advertisers from remarketing based on sen-
sitive information, such as health information” [28]. Al-
though Google does not specify what they consider to
be “health information”, we view the ads as in violation
of Google’s policy, thereby raising the question of how
Google should enforce its policies.

Lastly, we found that Google Ad Settings does pro-
vide the user with a degree of choice about the ads
shown. In this aspect, the transparency/control tool op-
erated as we expected.

Our tool, AdFisher, makes it easy to run additional
experiments exploring the relations between Google’s
ads and settings. It can be extended to study other
systems. It’s design ensures that it can run and ana-
lyze large scale experiments to find subtle differences. It
automatically finds differences between large data sets
produced by different groups of agents and explains the
nature of those differences. By completely automating
the data analysis, we ensure that an appropriate statis-
tical analysis determines whether these differences are
statistically significant and sound conclusions.

AdFisher may have cost advertisers a small sum of
money. AdFisher never clicked on any ads to avoid per
click fees, which can run over $4 [34]. Its experiments
may have caused per-impression fees, which run about
$0.00069 [35]. In the billion dollar ad industry, its total
effect was about $400.

8 Future Work
We would like to extend AdFisher to study information
flow on other advertising systems like Facebook, Bing,
or Gmail. We would also like to analyze other kinds of
ads like image or flash ads. We also plan to use the tool
to detect price discrimination on sites like Amazon or
Kayak, or find differences in suggested posts on blogs
and news websites, based on past user behavior. We
have already mentioned the interesting problem of how
ad networks can ensure that their policies are respected
by advertisers (§7).

We also like to assign blame where it is due. How-
ever, doing so is often difficult. For example, our view on

blame varies based on why females were discriminated
against in our gender and jobs experiment. If Google
allowed the advertiser to easily discriminate, we would
blame both. If the advertiser circumvented Google’s ef-
forts to prevent such discrimination by targeting corre-
lates of gender, we would blame just the advertiser. If
Google decided to target just males with the ad on its
own, we would blame just Google. While we lack the
access needed to make this determination, both Google
and the advertiser have enough information to audit the
other with our tool.

As another example, consider the results of opac-
ity after visiting substance abuse websites. While we
suspect, remarketing is the cause, it is also possible
that Google is targeting users without the rehab cen-
ter’s knowledge. In this case, it would remain unclear
as to whether Google is targeting users as substance
abusers or due to some other content correlated with
the webpages we visited to simulate an interest in sub-
stance abuse. We would like to find ways of controlling
for these confounding factors.

For these reasons, we cannot claim that Google has
violated its policies. In fact, we consider it more likely
that Google has lost control over its massive, automated
advertising system. Even without advertisers placing in-
appropriate bids, large-scale machine learning can be-
have in unexpected ways. With this in mind, we hope
future research will examine how to produce machine
learning algorithms that automatically avoid discrimi-
nating against users in unacceptable ways and automat-
ically provide transparency to users.
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A Tables
Table 2 summarizes the results. Table 3 covers the dis-
crimination experiments with Table 4 showing the top
ads for experiment on gender and jobs. Table 5 cov-
ers the opacity experiments with Table 6 showing the
top ads for the substance-abuse experiment and Table 7
showing them for the disability experiment. Table 8
show the experiments for effectful choice with Table 9
showing the tops ads for online dating. Tables 10 and 11
cover ad choice.

B Details of Methodology
Let the units be arranged in a vector ~u of length n. Let ~t
be a treatment vector, a vector of length n whose entries
are the treatments that the experimenter wants to apply
to the units. In the case of just two treatments, ~t can
be half full of the first treatment and half full of the
second. Let a be an assignment of units to treatments,
a bijection that maps each entry of ~u to an entry in ~t.
That is, an assignment is a permutation on the set of
indices of ~u and ~t.

The result of the experiment is a vector of obser-
vations ~y where the ith entry of ~y is the response mea-
sured for the unit assigned to the ith treatment in ~t by
the assignment used. In a randomized experiment, such
as those AdFisher runs, the actual assignment used is
selected at random uniformly over some set of possible
assignments A.

Let s be a test statistic of the observations of the
units. That is s : Yn → R where Y is the set of possible
observations made over units, n is the number of units,
and R is the range of s. We require R to be ordered
numbers such as the natural or real numbers. We allow
s to treat its arguments differently, that is, the order in
which the observations are passed to s matters.

If the null hypothesis is true, then we would expect
the value of s to be the same under every permuta-
tion of the arguments since the assignment of units to
treatments should not matter under the null hypothe-
sis. This reasoning motivates the permutation test. The
value produced by a (one-tailed signed) permutation
test given observed responses ~y and a test statistic s
is

|{ a ∈ A | s(~y) ≤ s(a(~y)) }|
|A| = 1

|A|
∑

a∈A
I[s(~y) ≤ s(a(~y))]

(1)

where the assignments in A only swaps nearly identical
units and I[·] returns 1 if its argument is true and 0
otherwise.
Blocking. For the blocking design, the set of units U
is partitioned into k blocks B1 to Bk. In our case, all the
blocks have the same size. Let |Bi| = m for all i. The set
of assignments A is equal to the set of functions from U
to U that are permutations not mixing up blocks. That
is, a such that for all i and all u in Bi, a(u) ∈ Bi. Thus,
we may treat A as k permutations, one for each Bi.
Thus, A is isomorphic to ×ki=1Π(Bi) where Π(Bi) is the
set of all permutations over Bi. Thus, | ×ki=1 Π(Bi)| =
(m!)k. Thus, (1) can be computed as

1
(m!)k

∑

a∈×k
i=1Π(Bi)

I[s(~y) ≤ s(a(~y))] (2)

Sampling. Computing (2) can be difficult when the
set of considered arrangements is large. One solution is
to randomly sample from the assignments A. Let A′ be
a random subset of A. We then use the approximation

1
|A′|

∑

a∈A′

I[s(~y) ≤ s(a(~y))] (3)

Confidence Intervals. Let P̂ be this approximation
and p be the true value of (2). p can be understood as
the frequency of arrangements that yield large values of
the test statistic where largeness is determined to be at
least as large as the observed value s(~y). That is, the
probability that a randomly selected arrangement will
yield a large value is p. P̂ is the frequency of seeing
large values in the |A′| sampled arrangements. Since
the arrangements in the sample were drawn uniformly
at random from A and each draw has probability p of
being large, the number of large values will obey the
binomial distribution. Let us denote this value as L. and
|A′| as n. Since P̂ = L/n, p̂ ∗ n also obeys the binomial
distribution. Thus,

Pr[P̂ = p̂ |n, p] =

(
n

p̂n

)
pp̂n(1− p)(1−p̂)n (4)

Thus, we may use a binomial proportion confidence
interval. We use the Clopper-Pearson interval [36].
Test Statistic. The statistic we use is based on a clas-
sifier c. Let c(yi) = 1 mean that c classifiers the ith ob-
servation as having come from the experimental group
and c(yi) = 0 as from the control group. Let ¬(0) = 1
and ¬(1) = 0. Let ~y be ordered so that all of the exper-
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Property Treatment Other Actions Source When Length (hrs) # ads Result
Nondiscrimination Gender - TOI May 10 40, 400 Inconclusive

Gender Jobs TOI May 45 43, 393 Violation
Gender Jobs TOI July 39 35, 032 Inconclusive
Gender Jobs Guardian July 53 22, 596 Inconclusive
Gender Jobs & Top 10 TOI July 58 28, 738 Inconclusive

Data use transparency Substance abuse - TOI May 37 42, 624 Violation
Substance abuse - TOI July 41 34, 408 Violation
Substance abuse - Guardian July 51 19, 848 Violation
Substance abuse Top 10 TOI July 54 32, 541 Violation
Disability - TOI May 44 43, 136 Violation
Mental disorder - TOI May 35 44, 560 Inconclusive
Infertility - TOI May 42 44, 982 Inconclusive
Adult websites - TOI May 57 35, 430 Inconclusive

Effectful choice Opting out - TOI May 9 18, 085 Compliance
Dating interest - TOI May 12 35, 737 Compliance
Dating interest - TOI July 17 22, 913 Inconclusive
Weight loss interest - TOI May 15 31, 275 Compliance
Weight loss interest - TOI July 15 27, 238 Inconclusive

Ad choice Dating interest - TOI July 1 1, 946 Compliance
Weight loss interest - TOI July 1 2, 862 Inconclusive
Weight loss interest - TOI July 1 3, 281 Inconclusive

Table 2. Summary of our experimental results. Ads are collected from the Times of India (TOI) or the Guardian. We report how long
each experiment took, how many ads were collected for it, and what result we concluded.

Treatment Other visits Measurement Blocks
# ads (# unique ads)

Accuracy Unadj.
p-value

Adj.
p-valuefemale male

Gender Jobs TOI, May 100 21, 766 (545) 21, 627 (533) 93% 0.0000053 0.0000265∗

Gender Jobs Guardian, July 100 11, 366 (410) 11, 230 (408) 57% 0.12 0.48
Gender Jobs & Top 10 TOI, July 100 14, 507 (461) 14, 231 (518) 56% 0.14 n/a
Gender Jobs TOI, July 100 17, 019 (673) 18, 013 (690) 55% 0.20 n/a
Gender - TOI, May 100 20, 137 (603) 20, 263 (630) 48% 0.77 n/a

Table 3. Results from the discrimination experiments sorted by unadjusted p-value. TOI stands for Times of India. ∗ denotes statisti-
cally significant results under the Holm-Bonferroni method.
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Title URL Coefficient
appears in agents total appearances
female male female male

Top ads for identifying the simulated female group
Jobs (Hiring Now) www.jobsinyourarea.co 0.34 6 3 45 8
4Runner Parts Service www.westernpatoyotaservice.com 0.281 6 2 36 5
Criminal Justice Program www3.mc3.edu/Criminal+Justice 0.247 5 1 29 1
Goodwill - Hiring goodwill.careerboutique.com 0.22 45 15 121 39
UMUC Cyber Training www.umuc.edu/cybersecuritytraining 0.199 19 17 38 30

Top ads for identifying agents in the simulated male group
$200k+ Jobs - Execs Only careerchange.com −0.704 60 402 311 1816
Find Next $200k+ Job careerchange.com −0.262 2 11 7 36
Become a Youth Counselor www.youthcounseling.degreeleap.com −0.253 0 45 0 310
CDL-A OTR Trucking Jobs www.tadrivers.com/OTRJobs −0.149 0 1 0 8
Free Resume Templates resume-templates.resume-now.com −0.149 3 1 8 10

Table 4. Top URL+titles for the gender and jobs experiment on the Times of India in May.

Treatment Other visits Measurement
# ads (# unique ads)

Accuracy Unadj.
p-value

Adj.
p-valueexperimental control

Substance abuse - TOI, May 20, 420 (427) 22, 204 (530) 81% 0.0000053 0.0000424∗

Substance abuse - TOI, July 16, 206 (653) 18, 202 (814) 98% 0.0000053 0.0000371∗

Substance abuse Top 10 TOI, July 15, 713 (603) 16, 828 (679) 65% 0.0000053 0.0000318∗

Disability - TOI, May 19, 787 (546) 23, 349 (684) 75% 0.0000053 0.0000265∗

Substance abuse - Guardian, July 8, 359 (242) 11, 489 (319) 62% 0.0075 0.03∗

Mental disorder - TOI, May 22, 303 (407) 22, 257 (465) 59% 0.053 0.159
Infertility - TOI, May 22, 438 (605) 22, 544 (625) 57% 0.11 n/a
Adult websites - TOI, May 17, 670 (602) 17, 760 (580) 52% 0.42 n/a

Table 5. Results from transparency experiments. TOI stands for Times of India. Every experiment for this property ran with 100
blocks. ∗ denotes statistically significant results under the Holm-Bonferroni method.

Title URL Coefficient
appears in agents total appearances
control experi. control experi.

Top ads for identifying agents in the experimental group (visited websites associated with substance abuse)
The Watershed Rehab www.thewatershed.com/Help −0.888 0 280 0 2276
Watershed Rehab www.thewatershed.com/Rehab −0.670 0 51 0 362
The Watershed Rehab Ads by Google −0.463 0 258 0 771
Veteran Home Loans www.vamortgagecenter.com −0.414 13 15 22 33
CAD Paper Rolls paper-roll.net/Cad-Paper −0.405 0 4 0 21

Top ads for identifying agents in control group
Alluria Alert www.bestbeautybrand.com 0.489 2 0 9 0
Best Dividend Stocks dividends.wyattresearch.com 0.431 20 10 54 24
10 Stocks to Hold Forever www.streetauthority.com 0.428 51 44 118 76
Delivery Drivers Wanted get.lyft.com/drive 0.362 22 6 54 14
VA Home Loans Start Here www.vamortgagecenter.com 0.354 23 6 41 9

Table 6. Top URL+titles for substance abuse experiment on the Times of India in May.
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Title URL Coefficient
appears in agents total appearances
control experi. control experi.

Top ads for identifying agents in the experimental group (visited websites associated with disability)
Mobility Lifter www.abilitiesexpo.com −1.543 0 84 0 568
Standing Wheelchairs www.abilitiesexpo.com −1.425 0 88 0 508
Smoking MN Healthcare www.stillaproblem.com −1.415 0 24 0 60
Bike Prices www.bikesdirect.com −1.299 0 24 0 79
$19 Car Insurance - New auto-insurance.quotelab.com/MN −1.276 0 6 0 9

Top ads for identifying agents in control group
Beautiful Women in Kiev anastasiadate.com 1.304 190 46 533 116
Melucci DDS AdsbyGoogle 1.255 4 2 10 6
17.2% 2013 Annuity Return advisorworld.com/CompareAnnuities 1.189 30 5 46 6
3 Exercises To Never Do homeworkoutrevolution.net 1.16 1 1 3 1
Find CNA Schools Near You cna-degrees.courseadvisor.com 1.05 22 0 49 0

Table 7. Top URL+titles for disability experiment on the Times of India in May.

Experiment blocks
# ads (# unique ads)

accuracy Unadj.
p-value

Adj.
p-valueremoved/opt-out keep/opt-in total

Opting out 54 9, 029 (139) 9, 056 (293) 18, 085 (366) 83% 0.0000053 0.0000265∗

Dating (May) 100 17, 975 (518) 17, 762 (457) 35, 737 (669) 74% 0.0000053 0.0000212∗

Weight Loss (May) 83 15, 826 (367) 15, 449 (427) 31, 275 (548) 60% 0.041 0.123
Dating (July) 90 11, 657 (727) 11, 256 (706) 22, 913 (1, 014) 59% 0.070 n/a
Weight Loss (July) 100 14, 168 (917) 13, 070 (919) 27, 238 (1, 323) 52% 0.41 n/a

Table 8. Results from effectful choice experiments using the Times of India sorted by unadjusted p-value. ∗ denotes statistically signifi-
cant results under the Holm-Bonferroni method.

Title URL Coefficient
appears in agents total appearances
kept removed kept removed

Top ads for identifying the group that kept dating interests
Are You Single? www.zoosk.com/Dating 1.583 367 33 2433 78
Top 5 Online Dating Sites www.consumer-rankings.com/Dating 1.109 116 10 408 13
Why can’t I find a date? www.gk2gk.com 0.935 18 3 51 5
Latest Breaking News www.onlineinsider.com 0.624 2 1 6 1
Gorgeous Russian Ladies anastasiadate.com 0.620 11 0 21 0

Top ads for identifying agents in the group that removed dating interests
Car Loans w/ Bad Credit www.car.com/Bad-Credit-Car-Loan −1.113 5 13 8 37
Individual Health Plans www.individualhealthquotes.com −0.831 7 9 21 46
Crazy New Obama Tax www.endofamerica.com −0.722 19 31 22 51
Atrial Fibrillation Guide www.johnshopkinshealthalerts.com −0.641 0 6 0 25
Free $5 - $25 Gift Cards swagbucks.com −0.614 4 11 5 32

Table 9. Top URL+titles for the dating experiment on Times of India in May.
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Experiment Keywords
# ads (# unique ads) appearances
removed kept removed kept

Dating dating, romance, relationship 952 (117) 994 (123) 34 109
Weight Loss (1) fitness 1, 461 (259) 1, 401 (240) 21 16
Weight Loss (2) fitness, health, fat, diet, exercise 1, 803 (199) 1, 478 (192) 2 15

Table 10. Setup for and ads from ad choice experiments. All experiments used 10 blocks. The same keywords are used to remove ad
interests, as well as create the test statistic for permutation test.

Experiment Unadjusted
p-value

Bonferroni
p-value

Holm-Bonferroni
p-value

Unadjusted
flipped p-value

Bonferroni
flipped p-value

Holm-Bonferroni
flipped p-value

Dating 0.0076 0.0152 0.0456∗ 0.9970 1.994 n/a
Weight Loss (2) 0.18 0.36 0.9 0.9371 1.8742 n/a
Weight Loss (1) 0.72 1.44 n/a 0.3818 0.7636 n/a

Table 11. P-values from ad choice experiments sorted by the (unflipped) p-value. The Bonferroni adjusted p-value is only adjusted for
the two hypotheses tested within a single experiment (row). The Holm-Bonferroni adjusts for all 6 hypotheses. ∗ denotes statistically
significant results under the Holm-Bonferroni method.

imental group comes first. The statistic we use is

s(~y) =
n/2∑

i=1
c(yi) +

n∑

i=n/2+1

¬c(yi)

This is the number correctly classified.

C Holm-Bonferroni Correction
The Holm-Bonferroni Correction starts by ordering the
hypotheses in a family from the hypothesis with the
smallest (most significant) p-value p1 to the hypothesis
with the largest (least significant) p-value pm [27]. For
a hypothesis Hk, its unadjusted p-value pk is compared
to an adjusted level of significance α′k = α

m+1−k where α
is the unadjusted level of significance (0.05 in our case),
m is the total number of hypotheses in the family, and
k is the index of hypothesis in the ordered list (counting
from 1 to m). Let k† be the lowest index k such that
pk > α′k. The hypotheses Hk where k < k† are accepted
as having statistically significance evidence in favor of
them (more technically, the corresponding null hypothe-
ses are rejected). The hypotheses Hk where k ≥ k† are
not accepted as having significant evidence in favor of
them (their null hypotheses are not rejected).

We report adjusted p-values to give an intuition
about the strength of evidence for a hypothesis. We
let p′k = p(m + 1 − k) be the adjusted p-value for Hk

provided k < k† since pk > α′k iff p′k > α. Note that

the adjusted p-value depends not just upon its unad-
justed value but also upon its position in the list. For
the remaining hypotheses, we provide no adjusted p-
value since their p-values are irrelevant to the correction
beyond how they order the list of hypotheses.
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The enormous financial success of online advertising platforms is partially due to the precise targeting features
they offer. Although researchers and journalists have foundmanyways that advertisers can target—or exclude—
particular groups of users seeing their ads, comparatively little attention has been paid to the implications of
the platform’s ad delivery process, comprised of the platform’s choices about which users see which ads.

It has been hypothesized that this process can “skew” ad delivery in ways that the advertisers do not intend,
making some users less likely than others to see particular ads based on their demographic characteristics.
In this paper, we demonstrate that such skewed delivery occurs on Facebook, due to market and financial
optimization effects as well as the platform’s own predictions about the “relevance” of ads to different groups
of users. We find that both the advertiser’s budget and the content of the ad each significantly contribute to
the skew of Facebook’s ad delivery. Critically, we observe significant skew in delivery along gender and racial
lines for “real” ads for employment and housing opportunities despite neutral targeting parameters.

Our results demonstrate previously unknown mechanisms that can lead to potentially discriminatory ad
delivery, even when advertisers set their targeting parameters to be highly inclusive. This underscores the
need for policymakers and platforms to carefully consider the role of the ad delivery optimization run by
ad platforms themselves—and not just the targeting choices of advertisers—in preventing discrimination in
digital advertising.1
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1 INTRODUCTION
Powerful digital advertising platforms fund most popular online services today, serving ads to
billions of users daily. At a high level, the functionality of these advertising platforms can be divided
into two phases: ad creation, where advertisers submit the text and images that comprise the content
of their ad and choose targeting parameters, and ad delivery, where the platform delivers ads to
specific users based on a number of factors, including advertisers’ budgets, their ads’ performance,
and the predicted relevance of their ads to users.
One of the underlying reasons for the popularity of these services with advertisers is the rich

suite of targeting features they offer during ad creation, which allow advertisers to precisely specify
which users (called the audience) are eligible to see the advertiser’s ad. The particular features that
advertisers can use for targeting vary across platforms, but often include demographic attributes,
behavioral information, users’ personally identifiable information (PII), mobile device IDs, and web
tracking pixels [11, 73].
Due to the wide variety of targeting features—as well as the availability of sensitive targeting

features such as user demographics and interests—researchers have raised concerns about discrimi-
nation in advertising, where groups of users may be excluded from receiving certain ads based on
advertisers’ targeting choices [69]. This concern is particularly acute in the areas of credit, housing,
and employment, where there are legal protections in the U.S. that prohibit discrimination against
certain protected classes in advertising [1–3]. As ProPublica demonstrated in 2016 [33], this risk
is not merely theoretical: ProPublica investigators were able to run housing ads that explicitly
excluded users with specific “ethnic affinities” from receiving them.2 Recently, the U.S. Department
of Housing and Urban Development (HUD) sued Facebook over these concerns and others, accusing
Facebook’s advertising platform of “encouraging, enabling, and causing” violations of the Fair
Housing Act [32].

The role of ad delivery in discrimination Although researchers and investigative journalists
have devoted considerable effort to understanding the potential discriminatory outcomes of ad
targeting, comparatively little effort has focused on ad delivery, due to the difficulty of studying
its impacts without internal access to ad platforms’ data and mechanisms. However, there are
several potential reasons why the ad delivery algorithms used by a platform may open the door to
discrimination.
First, consider that most platforms claim their aim is to show users “relevant” ads: for example,

Facebook states “we try to show people the ads that are most pertinent to them” [68]. Intuitively,
the goal is to show ads that particular users are likely to engage with, even in cases where the
advertiser does not know a priori which users are most receptive to their message. To accomplish
this, the platforms build extensive user interest profiles and track ad performance to understand
how different users interact with different ads. This historical data is then used to steer future ads
towards those users who are most likely to be interested in them, and to users like them. However,
in doing so, the platforms may inadvertently cause ads to deliver primarily to a skewed subgroup
of the advertiser’s selected audience, an outcome that the advertiser may not have intended or
be aware of. As noted above, this is particularly concerning in the case of credit, housing, and
employment, where such skewed delivery might violate antidiscrimination laws.

Second, market effects and financial optimization can play a role in ad delivery, where different
desirability of user populations and unequal availability of users may lead to skewed ad delivery [25].
2In response, Facebook banned the use of certain attributes for housing ads, but many other, un-banned, mechanisms exist
for advertisers that achieve the same outcome [69]. Facebook agreed as part of a lawsuit settlement stemming from these
issues to go further by banning age, gender, and certain kinds of location targeting—as well as some related attributes—for
housing, employment, or credit ads [22].
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For example, it is well-known that certain users on advertising platforms are more valuable to
advertisers than others [48, 55, 65]. Thus, advertisers who choose low budgets when placing their
ads may be more likely to lose auctions for such “valuable” users than advertisers who choose higher
budgets. However, if these “valuable” user demographics are strongly correlated with protected
classes, it could lead to discriminatory ad delivery due to the advertiser’s budget alone. Even though
a low budget advertiser may not have intended to exclude such users, the ad delivery system may
do just that because of the higher demand for that subgroup.
Prior to this work, although hypothesized [25, 52, 72], it was not known whether the above

factors resulted in skewed ad delivery in real-world advertising platforms. In fact, in response to
the HUD lawsuit [32] mentioned above, Facebook claimed that the agency had “no evidence” of
their ad delivery systems’ role in creating discrimination [45].

Contributions In this paper, we aim to understand whether ads could end up being shown
in a skewed manner—i.e., where some users are less likely than others to see ads based on their
demographic characteristics—due to the ad delivery phase alone. In other words, we determine
whether the ad delivery could cause skewed delivery that an advertiser did not cause by their
targeting choices and may not even be aware of. We focus on Facebook—as it is the most mature
platform offering advanced targeting features—and run dozens of ad campaigns, hundreds of ads
with millions of impressions, spending over $8,500 as part of our study.

Answering this question—especially without internal access to the ad delivery algorithm, user
data, and advertiser targeting data or delivery statistics—involves overcoming a number of chal-
lenges. These include separating market effects from optimization effects, distinguishing ad delivery
adjustments based on the ad’s performance measured through user feedback from initial ad classi-
fication, and developing techniques to determine the racial breakdown of the delivery audience
(which Facebook does not provide). The difficulty of solving these without the ad platform’s co-
operation in a rigorous manner may at least partially explain the lack of knowledge about the
potential discriminatory effects due to ad delivery to date. After addressing these challenges, we
find the following:
First, we find that skewed delivery can occur due to market effects alone. Recall the hypothesis

above concerning what may happen if advertisers in general value users differently across protected
classes. Indeed, we find this is the case on Facebook: when we run identical ads targeting the same
audience but with varying budgets, the resulting audience of users who end up seeing our ad can
range from over 55% men (for ads with very low budgets) to under 45% men (for ads with high
budgets).

Second, we find that skewed delivery can occur due to the content of the ad itself (i.e., the ad headline,
text, and image, collectively called the ad creative). For example, ads targeting the same audience but
that include a creative that would stereotypically be of the most interest to men (e.g., bodybuilding)
can deliver to over 80% men, and those that include a creative that would stereotypically be of the
most interest to women (e.g., cosmetics) can deliver to over 90% women. Similarly, ads referring to
cultural content stereotypically of most interest to Black users (e.g., hip-hop) can deliver to over 85%
Black users, and those referring to content stereotypically of interest to white users (e.g., country
music) can deliver to over 80% white users, even when targeted identically by the advertiser. Thus,
despite placing the same bid on the same audience, the advertiser’s ad delivery can be heavily
skewed based on the ad creative alone.

Third, we find that the ad image itself has a significant impact on ad delivery. By running experi-
ments where we swap different ad headlines, text, and images, we demonstrate that the differences
in ad delivery can be significantly affected by the image alone. For example, an ad whose headline
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and text would stereotypically be of the most interest to men with the image that would stereotypi-
cally be of the most interest to women delivers primarily to women at the same rate as when all
three ad creative components are stereotypically of the most interest to women.
Fourth, we find that the ad image is likely automatically classified by Facebook, and that this

classification can skew delivery from the beginning of the ad’s run. We create a series of ads where
we add an alpha channel to stereotypically male and female images with over 98% transparency;
the result is an image with all of the image data present, but that looks like a blank white square to
humans. We find that there are statistically significant differences in how these ads are delivered
depending on the image used, despite the ads being visually indistinguishable to a human. This
indicates that the image classification—and, therefore, relevance determination—is likely an auto-
mated process, and that the skew in ad delivery can be due in large part to skew in Facebook’s
automated estimate of relevance, rather than ad viewers’ interactions with the ad.
Fifth, we show that real-world employment and housing ads can experience significantly skewed

delivery.We create and run ads for employment and housing opportunities, and use ourmethodology
to measure their delivery to users of different races and genders. When optimizing for clicks, we
find that ads with the same targeting options can deliver to vastly different racial and gender
audiences depending on the ad creative alone. In the most extreme cases, our ads for jobs in the
lumber industry reach an audience that is 72% white and 90% male, our ads for cashier positions in
supermarkets reach an 85% female audience, and our ads for positions in taxi companies reach a
75% Black audience, even though the targeted audience specified by us as an advertiser is identical
for all three. We run a similar suite of ads for housing opportunities, and find skew there as well:
despite the same targeting and budget, some of our ads deliver to an audience of over 72% Black
users, while others delivery to over 51% Black users. While our results only speak to how our
particular ads are delivered (i.e., we cannot say how housing or employment ads in general are
delivered), the significant skew we observe even on a small set of ads suggests that real-world
housing and employment ads are likely to experience the same fate.

Taken together, our results paint a distressing picture of heretofore unmeasured and unaddressed
skew that can occur in online advertising systems, which have significant implications for discrimi-
nation in targeted advertising. Specifically, due to platforms’ optimization in the ad delivery stage
together with market effects, ads can unexpectedly be delivered to skewed subsets of the advertiser’s
specified audience. For certain types of ads, such skewed delivery might implicate legal protections
against discriminatory advertising. For example, Section 230 of the U.S. Communications Decency
Act (CDA) protects publishers (including online platforms) from being held responsible for third-
party content. Our results show Facebook’s integral role in shaping the delivery mechanism and
might make it more difficult for online platforms to present themselves as neutral publishers in
the future. We leave a full exploration of these implications to the legal community. However, our
results indicate that regulators, lawmakers, and the platforms themselves need to think carefully
when balancing the optimization of ad platforms against desired societal outcomes, and remember
that ensuring that individual advertisers do not discriminate in their targeting is insufficient to
achieve non-discrimination goals sought by regulators and the public.

Ethics All of our experiments were conducted with careful consideration of ethics. We obtained
Institutional Review Board review of our study at Northeastern University (application #18-11-13),
with our protocol being marked as “Exempt”. We minimized harm to Facebook users when we were
running our ads by always running “real” ads (in the sense that if people clicked on our ads, they
were brought to real-world sites relevant to the topic of the ad). While running our ads, we never
intentionally chose to target ads in a discriminatory manner (e.g., we never used discriminatory
targeting parameters). To further minimize the potential for discrimination, we ran most of our
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experimental ads in categories with no legal salience (such as entertainment and lifestyle); we only
ran ad campaigns on jobs and housing to verify whether the effects we observed persist in these
domains. We minimized harm to the Facebook advertising platform by paying for ads and using the
ad reporting tools in the same manner as any other advertiser. The particular sites we advertised
were unaffiliated with the study, and our ads were not defamatory, discriminatory, or suggestive of
discrimination.

2 BACKGROUND
Before introducing our methodology and analyses, we provide background on online display
advertising, describe Facebook’s advertising platform’s features, and detail related work.

2.1 Online display advertising
Online display advertising is now an ecosystem with aggregate yearly revenues close to $100
billion [21]. The web advertising ecosystem is a complex set of interactions between ad publishers,
ad networks, and ad exchanges, with an ever-growing set of entities involved at each step allowing
advertisers to reach much of the web. In contrast, online services such as Facebook and Twitter run
advertising platforms that primarily serve a single site (namely, Facebook and Twitter themselves).
In this paper, we focus on single-site advertising platforms, but our results may also be applicable
to more general display advertising on the web; we leave a full investigation of the extent to which
this is the case to future work.
The operation of platforms such as Facebook and Twitter can be divided into two phases: ad

creation and ad delivery. We provide more details on each below.

Ad creation Ad creation refers to the process by which the advertiser submits their ad to the
advertising platform. At a high level, the advertiser has to select three things when doing so:
(1) Ad contents: Advertisers will typically provide the ad headline, text, and any images/videos.

Together, these are called the ad creative. They will also provide the link where the platform
should send users who click.

(2) Audience Selection/Targeting: Advertisers need to select which platform users they would like
to see the ad (called the audience).

(3) Bidding strategy: Advertisers need to specify how much they are willing to pay to have their
ads shown. This can come in the form of a per-impression or per-click bid, or the advertiser
can simply place an overall bid cap and allow the platform to bid on their behalf.

Once the advertiser has entered all of the above information, they submit the ad for review;3 once
it is approved, the ad will move to the ad delivery phase.

Ad delivery Ad delivery refers to the process by which the advertising platform shows ads
to users. For every opportunity to show a user an ad (e.g., an ad slot is available as the user is
browsing the service), the ad platform will run an ad auction to determine, from among all of the
ads that include the current user in the audience, which ad should be shown.

In practice, however, the ad delivery process is somewhat more complicated. First, the platforms
try to avoid showing ads from the same advertiser repeatedly in quick succession to the same
user; thus, the platforms will sometimes disregard bids for recent winners of the same user. Second,
the platforms often wish to show users relevant ads; thus, rather than relying solely on the bid
to determine the winner of the auction, the platform may incorporate a relevance score into
consideration, occasionally allowing ads with lower bids but more relevance to win over those
3Most platforms have a review process to prevent abuse or violations of their platforms’ advertising policies [8, 77].

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. CSCW, Article 199. Publication date: November 2019.



199:6 Muhammad Ali, et al.

Fig. 1. Each ad has five elements that the advertiser can control: (1) the ad text, entered manually by
the advertiser, (2) the images and/or videos, (3) the domain, pulled automatically from the HTML meta
property og:site_name of the destination URL, (4) the title, pulled automatically from the HTML meta
property og:title of the destination URL, and (5) the description from meta property og:description of
the destination URL. The title and description can be manually customized by the advertiser if they wish.

with higher bids. Third, the platforms may wish to evenly spread the advertiser budget over their
specified time period, rather than use it all at once, which introduces additional complexities as
to which ads should be considered for particular auctions. The exact mechanisms by which these
issues are addressed are not well-described or documented by the platforms.
Once ads enter the ad delivery phase, the advertising platforms give advertisers information

on how their ads are performing. Such information may include detailed breakdowns (e.g., along
demographic or geographic lines) of the characteristics of users to whom their ad is being shown
and those who click on the ad.

2.2 Facebook’s advertising platform
In this paper, we focus on Facebook’s advertising platform as it is one of the most powerful and
feature-rich advertising platforms in use today. As such, we provide a bit more background here
about the specific features and options that Facebook provides to advertisers.

Ad contents Each ad placed on Facebook must be linked to a Page; advertisers are allowed
to have multiple Pages and run ads for any of them. Ads can come in multiple forms, such as
promoting particular posts on the page. However, for typical ads, the advertiser must provide (a)
the headline and text to accompany the ad, and (b) one or more images or videos to show to the
user. Optionally, the advertiser can provide a traffic destination to send the user to if they click
(e.g., a Facebook Page or an external URL); if the advertiser provides a traffic destination, the ad
will include a brief description (auto-generated from the HTML meta data) about this destination.
Examples showing all of these elements are presented in Figure 1.

Audience selection Facebook provides a wide variety of audience selection (or targeting)
options [10, 11, 38, 69]. In general, these options fall into a small number of classes:

• Demographics and attributes: Similar to other advertising platforms [39, 71], Facebook allows
advertisers to select audiences based on demographic information (e.g., age, gender, and
location), as well as profile information, activity on the site, and data from third-parties.
Recent work has shown that Facebook offers over 1,000 well-defined attributes and hundreds
of thousands of free-form attributes [69].
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• Personal information: Alternatively, Facebook allows advertisers to specify the exact users
who they wish to target by either (a) uploading the users’ personally identifiable information
including names, addresses, and dates of birth [34, 73, 74], or (b) deploying web tracking
pixels on third-party sites [27]. On Facebook, audiences created using either mechanism are
called Custom Audiences.4

• Similar users: Advertisers may wish to find “similar” users to those who they have previously
selected. To do so, Facebook allows advertisers to create Lookalike Audiences5 by starting
with a source Custom Audience they had previously uploaded; Facebook then “identif[ies]
the common qualities of the people in it” and creates a new audience with other people who
share those qualities [28].

Advertisers can often combine many of these features together, for example, by uploading a list
of users’ personal information and then using attribute-based targeting to further narrow the
audience.

Objective and bidding Facebook provides advertisers with a number of objectives to choose
from when placing an ad [6], where each tries to maximize a different optimization event the
advertiser wishes to occur. These include “Awareness” (simply optimizing for the most impressions,
a.k.a. views), “Consideration” (optimizing for clicks, engagement, etc.), and “Conversion” (optimizing
for sales generated by clicking the ad). For each objective, the advertiser bids on the objective itself
(e.g., for “Awareness”, the advertiser would bid on ad impressions). The bid can take multiple forms,
and includes the start and end time of the ad campaign and either a lifetime or a daily budget cap.
With these budget caps, Facebook places bids in ad auctions on the advertisers’ behalf. Advertisers
can optionally specify a per-bid cap as well, which will limit the amount Facebook would bid on
their behalf for a single optimization event.

Facebook’s ad auction When Facebook has ad slots available, it runs an ad auction among the
active advertisements bidding for that user. However, the auction does not just use the bids placed
by the advertisers; Facebook says [29]:

The ad that wins an auction and gets shown is the one with the highest total value
[emphasis added]. Total value isn’t how much an advertiser is willing to pay us to show
their ad. It’s combination of 3 major factors: (1) Bid, (2) Estimated action rates, and (3)
Ad quality and relevance.

Facebook defines “Estimated action rates” as “how well an ad performs”, meaning whether or not
users in general are engaging with the ad [5]. They define “Ad quality and relevance” as “how
interesting or useful we think a given user is going to find a given ad”, meaning how much a
particular user is likely to be interested in the ad [5].
Thus, it is clear that Facebook attempts to identify the users within an advertiser’s selected

audience who they believe would find the ad most useful (i.e., those who are most likely to result
in an optimization event) and shows the ad preferentially to those users. Facebook says exactly as
such in their documentation [4]:

During ad set creation, you chose a target audience ... and an optimization event ...
We show your ad to people in that target audience who are likely to get you that
optimization event

4Google, Twitter, and Pinterest all provide similar features; these are called Customer Match [7], Tailored Audiences, and
Customer Lists [61], respectively.
5Google and Pinterest offer similar features: on Google it is called Similar Audiences [40], and on Pinterest it is called Actalike
Audiences [63].
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Facebook provides advertisers with an overview of how well-matched it believes an ad is with the
target audience using a metric called relevance score, which ranges between 1 and 10. Facebook
says [68]:

Relevance score is calculated based on the positive and negative feedback we expect
an ad to receive from its target audience.

Facebook goes on to say [68]:

Put simply, the higher an ad’s relevance score, the less it will cost to be delivered. This
is because our ad delivery system is designed to show the right content to the right
people, and a high relevance score is seen by the system as a positive signal.

Statistics and reporting Facebook provides advertisers with a feature-rich interface [30] as
well as a dedicated API [56] for both launching ads and monitoring those ads as they are in ad
delivery. Both the interface and the API give semi-live updates on delivery, showing the number
of impressions and optimization events as the ad is running. Advertisers can also request this
data be broken down along a number of different dimensions, including age, gender, and location
(Designated Market Area [58], or DMA, region). Notably, the interface and API do not provide a
breakdown of ad delivery along racial lines; thus, analyzing delivery along racial lines necessitates
development of a separate methodology that we describe in the next section.

Anti-discrimination rules In response to issues of potential discrimination in online advertis-
ing reported by researchers and journalists [33], Facebook currently has several policies in place
to avoid discrimination for certain types of ads. Facebook also recently built tools to automat-
ically detect ads offering housing, employment, and credit, and pledged to prevent the use of
certain targeting categories with those ads. [46]. Additionally, Facebook relies on advertisers to
self-certify [15] that they are not in violation of Facebook’s advertising policy prohibitions against
discriminatory practices [31]. More recently, in order to settle multiple lawsuits stemming from
these reports, Facebook no longer allows age, gender, or ZIP code-based targeting for housing,
employment or credit ads, and blocks other detailed targeting attributes that are “describing or
appearing to relate to protected classes” [22, 44, 60].

2.3 Related work
Next, we detail related work on algorithm auditing, transparency, and discriminatory ad targeting.

Auditing algorithms for fairness Following the growing ubiquity of algorithms in daily life,
a community formed around investigating their societal impacts [66]. Typically, the algorithms
under study are not available to outside auditors for direct examination; thus, most researchers treat
them as “black boxes” and observe their reactions to different inputs. Among most notable results,
researchers have shown price discrimination in online retail sites [42], gender discrimination in
job sites [16, 43], stereotypical gender roles re-enforced by online translation services [12] and
image search [47], disparate performance on gender classification for Black women [13], and
political partisanships in search [20, 51, 64]. Although most of the work focused exclusively on the
algorithms themselves, recently researchers began to point out that auditors should consider the
entire socio-technical systems that include the users of those algorithms, an approach referred to
as “algorithm-in-the-loop” [41, 67]. Furthermore, recent work has demonstrated that fairness is
not necessarily composable, i.e., for several notions of fairness such as individual fairness [24], a
collection of classifiers that are fair in isolation do not necessarily result in a fair outcome when
they are used as part of a larger system [25].

Proceedings of the ACM on Human-Computer Interaction, Vol. 3, No. CSCW, Article 199. Publication date: November 2019.



Discrimination through Optimization:
How Facebook’s Ad Delivery Can Lead to Biased Outcomes 199:9

Advertising transparency In parallel to the developments in detecting and correcting un-
fairness, researchers have conducted studies and introduced tools with the aim of increasing
transparency and explainability of algorithms and their outcomes. For example, much attention
has been dedicated to shedding light on the factors that influence the targeting of a particular ad
on the web [26, 53, 54, 62] and on specific services [19, 78].
Focusing on Facebook, Andreou et al. investigated the transparency initiative from Facebook

that purportedly tells users why they see particular targeted ads [11]. They found that the provided
explanations are incomplete and, at times, misleading. Venkatadri et al. introduced the tool called
“TREADS” that attempts to close this gap by providing Facebook users with detailed descriptions
of their inferred attributes using the ads themselves as a vehicle [75]. Further, they investigated
how data from third-party data brokers is used in Facebook’s targeting features and—for the first
time—revealed those third-party attributes to the users themselves using TREADS [76]. Similar
to other recent work [59], Venkatadri et al. found that the data from third-party data brokers had
varying accuracy [76].

Discrimination in advertising As described above, Facebook has some policies and tools in
place to prevent discriminatory ad targeting. However, advertisers can still exclude users based on
a variety of interests that are highly correlated with race by using custom audiences [69], or by
using location [37, 50]. Separately, Sweeney [70] and Datta et al. [19] have studied discrimination
in Google’s advertising system.

The work just described deals with identifying possibilities for the advertisers to run discrimina-
tory ads using the platform’s features. In contrast, other researchers, as well as and HUD’s recent
complaint, have suggested that discrimination may be introduced by the ad platform itself, rather
than by a malicious advertiser [19, 45, 52, 72]. For example, Lambrecht et al. ran a series of ads for
STEM education and found they were consistently delivered more to men than to women, even
though there are more female users on Facebook, and they are known to be more likely to click on
ads and generate conversions [52]. Datta et al. explored ways that discrimination could arise in
the targeting and delivery of job-related ads, and analyzed how different parties might be liable
under existing law [18]. Our work explores these findings in depth, separating market effects from
optimization effects and exploring the mechanisms by which ads are delivered in a skewed manner.

3 METHODOLOGY
We now describe our methodology for measuring the delivery of Facebook ads. At a high level, our
goal is to run groups of ads where we vary a particular feature, with the goal of then measuring
how changing that feature skews the set of users the Facebook platform delivers the ad to. To do
so, we need to carefully control which users are in our target audience. We also need to develop
a methodology to measure the ad delivery skew along racial lines, which, unlike gender, is not
provided by Facebook’s existing reporting tools. We detail how we achieve that in the following
sections.

3.1 Audience selection
When running ads, we often wish to control exactly which ad auctions we are participating in. For
example, if we are running multiple instances of the same ad (e.g., to establish statistical confidence),
we do not want the instances to be competing against each other. To this end, we use random
PII-based custom audiences, where we randomly select U.S. Facebook users to be included in
mutually-exclusive audiences. By doing so, we can ensure that our ads are only competing against
each other in the cases where we wish them to. We also replicate some of the experiments while
targeting all U.S. users to ensure that the effects do not only exist when custom audiences are
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DMA(s) [58]
# Records (A) # Records (B) # Records (C)

White Black White Black White Black
Wilmington,
Raleigh–Durham 400,000 0 0 400,000 900,002 0

Greenville-Spartanburg,
Greenville-New Bern,
Charlotte, Greensboro

0 400,000 400,000 0 0 892,097

Table 1. Overview of the North Carolina custom audiences used to measure racial delivery. We divide the
most populated DMAs in the state into two sets, and create three audiences each with one race per DMA
set. Audiences A and B are disjoint from each other; audience C contains the voters from A with additional
white voters from the first DMA set and Black voters from the second DMA set. We then use the statistics
Facebook reports about delivery by DMAs to infer delivery by race.

targeted. As we show later in Section 4, we observe equivalent skews in these scenarios, which
leads us to believe that preventing internal competition between our own ads is not crucial to
measure the resulting skews.

Generating custom audiences We create each custom audience by randomly generating 20
lists of 1,000,000 distinct, valid North American phone numbers (+1 XXX XXX XXXX, using known-
valid area codes). Facebook reported that they were able to match approximately 220,000 users on
each of the 20 lists we uploaded.
Initially, we used these custom audiences directly to run ads, but while conducting the experi-

ments we noticed that—even though we specifically target only North American phone numbers—
many ads were delivered to users outside of North America. This could be caused by users traveling
abroad, users registering with fake phone numbers or with online phone number services, or
for other reasons, whose investigation is outside the scope of this paper. Therefore, for all the
experiments where we target custom audiences, we additionally limit them to people located in the
U.S.

3.2 Data collection
Once one of our ad campaigns is run, we use the Facebook Marketing API to obtain the delivery
performance statistics of the ad every two minutes. When we make this request, we ask Facebook
to break down the ad delivery performance according to the attribute of study (age, gender, or
location). Facebook’s response to each query features the following fields, among others, for each
of the demographic attributes that we requested:

• impressions: The number of times the ad was shown
• reach: The number of unique users the ad was shown to
• clicks: The number of clicks the ad has received
• unique_clicks: The number of unique users who clicked

Throughout the rest of the paper, we use the reach value when examining delivery; thus, when
we report “Fraction of men in the audience” we calculate this as the reach of men divided by the
sum of the reach of men and the reach of women (see Section 3.5 for discussion on using binary
values for gender).
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3.3 Measuring racial ad delivery
The Facebook Marketing API allows advertisers to request a breakdown of ad delivery performance
along a number of axes but it does not provide a breakdown based on race. However, for the
purposes of this work, we are able to measure the ad delivery breakdown along racial lines by
using location (Designated Market Area, or DMA6) as a proxy.
Similar to prior work [69], we obtain voter records from North Carolina; these are publicly

available records that have the name, address, race, and often phone number of each registered
voter in the state. We partition the most populated North Carolina DMAs into two sets; for the
exact DMAs, please see Table 1. We ensure that each racial group (white and Black) from a set
of DMAs has a matching number of records of the other group in the other set of DMAs. We
sample three audiences (A, B, and C) that fit these constraints from the voter records and upload as
separate Custom Audiences to Facebook.7 AudiencesA and B are disjoint from each other; audience
C contains the voters from A with additional white voters from the first DMA set and Black voters
from the second DMA set. We create audiences in this way to be able to test both “flipped” versions
of the audiences (A and B), as well as large audiences with as many users as possible (C); we created
audience B as large as possible (exhausting all voters who fit the necessary criteria), and sampled
audience A to match its size. The details of the resulting audiences are shown in Table 1.

When we run ads where we want to examine the ad delivery along racial lines, we run the ads to
one audience (A, B, orC). We then request that Facebook’s Marketing API deliver us results broken
down by DMA. Because we selected DMAs to be a proxy for race, we can use the results to infer
which custom audience they were originally in, allowing us to determine the racial makeup of the
audience who saw (and clicked on) the ad. Note that in experiments that involve measuring racial
skew all ads target the same target audience. The limited number of registered voters does not
allow us to create many large, disjoint custom audiences like we do in other experiments. However,
as we show with ads targeting all U.S. users, internal competition does not appear to influence the
results.

3.4 Ad campaigns
We use the Facebook Ad API described in Section 2.2 to create all ads for our experiments and
to collect data on their delivery. We carefully control for any time-of-day effects that might be
present due to different user demographics using Facebook at different times of the day: for any
given experiment, we run all ads at the same time to ensure that any such effects are experienced
equally by all ads. Unless otherwise noted, we used the following settings:

• Objective: Consideration→Traffic8

• Optimization Goal: Link Clicks
• Traffic destination: An external website (that depends on the ads run)
• Creative: All of our ads had a single image and text relevant to the ad.
• Audience selection: We use custom audiences for many of our ads, as described in Section 3.1,
and further restrict them to adult (18+) users of all genders residing in the United States. For
other ads, we target all U.S. users age 18 or older.

6Designated Market Areas [58] are groups of U.S. counties that Neilson defines as “market areas”; they were originally used
to signify a region where users receive similar broadcast television and radio stations. Facebook reports ad delivery by
location using DMAs, so we use them here as well.
7Unfortunately, Facebook does not report the number of these users who match as we use multiple PII fields in the upload
file [73].
8This target is defined as: Send more people to a destination on or off Facebook such as a website, app, or Messenger
conversation.
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• Budget:We ran most ads with a budget of $20 per day, and stopped them typically after six
hours.

3.5 Measuring and comparing audiences
We now describe the measurements we make during our experiments and how we compute their
confidence intervals.

Binary values of gender and race Facebook’s marketing API reports “female”, “male”, and
“uncategorized” as the possible values for gender. Facebook’s users self-report their gender, and the
available values are “female”, “male”, and “custom”. The latter allows the user to manually type in
their gender (with 60 predefined gender identities suggested through auto-complete functionality)
and select the preferred pronoun from “female - her”, “male - him”, and “neutral - them”. Across
our experiments, we observe that up to 1% of the audiences are reported as “uncategorized” gender.
According to Facebook’s documentation this represents the users who did not not list their gender.9
We do not know whether the “uncategorized” gender also features users with self-reported “custom”
gender. Thus, in this work we only consider the self-reported binary gender values of “female” and
“male”.

Further, when considering racial bias, we use the self-reported information from voter records.
The data we obtained has 7,560,885 individuals, with 93% reporting their race as either Black or
White. Among those, less than 1% report their ethnicity as “Hispanic/Latino”. Thus, in this work,
we only target the individuals with self-reported race of White or Black. However, when running
our experiments measuring race (and targeting specific DMAs), we observe that a fraction (∼10%)
of our ads are delivered to audiences outside of our predefined DMAs, thus making it impossible
for us to infer their race. This fraction remains fairly consistent across our experiments regardless
of what we advertise, thus introducing the same amount of noise across our measurements. This is
not entirely unexpected, as we are targeting users directly, and those users may be traveling, may
have moved, may have outdated information in the voter file, etc.
We do not claim that gender or race are binary, but choose to focus the analysis on users who

self-reported their gender as “female” or “male” and race as “Black” or “White”. This way, we report
the observable skew in delivery only along these axes. We recognize that delivery can be further
skewed with respect to gender of non-binary users and/or users of other races in a way that remains
unreported in this work.

Measuring statistical significance Using the binary race and gender features, throughout
this work, we describe the audiences by the fraction of male users and the fraction of white users.
We calculate the lower and upper limits of the 99% confidence interval around this fraction using
the method recommended by Agresti and Coull [9], defined in Equation 1:

L.L. =
p̂ +

z2α /2
2n − zα/2

√
p̂(1−p̂)

n +
z2α /2
4n2

1 + z2α/2/n
,

U .L. =
p̂ +

z2α /2
2n + zα/2

√
p̂(1−p̂)

n +
z2α /2
4n2

1 + z2α/2/n
,

(1)

where L.L. is the lower confidence limit, U .L. is the upper confidence limit, p̂ is the observed
fraction of the audience with the attribute (here: male), n is the size of the audience reached by the
9https://www.facebook.com/business/help/151999381652364
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ad. To obtain the 99% interval we set zα/2 = 2.576. The advantage of using this calculation instead
of the more frequently used normal approximation

p ± zα/2

√
p̂(1 − p̂)

n
(2)

is that the resulting intervals fall in the (0, 1) range. Whenever the confidence intervals around
these fractions for two audiences are non-overlapping, we can make a claim that the gender or
racial makeups of two audiences are significantly different [17]. However, the converse is not true:
overlapping confidence intervals do not necessarily mean that the means are not different (see
Figure 4 in [17] for explanation). In this work we report all the results of our experiments but for
easier interpretation emphasize those where the confidence intervals are non-overlapping. We
further confirm that the non-overlapping confidence intervals represent statistically significant
differences, using the difference of proportion test as shown in Equation 3:

Z =
(p̂1 − p̂2) − 0√

p̂(1 − p̂)( 1
n1
+ 1

n2
)

(3)

where p̂1 and p̂2 are the fractions of men (white users) in the two audiences that we compare, n1
and n2 are sizes of these audiences, and p̂ is the fraction of men (white users) in the two delivery
audiences combined. All the results we refer to as statistically significant are significant in this test
with a Z -score of at least 2.576. Finally, as we present in the Appendix, the comparisons presented
are statistically significant also after the application of Bonferroni correction [14] for multiple
hypotheses testing.
Note that in experiments where we run multiple instances of an ad targeting disjoint custom

audiences, the values of p̂ and n are calculated from the sums of reached audiences.

4 EXPERIMENTS
In this section, we explore how an advertiser’s choice of ad creative (headline, text, and image) and
ad campaign settings (bidding strategy, targeted audience) can affect the demographics (gender
and race) of the users to whom the ad is ultimately delivered.

4.1 Budget effects on ad delivery
We begin by examining the impact that market effects can have on delivery, aiming to test the
hypothesis put forth by Lambrecht et al. [52]. In particular, they observed that their ads were
predominantly shown to men even though women had consistently higher click through rates
(CTRs). They then hypothesized that the higher CTRs led to women being more expensive to
advertise to, meaning they were more likely to lose auctions for women when compared to auctions
for men.

We test this hypothesis by running the same ad campaign with different budgets; our goal is to
measure the effect that the daily budget alone has on the makeup of users who see the ads. When
running these experiments, we keep the ad creative and targeted audience constant, only changing
the bidding strategy to give Facebook different daily limits (thus, any ad delivery differences can be
attributed to the budget alone). We run an ad with daily budget limits of $1, $2, $5, $10, $20, and
$50, and run multiple instances at each budget limit for statistical confidence. Finally, we run the
experiment twice, once targeting our random phone number custom audiences, and once targeting
all users located in U.S.; we do so to verify that any effect we see is not a function of our particular
target audience, and that it persists also when non-custom audiences are targeted.
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Fig. 2. Gender distributions of the audience depend on the daily budget of an ad, with higher budgets leading
to a higher fraction of women. The left graph shows an experiment where we target all users located in the
U.S.; the right graph shows an experiment where we target our random phone number custom audiences.

Figure 2 presents the results, plotting the daily budget we specify versus the resulting fraction
of men in the audience. The left graph shows the results when we target all users located in the
U.S., and the right graph shows the results when we target the random phone number custom
audiences. In both cases, we observe that changes in ad delivery due to differences in budget are
indeed happening: the higher the daily budget, the smaller the fraction of men in the audience, with
the Pearson’s correlation of ρ = −0.88, pval < 10−5 for all U.S. users and ρ = −0.73, pval < 10−3
for the custom audiences.
The stronger effect we see when targeting all U.S. users may be due to the additional freedom

that the ad delivery system has when choosing who to deliver to, as this is a significantly larger
audience.
To eliminate the impact that market effects can have on delivery in our following experiments,

we ensure that all runs of a given experiment use the same bidding strategy and budget limit.
Typically we use a daily budget of $20 per campaign.

4.2 Ad creative effects on ad delivery
Now we examine the effect that the ad creative (headline, text, and image) can have on ad delivery.
To do so, we create two stereotypical ads that we believe would appeal primarily to men and women,
respectively: one ad focusing on bodybuilding and another on cosmetics. The actual ads themselves
are shown in Figure 1. We run each of the ads at the same time and with the same bidding strategy
and budget. For each variable we target different custom audiences, i.e., the “base” level ads target
one audience, “text” level ads target another, etc. Note that we do not explicitly target either ad based
on gender; the only targeting restrictions we stipulate are 18+ year old users in the U.S.

We observe dramatic differences in ad delivery, even though the bidding strategy is the same for
all ads, and each pair of ads target the same gender-agnostic audience. In particular, the bodybuilding
ad ended up being delivered to over 75% men on average, while the cosmetics ad ended up being
delivered to over 90% women on average. Again, this skewed delivery is despite the fact that we—the
advertiser—did not specify difference in budget or target audience.

Individual components’ impact on ad delivery With the knowledge that the ad creative
can skew delivery, we dig deeper to determine which of the components of the ad creative (headline,
text, and image) have the greatest effect on ad delivery. To do so, we stick with the bodybuilding
and cosmetics ads, and “turn off” various features of the ad creative by replacing them with empty
strings or blank images. For example, the bodybuilding experiment listed as “base” includes an
empty headline, empty ad text, and a blank white image; it does however link to the domain
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Fig. 3. “Base” ad contains a link to a page about either bodybuilding or cosmetics, a blank image, no text, or
headline. There is a small difference in the fraction of male users for the base ads, and adding the “text” only
decreases it. Setting the “headline” sets the two ads apart but the audience of each is still not significantly
different than that of the base version. Finally, setting the ad “image” causes drastic changes: the bodybuilding
ad is shown to a 91% male audience, the cosmetics ad is shown to a 5% male audience, despite the same
target audience.

bodybuilding.com. Similarly, the cosmetics experiment listed as “base” includes no headline, text,
or image, but does link to the domain elle.com. We then add back various parts of the ad creative,
as shown in Figure 1.
The results of this experiment are presented in Figure 3. Error bars in the figure correspond to

99% confidence intervals as defined in Equation 1. All results are shown relative to that experiment’s
“base” ad containing only the destination URL. We make a number of observations. First, we can
observe an ad delivery difference due to the destination URL itself; the base bodybuilding ad delivers
to 48% men, while the base cosmetics ad delivers to 40% men. Second, as we add back the title and
the headline, the ad delivery does not appreciably change from the baseline. However, once we
introduce the image into the ad, the delivery changes dramatically, returning to the level of skewed
delivery discussed above (over 75% male for bodybuilding, and over 90% female for cosmetics).
When we add the text and/or the headline back alongside the image, the skew of delivery does not
change significantly compared to the presence of image only. Overall, our results demonstrate that
the choice of ad image can have a dramatic effect on which users in the audience ultimately are
shown the ad.

Swapping images To further explore how the choice of image impacts ad delivery, we continue
using the bodybuilding and cosmetics ads, and test how ads with incongruent images and text
are delivered. Specifically, we swap the images between the two ads, running an ad with the
bodybuilding headline, text, and destination link, but with the image from cosmetics (and vice
versa). We also run the original ads (with congruent images and text) for comparison.

The results of this experiment are presented in Figure 4, showing the skew in delivery of the ads
over time. The color of the lines indicates the image that is shown in the ad; solid lines represent the
delivery of ads with images consistent with the description, while dotted lines show the delivery
for ads where image was replaced. We make a number of observations. First, when using congruent
ad text and image (solid lines), we observe the skew we observed before. However, we can now
see clearly that this delivery skew appears to exist from the very beginning of the ad delivery,
i.e., before users begin viewing and interacting with our ads. We will explore this further in the
following section. Second, we see that when we switch the images—resulting in incongruent ads
(dotted lines)—the skew still exists but to a lesser degree. Notably, we observe that the ad with an
image of bodybuilding but cosmetics text delivers closest to 50:50 across genders, but the ad with
the image of cosmetics but bodybuilding text does not. The exact mechanism by which Facebook
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Fig. 4. Ad delivery of original bodybuilding and cosmetics ads, as well as the same ads with incongruent
images. Skew in delivery is observed from the beginning. Using incongruent images skews the delivery to a
lesser degree, indicating that the image is not the only element of the ad that drives the skew in delivery.

decides to use the ad text and images in influencing ad delivery is unknown, and we leave a full
exploration to future work.

Swapping images mid-experiment Facebook allows advertisers to change their ad while it
is running, for example, to update the image or text. As a final point of analysis, we examine how
changing the ad creative mid-experiment—after it has started running—affects ad delivery. To do
so, we begin the experiment with the original congruent bodybuilding and cosmetics ads; we let
these run for over six hours. We then swap the images on the running ads, thereby making the ads
incongruent, and examine how ad delivery changes.
Figure 5 presents the results of this experiment. In the top graph, we show the instantaneous

ad delivery skew: as expected, the congruent ads start to deliver in a skewed manner as we have
previously seen. After the image swap at six hours, we notice a very rapid change in delivery with
the ads almost completely flipping in ad delivery skew in a short period of time. Interestingly, we
do not observe a significant change in users’ behavior to explain this swap: the bottom graph plots
the click through rates (CTRs) for both ads by men and women over time. Thus, our results suggest
that the change in ad delivery skew is unlikely to be due to the users’ responses to the ads.

4.3 Source of ad delivery skew
We just observed that ads see a significant skew in ad delivery due to the contents of the ad, despite
the bidding strategy and targeting parameters being held constant. However, we observed that the
ad delivery skew was present from the very beginning of ad delivery, and that swapping the image
in the middle of a run resulted in a very rapid change in ad delivery that could not be explained by
how frequently users click on our ads. We now turn to explore the mechanism that may be leading
to this ad delivery skew.

Almost-transparent images We beginwith the hypothesis that Facebook itself is automatically
classifying the ad creative (including the image), and using the output of this classification to
calculate a predicted relevance score to users. In other words, we hypothesize that Facebook
is running automatic text and image classification, rather than (say) relying on the ad’s initial
performance, which would explain (a) the delivery skew being present from the beginning of ad
delivery, and (b) how the delivery changes rapidly despite no significant observable change in user
behavior. However, validating this hypothesis is tricky, as we are not privy to all of Facebook’s ad
performance data.

To test this hypothesis, we take an alternate approach. We use the alpha channel that is present
in many modern image formats; this is an additional channel that allows the image to encode the
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Fig. 5. When we flip the image in the middle of the campaign, the ad is reclassified and shown to an updated
audience. Here, we start bodybuilding and cosmetics ads with corresponding descriptions and after 6 hours
and 32 minutes we flip the images. Within an hour of the change, the gender proportions are reversed, while
there is no significant difference between the click through rates per gender pre and post flipping of the
images.

transparency of each pixel. Thus, if we take an image and add an alpha channel with (say) 99%
opacity, all of the image data will still be present in the image, but any human who views the image
would not be able to see it (as the image would show almost completely transparent). However, if
an automatic classifier exists, and if that classifier is not properly programmed to handle the alpha
channel, it may continue to classify the image.

Test images To test our hypothesis, we select five images that would stereotypically be of
interest to men and five images that would stereotypically be of interest to women; these are shown
in the second and fourth columns of Table 2.10, 11 We convert them to PNG format add an alpha
channel with 98% opacity12 to each of these images; these are shown in the third and fifth columns
of Table 2. Because we cannot render a transparent image without a background, the versions in
the paper are rendered on top of a white background. As the reader can see, these images are not
discernible to the human eye.

We first ran a series of tests to observe how Facebook’s ad creation phase handled us uploading
such transparent images. If we used Reach as our ad objective, we found that Facebook “flattened”
10All of these images were cropped from images posted to pexels.com, which allow free non-commercial use.
11We cropped these images to the Facebook-recommended resolution of 1,080×1,080 pixels to reduce the probability
Facebook would resample the image.
12We were unable to use 100% transparency as we found that Facebook would run an image hash over the uploaded images
and would detect different images with 100% opacity to be the same (and would refuse to upload it again). By using 98%
transparency, we ensure that the images were still almost invisible to humans but that Facebook would not detect they
were the same image.
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Masculine Feminine
No. Visible Invisible Visible Invisible

1

2

3

4

5

Table 2. Diagram of the images used in the transparency experiments. Shown are the five stereotypical
masculine and feminine images, along with the same images with a 98% alpha channel, denoted as invisible.
The images with the alpha channel are almost invisible to humans, but are still delivered in a skewed manner.

these images onto a white background in the ad preview.13 By targeting ourselves with these
Reach ads, we verified that when they were shown to users on the Facebook mobile app or in the
desktop Facebook web feed, the images did indeed show up as white squares. Thus, we can use this
methodology to test whether there is an automatic image classifier present by examining whether
running different transparent white ads results in different delivery.

Results We run ads with all twenty of the images in Table 2, alongside ads with five truly blank
white images for comparison. For all 25 of these ads, we hold the ad headline, text, and destination
link constant, run them all at the same time, and use the same bidding strategy and target custom
audiences in a way that each user is potentially exposed to up to three ads (one masculine image,
one feminine image, and one blank image). We then record the differences in ad delivery of these
25 images along gender lines. The results are presented in Figure 6A, with all five images in each of
the five groups aggregated together. We can observe that ad delivery is, in fact, skewed, with the
ads with stereotypically masculine images delivering to over 43% men and the ads with feminine
images delivering to 39% men in the experiment targeting custom audiences as well as 58% and
44% respectively in the experiment targeting all U.S. users. Error bars in the plot correspond to the
99% confidence interval calculated using Equation 1.

13Interestingly, we found that if we instead used Traffic as our ad objective, Facebook would both “flatten” these images
onto a white background and then normalize the contrast. This caused the ads to be visible to humans—simply with less
detail that the original ads—thus defeating the experiment. We are unsure of why Facebook did not choose to normalize
images with the objective for Reach.
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0.4 0.5 0.6
Fraction of men in the audience

female
visible

female
invisible

blank

male
invisble

male
visible

Custom Audiences

A

0.4 0.5 0.6

All U.S. Users

B

Fig. 6. Fraction of reached men in the audiences for ads with the images from Table 2, targeting random
phone number custom audience (A) and US audience (B). The solid markers are visible images, and the hollow
markers are the same images with 98% opacity. Also shown is the delivery to truly white images (“blank”). We
can observe that a difference in ad delivery exists, and that that difference is statistically significant between
the masculine and feminine invisible images. This suggests that automated image classification is taking
place.

Interestingly, we also observe that the masculine invisible ads appear to be indistinguishable in
the gender breakdown of their delivery from the masculine visible ads, and the feminine invisible
ads appear to be indistinguishable in their delivery from the feminine visible ads.
As shown in Figure 6A, we verify that the fraction of men in the delivery of the male ads is

significantly higher than in female-centered and neutral ads, as well as higher in neutral ads than
in female-centered ads. We also show that we cannot reject the null hypothesis that the fraction
of men in the two versions of each ad (one visible, one invisible) are the same. Thus, we can
conclude that the difference in ad delivery of our invisible male and female images is statistically
significant, despite the fact that humans would not be able to perceive any differences in these
ads. This strongly suggests that our hypothesis is correct: that Facebook has an automated image
classification mechanism in place that is used to steer different ads towards different subsets of the
user population.14

To confirm this finding, we re-run the same experiment except that we change the target audience
from our random phone number custom audiences (hundreds of thousands of users) to all U.S. users
(over 320 million users). Our theory is that if we give Facebook’s algorithm a larger set of auctions
to compete in, any effect of skewed delivery would be amplified as they may be able to find more
users for whom the ad is highly “relevant”. In Figure 6B we observe that the ad delivery differences
are, indeed, even greater: the male visible and invisible images deliver to approximately 60% men,
while the female visible and invisible images deliver to approximately 45% men. Moreover, the
statistical significance of this experiment is even stronger, with a Z value over 10 for the ad delivery
difference between the male invisible and female invisible ads.

4.4 Impact on real ads
We have observed that differences in the ad headline, text, and image can lead to dramatic difference
in ad delivery, despite the bidding strategy and target audience of the advertiser remaining the
same. However, all of our experiments thus far were on test ads where we typically changed only

14It is important to note we not know exactly how the classification works. For example, the classifier may also be
programmed to take in the “flattened” images that appear almost white, but there may sufficient data present in the images
for the classification to work. We leave a full exploration of how exactly the classifier is implemented to future work.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Estimated fraction of white users in the audience

Hip-hop

Country

Top 30

Fig. 7. We run three campaigns about the best selling albums. Top 30 is neutral, targeting all. Country
implicitly targets white users, and Hip-hop implicitly targets Black users. Facebook classification picks up on
the implicit targeting and shows it to the audience we would expect.

a single variable. We now turn to examine the impact that ad delivery can have on realistic ads,
where all properties of the ad creative can vary.

Entertainment ads We begin by constructing a series of benign entertainment ads that, while
holding targeting parameters fixed (targeting custom audience C from Table 1, are stereotypically
of interest to different races. Namely, we run three ads leading to lists of best albums in the previous
year: general top 30 (neutral), top country music (stereotypically of interest mostly to white users),
and top hip-hop albums (stereotypically of interest mostly to Black users). We find that Facebook
ad delivery follows the stereotypical distribution, despite all ads being targeted in the same manner
and using the same bidding strategy. Figure 7 shows the fraction of white users in the audience in
the three different ads, treating race as a binary (Black users constitute the remaining fraction).
Error bars represent 99% confidence intervals calculated using Equation 1.

Neutral ads are seen by a relatively balanced, 45% white audience, while the audiences receiving
the country and hip-hop ads are 80% and 13% white, respectively. Assuming significant population
level differences of preferences, it can be argued that this experiment highlights the “relevance”
measures embedded in ad delivery working as intended. Next, we investigate cases where such
differences may not be desired.

Employment ads Next, we advertise eleven different generic job types: artificial intelligence
developer, doctor, janitor, lawyer, lumberjack, nurse, preschool teacher, restaurant cashier, secretary,
supermarket clerk, and taxi driver. For each ad, we customize the text, headline, and image as a
real employment ad would. For example, we advertise for taxi drivers with the text “Begin your
career as a taxi driver or a chauffeur and get people to places on time.” For each ad, we link users to
the appropriate category of job listings on a real-world job site.

When selecting the ad image for each job type, we select five different stock photo images: one
that has a white male, one that has a white female, one that has a black male, one that has a black
female, and one that is appropriate for the job type but has no people in it. We run each of these
five independently to test a representative set of ads for each job type, looking to see how they
are delivered along gender and racial lines (targeting custom audience C from Table 1). We run
these ads for 24 hours, using the objective of Traffic, all targeting the same audience with the same
bidding strategy.

The results of this experiment are presented in Figure 8, plotting the distribution of each of our
ads along gender (left graph) and racial (right graph) lines. As before, the error bars represent the
99% confidence interval calculated using Eq. 1. We can immediately observe drastic differences
in ad delivery across our ads along both racial and gender lines: our five ads for positions in the
lumber industry deliver to over 90% men and to over 70% white users in aggregate, while our five
ads for janitors deliver to over 65% women and over 75% black users in aggregate. Recall that the
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Fig. 8. Results for employment ads, showing a breakdown of ad delivery by gender (left figure) and race
(right figure) in the ultimate delivery audience. The labels refer to the race/gender of the person in the ad
image (if any). The jobs themselves are ordered by the average fraction of men or white users in the audience.
Despite the same bidding strategy, the same target audience, and being run at the same time, we observe
significant skew along on both racial and gender lines due to the content of the ad alone.

only difference between these ads are the ad creative and destination link; we (the advertiser) used
the same bidding strategy and target audience, and ran all ads at the same time.

Furthermore, we note that the skew in delivery cannot merely be explained by possibly different
levels of competition from other advertisers for white and Black users or for male and female users.
Although it is the case that each user may be targeted by a different number of advertisers with
varying bid levels, by virtue of running all of our job ads at the same time, targeting the same
users, with the same budget, we are ensuring that our ads are experiencing competition from other
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Fig. 9. Results for housing ads, showing a breakdown in the ad delivery audience by race. Despite being
targeted in the same manner, using the same bidding strategy, and being run at the same time, we observe
significant skew in the makeup of the audience to whom the ad is delivered (ranging from estimated 27%
white users for luxury rental ads to 49% for cheap house purchase ads).

advertisers identically. In other words, our ad targeting asks that every user who is considered for
our “lumberjack” job ad should also be considered for our taxi driver job ad, so these ads should
be competing with each other and facing identical competition from other advertisers at auction
time. If the content of the ad was not taken into account by the delivery optimization system, then
the ads would be expected to have similar—though not necessarily even—breakdowns by race and
gender at delivery. Our experiment demonstrates that this is not the case, and thus, aspects of ad
delivery optimization, rather than merely advertiser competition, influence the skew in the delivery
outcome.

Housing ads Finally, we create a suite of ads that advertise a variety of housing opportunities,
as discrimination in online housing ads has recently been a source of concern [32]. We vary the
type of property advertised (rental vs. purchase) and the implied cost (fixer-upper vs. luxury). In
each ad, the cost is implied through wording of the ad as well as the accompanying image. Each
ad points to a listing of houses for sale or rental apartments in North Carolina on a real-world
housing site. Simultaneously, we ran a baseline ad with generic (non-housing) text that simply
links to google.com. All of the ads ran for 12 hours, using the objective of Traffic, all targeting the
same North Carolina audiences and using the same bidding strategy. We construct the experiment
such that each particular ad is run twice: once targeting audience A and once targeting audience
B (see Table 1) This way we eliminate any potential geographical effects (for example, users in
Wilmington could be interested in cheap houses to buy, and users in Charlotte could be interested
in luxury rentals regardless of their ethnicity, but if we only used audience C that effect could
appear as racial skew).
We present the results in Figure 9 (we found little skew for the housing ads along gender lines,

and we omit those results). We observe significant ad delivery skew along racial lines in the delivery
of our ads, with certain ads delivering to an audience of over 72% Black users (comparable to the
baseline results) while others delivering to an audience of as little as 51% Black users.

As with the employment ads, we cannot make claims about what particular properties of our ads
lead to this skew, or about how housing ads in general are delivered. However, given the significant
skew we observe with our suite of ads, it indicates the further study is needed to understand how
real-world housing ads are delivered.
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5 CONCLUDING DISCUSSION
To date, the public debate and ad platform’s comments about discrimination in digital advertising
have focused heavily on the targeting features offered by advertising platforms, and the ways that
advertisers can misuse those features [23].
In this paper, we set out to investigate a different question: to what degree and by what means

may advertising platforms themselves play a role in creating discriminatory outcomes?
Our study offers an improved understanding of the mechanisms behind and impact of ad delivery,

a process distinct from ad creation and targeting. While ad targeting is facilitated by an advertising
platform—but nominally controlled by advertisers—ad delivery is conducted and controlled by
the advertising platform itself. We demonstrate that, during the ad delivery phase, advertising
platforms can play an independent, central role in creating skewed, and potentially discriminatory,
outcomes. More concretely, we have:

• Replicated and affirmed prior research suggesting that market and pricing dynamics can
create conditions that lead to differential outcomes, by showing that the lower the daily
budget for an ad, the fewer women it is delivered to.

• Shown that Facebook’s ad delivery process can significantly alter the audience the ad is
delivered to compared to the one intended by the advertiser based on the content of the ad
itself. We used public voter record data to demonstrate that broadly and inclusively targeted
ads can end up being differentially delivered to specific audience segments, even when we
hold the budget and target audience constant.

• Demonstrated that skewed ad delivery can start at the beginning of an ad’s run. We also
showed that this process is likely automated on Facebook’s side, and is not a reflection of the
early feedback received from users in response to the ad, by using transparent images in ads
that appear the same to humans but are distinguishable by automatic image classification
tools, and showing they result in skewed delivery.

• Confirmed that skewed delivery can take place on real-world ads for housing and employment
opportunities by running a series of employment ads and housing ads with the same targeting
parameters and bidding strategy. Despite differing only in the ad creative and destination
link, we observed skewed delivery along racial and gender lines.

We briefly discuss some limitations of our work and touch on the broader implications of our
findings.

Limitations It is important to note that while we have revealed certain aspects of how ad
delivery is accomplished, and the effects it had on our experimental ad campaigns, we cannot make
broad conclusions about how it impacts ads more generally. For example, we observe that all of our
ads for lumberjacks deliver to an audience of primarily white and male users, but that may not
hold true of all ads for lumberjacks. However, the significant ad delivery skew that we observe for
our employment and housing ads strongly suggests that such skew is present for such ads run by
real-world advertisers.

Skew vs. discrimination Throughout this paper we refer to differences in the demographics
of reached audience as “skew” in delivery. We do not claim any observed skew per se is necessarily
wrong or should be mitigated. Without making value judgements on skew in general, we do
emphasize the distinct case of ads for housing and employment. In particular, the skew we observe
in the delivery of ads for cosmetics or bodybuilding might be interpreted as reinforcing gender
stereotypes but is unlikely to have legal implications. On the other hand, the skew in delivery of
employment and housing ads is potentially discriminatory in a legal sense.
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Further, for the experiments involving ethnicity, we attempted to create equally sized audiences
(50% white and 50% Black). However, solely the fact that ads are not delivered to an evenly split
audience does not indicate skew, as there might be differences in matching rates (what fraction
of registered voters are active Facebook users) per ethnicity, or the groups could have different
temporal usage patterns. Only when we run two or more ads at the same time, targeting the same
audience, and these ads are delivered with different proportions to white and Black users, do we
claim we observe skew in delivery.
Our focus lies in understanding the extent to which the ad platform’s delivery optimization,

rather than merely its targeting tools and their use as implied by Facebook [23], determine the
outcomes of ad delivery, and on highlighting that demographic skews presently arise for certain
legally protected categories in Facebook, even when the advertiser targets broadly and inclusively.

Skew in traditional media Showing ads to individuals most likely to engage with them is one
of the cornerstone promises of online ad platforms. While in traditional media—such as newspapers
and television—advertisers can also place their ads strategically to reach particular kinds of readers
or viewers, there are three significant differences with implications for fairness and discrimination
when compared to advertising on Facebook.

First, when advertising in traditional media, the advertiser has the ability to purposefully advertise
to a wide and diverse audience, and be assured that their ads will reach that audience. As we show
in this work, this is not the case for advertising on Facebook. Even if the advertiser intends to
reach a general and diverse audience, their ad can be steered to a narrow slice within that specified
audience, that is skewed in unexpected or undesirable ways.
Second, the individual’s agency to see ads targeted at groups they do not belong to is more

severely limited in the hyper-targeted and delivery-optimized scenario of online ad platforms. In
traditional media, an individual interested in seeing ads targeted to a different demographic than
they belong to has to merely watch programming or read a newspaper that they are not usually a
target demographic for. On Facebook, finding out what ads one may be missing out on due to gender,
race, or other characteristic inferred or predicted by Facebook is more challenging. A particularly
motivated user could change their self-reported gender but might find themselves discouraged
from doing so because the account’s gender information is always public. Other characteristics,
such as race and net worth, are inferred by Facebook (or accessed via third-party companies [76])
rather than obtained through user’s self-reported data, which makes them challenging to alter for
the purposes of seeing ads. Moreover, although users can remove some of their inferred interests
using ad controls on Facebook, they have no ability to control negative inferences Facebook may
be making about them. For example, Facebook may infer that a particular user is “not interested
in working at a lumber yard”, and therefore, not show this user ads for a lumberjack job even if
the employer is trying to reach them. As a result, Facebook would be excluding them from an
opportunity in ways unbeknownst to the user and to the advertiser.
Third, public interest scrutiny of the results of advertising is much more difficult in online

delivery-optimized systems than in traditional media. Advertising in traditional media can be easily
observed and analyzed by many members of society, from individuals to journalists, and targeting
and delivery outside the expectation norms can be detected and called out by many. In the case of
hyper-targeted online advertising whose delivery is controlled by the platform, such scrutiny is
currently outside reach for most ads [36, 57].

Policy implications Our findings underscore the need for policymakers and platforms to
carefully consider the role of the optimizations run by the platforms themselves—and not just the
targeting choices of advertisers—in seeking to prevent discrimination in digital advertising.
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First, because discrimination can arise in ad delivery independently from ad targeting, limitations
on ad targeting—such as those currently deployed by Facebook to limit the targeting features that
can be used—will not address discrimination arising from ad delivery. On the contrary, to the
extent limiting ad targeting features prompts advertisers to rely on larger target audiences, the
mechanisms of ad delivery will have an even greater practical impact on the ads that users see.
Second, regulators, lawmakers, and platforms themselves will need to more deeply consider

whether and how longstanding civil rights laws apply to modern advertising platforms in light of
ad delivery dynamics. At a high level, U.S. federal law prohibits discrimination in the marketing of
housing, employment and credit opportunities. A detailed consideration of these legal regimes is
beyond the scope of this paper. However, our findings show that ad platforms themselves can shape
access to information about important life opportunities in ways that might present a challenge to
equal opportunity goals.
Third, in the U.S., Section 230 of the Communications Decency Act (CDA) provides broad legal

immunity for internet platforms acting as publishers of third-party content. This immunity was a
central issue in recently-settled litigation against Facebook, who argued its ad platform should be
protected by CDA Section 230 in part because its advertisers are “wholly responsible for deciding
where, how, and when to publish their ads.” [35] Our research shows that this claim is misleading,
particularly in light of Facebook’s role in determining the ad delivery outcomes. Even absent
unlawful behavior by advertisers, our research demonstrates that Facebook’s own, independent
actions during the delivery phase are crucial to determining how, when, and to whom ads are
shown, and might produce unlawful outcomes. These effects can be invisible to, and might even
create liability for, Facebook’s advertisers.

Thus, the effects we observed could introduce new liability for Facebook. In determining whether
Section 230 protections apply, courts consider whether an internet platform “materially contributes”
to the alleged illegal conduct. Courts have yet to squarely consider how the delivery mechanisms
described in this paper might affect an ad platform’s immunity under Section 230.
Fourth, our results emphasize the need for increased transparency into advertising platforms,

particularly around ad delivery algorithms and statistics for real-world housing, credit, or employ-
ment ads. Facebook’s existing ad transparency efforts are not yet sufficient to allow researchers to
analyze the impact of ad delivery in the real world.

Potential mitigations Given the potential impact that discriminatory ad delivery can have
on exposure to opportunities available to different populations, a natural question is how ad
platforms such as Facebook may mitigate these effects. This is not straightforward, and is likely to
require increased commitment and transparency from ad platforms as well as development of new
algorithmic and machine learning techniques. For instance, as we have demonstrated empirically
in Section 4.1 (and as [25] have shown theoretically), skewed ad delivery can occur even if the ad
platform refrains from refining the audience supplied by the advertisers according to the predicted
relevance of the ad to individual users. This happens because different users are valued differently
by advertisers, which, in a setting of limited user attention, leads to a tension between providing a
useful service for users and advertisers, fair ad delivery, and the platform’s own revenue goals.15

Thus, more advanced and nuanced approaches to addressing the potential issues of discrimination
in digital advertising are necessary. Developing them is beyond the scope of this paper; however,
we can imagine several different options, each with their own pros and cons. First, Facebook and
similar platforms could disable optimization altogether for some ads, and deliver them to a random
sample of users within an advertiser’s target audience (with or without market considerations).
15A formal statement of this claim for the theoretical notions of individual fairness [24] and its generalization, preference-
informed fairness, can be found in [49].
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Second, platforms could remove ads in protected categories from their normal ad flows altogether,
and provide those listings in a separate kind of marketing product (e.g., , a user-directed listing
service like craigslist.org). Third, the platforms could allow the advertisers to enforce their
own demographic outcomes so long as those desired outcomes don’t themselves violate anti-
discrimination laws. Finally, the platforms could seek to constrain their delivery optimization
algorithms to satisfy chosen fairness criteria (some candidates for such criteria from the theoretical
computer science community are individual fairness [24] and preference-informed fairness [49],
but a broader discussion of appropriate criteria involving policymakers is needed).
Digital advertising increasingly influences how people are exposed to the world and its oppor-

tunities, and helps keep online services free of monetary cost. At the same time, its potential for
negative impacts, through optimization due to ad delivery, is growing. Lawmakers, regulators, and
the ad platforms themselves need to address these issues head-on.
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APPENDIX

Multiple hypotheses testing. In the experiment described in the main paper we ran ads for 11
different job postings, each with five variations of the accompanying image. Here, we confirm that
the apparent differences are not an effect of testing multiple hypotheses. We do so by aggregating
the five variants for each ad and comparing the fraction of men and the estimated fraction of white
users between each for pairs of jobs. This results in 55 tests, so rather than using the Z value
corresponding to pval = 0.01, we use the Bonferroni correction [14], a statistical technique used
to address the problem of making multiple comparisons. In Figure 10 we show that the majority
of comparisons remain statistically significant, each at the Z value corresponding to corrected
pval =

0.01
55 ≈ 0.0002.
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Fig. 10. The demographic differences in ad delivery both in terms of gender and race are statistically significant
after introducing Bonferroni correction with N tests of 55. Green squares mark statistically significant
differences, red squares indicate insignificant differences.
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THE INTUITIVE APPEAL 
OF EXPLAINABLE MACHINES 

Andrew D. Selbst* & Solon Barocas** 
 
Algorithmic decision-making has become synonymous with inexplicable 

decision-making, but what makes algorithms so difficult to explain?  This 
Article examines what sets machine learning apart from other ways of 
developing rules for decision-making and the problem these properties pose 
for explanation.  We show that machine learning models can be both 
inscrutable and nonintuitive and that these are related, but distinct, 
properties. 

Calls for explanation have treated these problems as one and the same, 
but disentangling the two reveals that they demand very different responses.  
Dealing with inscrutability requires providing a sensible description of the 
rules; addressing nonintuitiveness requires providing a satisfying 
explanation for why the rules are what they are.  Existing laws like the Fair 
Credit Reporting Act (FCRA), the Equal Credit Opportunity Act (ECOA), 
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and the General Data Protection Regulation (GDPR), as well as techniques 
within machine learning, are focused almost entirely on the problem of 
inscrutability.  While such techniques could allow a machine learning system 
to comply with existing law, doing so may not help if the goal is to assess 
whether the basis for decision-making is normatively defensible. 

In most cases, intuition serves as the unacknowledged bridge between a 
descriptive account and a normative evaluation.  But because machine 
learning is often valued for its ability to uncover statistical relationships that 
defy intuition, relying on intuition is not a satisfying approach.  This Article 
thus argues for other mechanisms for normative evaluation.  To know why 
the rules are what they are, one must seek explanations of the process behind 
a model’s development, not just explanations of the model itself. 
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There can be no total understanding and no absolutely reliable test of 
understanding. 

—Joseph Weizenbaum, “Contextual Understanding by Computers”1 
 

INTRODUCTION 

Algorithms increasingly inform consequential decisions about our lives, 
with only minimal input from the people they affect and little to no 
explanation as to how they work.2  This worries people, and rightly so.  The 
results of these algorithms can be unnerving,3 unfair,4 unsafe,5 
unpredictable,6 and unaccountable.7  How can decision makers who use 
algorithms be held to account for their results? 

It is perhaps unsurprising that, faced with a world increasingly dominated 
by automated decision-making, advocates, policymakers, and legal scholars 
would call for machines that can explain themselves.8  People have a natural 

 

 1. 10 COMM. ACM 474, 476 (1967).  In the 1960s, the project of artificial intelligence 
(AI) was largely to mimic human intelligence.  Weizenbaum was therefore actually arguing 
that computers will never fully understand humans.  The purpose of AI research has changed 
drastically today, but there is a nice symmetry in the point that humans will never have total 
understanding of computers. 
 2. Aaron M. Bornstein, Is Artificial Intelligence Permanently Inscrutable?, NAUTILUS 
(Sept. 1, 2016), http://nautil.us/issue/40/learning/is-artificial-intelligence-permanently-
inscrutable [http://perma.cc/RW3E-5CPV]; Will Knight, The Dark Secret at the Heart of AI, 
MIT TECH. REV. (Apr. 11, 2017), https://www.technologyreview.com/s/604087/the-dark-
secret-at-the-heart-of-ai/ [http://perma.cc/7VYF-5XR7]; Cliff Kuang, Can A.I. Be Taught to 
Explain Itself?, N.Y. TIMES (Nov. 21, 2017), https://www.nytimes.com/2017/11/21/magazine/ 
can-ai-be-taught-to-explain-itself.html [http://perma.cc/3CYF-QTVC]. 
 3. See, e.g., Omer Tene & Jules Polonetsky, A Theory of Creepy:  Technology, Privacy, 
and Shifting Social Norms, 16 YALE J.L. & TECH. 59, 65–66 (2013); Sara M. Watson, Data 
Doppelgängers and the Uncanny Valley of Personalization, ATLANTIC (June 16, 2014), 
https://www.theatlantic.com/technology/archive/2014/06/data-doppelgangers-and-the-
uncanny-valley-of-personalization/372780/ [http://perma.cc/7J3X-NK3C]. 
 4. See, e.g., Solon Barocas & Andrew D. Selbst, Big Data’s Disparate Impact, 104 
CALIF. L. REV. 671, 677–92 (2016); Pauline T. Kim, Data-Driven Discrimination at Work, 58 
WM. & MARY L. REV. 857, 883–89 (2017); Andrew D. Selbst, Disparate Impact in Big Data 
Policing, 52 GA. L. REV. 109, 126–39 (2017). 
 5. See, e.g., David Lazer et al., The Parable of Google Flu:  Traps in Big Data Analysis, 
343 SCIENCE 1203, 1203 (2014); Jennings Brown, IBM Watson Reportedly Recommended 
Cancer Treatments That Were ‘Unsafe and Incorrect,’ GIZMODO (July 25, 2018, 3:00 PM), 
https://gizmodo.com/ibm-watson-reportedly-recommended-cancer-treatments-tha-
1827868882 [http://perma.cc/E4RZ-NVZU]. 
 6. See, e.g., Curtis E. A. Karnow, The Application of Traditional Tort Theory to 
Embodied Machine Intelligence, in ROBOT LAW 51, 57–58 (Ryan Calo, A. Michael Froomkin 
& Ian Kerr eds., 2016) (discussing unpredictability in autonomous systems); Jamie Condliffe, 
Algorithms Probably Caused a Flash Crash of the British Pound, MIT TECH. REV. (Oct. 7, 
2016), https://www.technologyreview.com/s/602586/algorithms-probably-caused-a-flash-
crash-of-the-british-pound/ [https://perma.cc/K9FM-6SJE]. 
 7. See, e.g., Danielle Keats Citron & Frank Pasquale, The Scored Society:  Due Process 
for Automated Predictions, 89 WASH. L. REV. 1, 18–27 (2014); Joshua A. Kroll et al., 
Accountable Algorithms, 165 U. PA. L. REV. 633, 636–37 (2017). 
 8. See infra Part II. 
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feel for explanation.  We know how to offer explanations and can often agree 
when one is good, bad, in-between, on point, or off topic.  Lawyers use 
explanation as their primary tradecraft:  judges write opinions, administrators 
respond to comments, litigators write briefs, and everyone writes memos.  
Explanations are the difference between a system that vests authority in 
lawful process and one that vests it in an unaccountable person.9 

Although we comfortably use explanations, asking someone to define the 
concept will often generate a blank look in response.  Analytically, 
explanation is infinitely variable, and there can be many valid explanations 
for a given phenomenon or decision.  Thus far, in both law and machine 
learning, the scholarly discourse around explanation has primarily revolved 
around two questions:  Which kinds of explanations are most useful, and 
which are technically available?10  Yet, these are the wrong questions or, at 
least, the wrong stopping points. 

Explanations of technical systems are necessary but not sufficient to 
achieve law and policy goals, most of which are concerned not with 
explanation for its own sake, but with ensuring that there is a way to evaluate 
the basis of decision-making against broader normative constraints such as 
antidiscrimination or due process.  It is therefore important to ask how 
exactly people engage with those machine explanations in order to connect 
them to the normative questions of interest to law. 

This Article argues that scholars and advocates who seek to use 
explanation to enable justification of machine learning models are relying on 
intuition to connect the explanation to normative concerns.  Intuition is both 
powerful and dangerous.  While this mode of justifying decision-making 
remains important, we must understand the benefits and weaknesses of 
connecting machine explanation to intuitions.  Remedying the limitations of 
intuition requires considering alternatives, which include institutional 
processes, documentation, and access to those documents. 

This Article proceeds in four parts.  Part I examines the various anxieties 
surrounding the use of automated decision-making.  After discussing 
secrecy, lack of transparency, and lack of technical expertise, Part I argues 
that the two distinct, but similar, concepts that truly set machine learning 
decision-making apart are inscrutability and nonintuitiveness. 

Part II examines laws and machine learning techniques designed 
specifically to address the problem of inscrutable decisions.  On the legal 
side, Part II.A discusses the “adverse action notices” required by federal 
credit laws11 and the informational requirements of the European Union’s 
General Data Protection Regulation (GDPR).12  On the technical side, Part 
 

 9. See Frederick Schauer, Giving Reasons, 47 STAN. L. REV. 633, 636–37 (1995). 
 10. See infra Part III. 
 11. This Article will focus on the Fair Credit Reporting Act, 15 U.S.C. §§ 1681–1681x, 
and Equal Credit Opportunity Act, 15 U.S.C. §§ 1691–1691f. 
 12. Regulation 2016/679 of the European Parliament and of the Council of 27 April 2016 
on the Protection of Natural Persons with Regard to the Processing of Personal Data and on 
the Free Movement of Such Data, and Repealing Directive 95/46/EC, 2016 O.J. (L 119) 1 
(EU) [hereinafter GDPR]. 
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II.B discusses various techniques used by computer scientists to make 
machine learning models interpretable, including designing for simplicity, 
approximating complex models in simpler form, extracting the most 
important factors in a particular decision, and allowing some degree of 
interaction with the models to see how changes in inputs affect outputs.  
These techniques can be useful in meeting the requirements of the law, but 
such explanations, even when they comply with the law, may be of limited 
practical utility. 

Part III builds the connection between explanation and intuition before 
evaluating the merits of an intuition-centered approach to justification.  It 
canvasses reasons besides justification that one might want explainable 
machines—dignity or autonomy on the one hand and consumer or data-
subject education on the other—before concluding that neither is adequate to 
fully address the concerns with automated decision-making.  Interrogating 
the assumptions behind a third reason—that explanation will reveal problems 
with the basis for decision-making—demonstrates the reliance on intuition.  
The remainder of Part III examines the value and limitations of intuition.  
With respect to machine learning in particular, although intuition can root 
out obviously good or bad cases, it cannot capture the cases that give machine 
learning its greatest value:  true patterns that exceed human imagination. 
These cases are not obviously right or wrong, but simply strange. 

Part IV aims to provide another way.  Once outside the black box, all that 
is left is to question the process surrounding its development and use.  There 
are large parts of the process of machine learning that do not show up in a 
model but can contextualize its operation, such as paths considered but not 
taken and the constraints that influence these choices.  Where intuition is 
insufficient to determine whether the model’s rules are reasonable or rest on 
valid relationships, justification can sometimes be achieved by 
demonstrating and documenting due care and thoughtfulness. 

I.  INSCRUTABLE AND NONINTUITIVE 

Scholarly and policy debates about regulating a world controlled by 
algorithms have been mired in difficult questions about how to observe, 
access, audit, or understand those algorithms.13  The difficulty has been 
attributed to a diverse set of problems, specifically that algorithms are 

 

 13. See, e.g., Rob Kitchin, Thinking Critically About and Researching Algorithms, 20 
INFO. COMM. & SOC’Y 14 (2017) (evaluating methods of researching algorithms); Malte 
Ziewitz, Governing Algorithms:  Myth, Mess, and Methods, 41 SCI. TECH. & HUM. VALUES 3 
(2016); Solon Barocas, Sophie Hood & Malte Ziewitz, Governing Algorithms:  A Provocation 
Piece (Mar. 29, 2013) (unpublished manuscript), https://papers.ssrn.com/sol3/ 
papers.cfm?abstract_id=2245322 [https://perma.cc/DB7Z-C9A6]; Nick Seaver, Knowing 
Algorithms (Feb. 2014) (unpublished manuscript), https://static1.squarespace.com/static/55eb 
004ee4b0518639d59d9b/t/55ece1bfe4b030b2e8302e1e/1441587647177/seaverMiT8.pdf 
[https://perma.cc/7HG3-74U3]. 
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“secret”14 and “opaque”15 “black boxes”16 that are rarely, if ever, made 
“transparent”;17 that they operate on the basis of correlation rather than 
“causality”18 and produce “predictions”19 rather than “explanations”;20 that 
their behavior may lack “intelligibility”21 and “foreseeability”;22 and that 
they challenge established ways of being “informed”23 or “knowing.”24  
These terms are frequently used interchangeably or assumed to have 
overlapping meanings.  For example, opacity is often seen as a synonym for 
secrecy,25 an antonym for transparency,26 and, by implication, an 
impediment to understanding.27  Yet the perceived equivalence of these 
terms has obscured important differences between distinct problems that 
frustrate attempts at regulating algorithms—problems that must be 
disentangled before the question of regulation can even be addressed. 

This Part argues that many of these challenges are not unique to algorithms 
or machine learning.  We seek here to parse the problems raised by machine 
learning models more precisely and argue that they have little to do with the 
fact that their very existence may be unknown, that their inner workings may 
be opaque, or that an understanding of their operations may require 
specialized knowledge.  What sets machine learning models apart from other 
decision-making mechanisms are their inscrutability and nonintuitiveness.  

 

 14. See, e.g., Frank Pasquale, Restoring Transparency to Automated Authority, 9 J. ON 
TELECOMM. & HIGH TECH. L. 235, 236–37 (2011) (recounting the origins of using trade-secret 
protections for algorithms); Brenda Reddix-Smalls, Credit Scoring and Trade Secrecy:  An 
Algorithmic Quagmire or How the Lack of Transparency in Complex Financial Models 
Scuttled the Finance Market, 12 U.C. DAVIS BUS. L.J. 87, 88–90 (2011) (discussing the use of 
trade-secret protections for algorithms, which result in lack of transparency concerning 
algorithmic decision-making). 
 15. Jenna Burrell, How the Machine “Thinks”:  Understanding Opacity in Machine 
Learning Algorithms, BIG DATA & SOC’Y, Jan.–June 2016, at 1, 3–5; Roger Allan Ford & W. 
Nicholson Price II, Privacy and Accountability in Black-Box Medicine, 23 MICH. TELECOMM. 
& TECH. L. REV. 1, 11–12 (2016); Tal Zarsky, The Trouble with Algorithmic Decisions:  An 
Analytic Road Map to Examine Efficiency and Fairness in Automated and Opaque Decision 
Making, 41 SCI. TECH. & HUM. VALUES 118, 129 (2016). 
 16. See, e.g., FRANK PASQUALE, THE BLACK BOX SOCIETY 8 (2015). 
 17. See, e.g., Citron & Pasquale, supra note 7, at 27; Tal Z. Zarsky, Transparent 
Predictions, 2013 U. ILL. L. REV. 1503, 1506. 
 18. See, e.g., Kim, supra note 4, at 875. 
 19. Kiel Brennan-Marquez, “Plausible Cause”:  Explanatory Standards in the Age of 
Powerful Machines, 70 VAND. L. REV. 1249, 1267–68 (2017). 
 20. See, e.g., Bryce Goodman & Seth Flaxman, European Union Regulations on 
Algorithmic Decision-Making and a “Right to Explanation,” 38 AI MAG., Fall 2017, at 50, 
55. 
 21. See, e.g., Brennan-Marquez, supra note 19, at 1253. 
 22. See, e.g., Karnow, supra note 6, at 52. 
 23. See, e.g., Sandra Wachter, Brent Mittelstadt & Luciano Floridi, Why a Right to 
Explanation of Automated Decision-Making Does Not Exist in the General Data Protection 
Regulation, 7 INT’L DATA PRIVACY L. 76, 89–90 (2017). 
 24. Mike Ananny & Kate Crawford, Seeing Without Knowing:  Limitations of the 
Transparency Ideal and Its Application to Algorithmic Accountability, 20 NEW MEDIA & 
SOC’Y 973, 974–77 (2018). 
 25. See, e.g., Burrell, supra note 15, at 3–4. 
 26. See, e.g., Ford & Price, supra note 15, at 12; Zarsky, supra note 15, at 124. 
 27. See, e.g., Burrell, supra note 15, at 4–5. 
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We adapt and extend a taxonomy first proposed by Jenna Burrell,28 where 
our primary purpose is to emphasize these last two properties and clear up 
confusion.29  Inscrutability and nonintuitiveness have been conflated in the 
past:  where the property of inscrutability suggests that models available for 
direct inspection may defy understanding, nonintuitiveness suggests that 
even where models are understandable, they may rest on apparent statistical 
relationships that defy intuition.30 

A.  Secret 

The first common critique of algorithmic decision-making is secrecy.  
Secrecy captures two related, but distinct, concerns:  (1) secrecy of the 
model’s existence and (2) secrecy of its operation. 

The first concern is as old as the original Code of Fair Information 
Practices (FIPs), the conceptual basis for the majority of privacy laws:31  
“There must be no personal-data record-keeping systems whose very 
existence is secret.”32  This principle underlies more recent calls to “end 
secret profiling” involving algorithms and machine learning, where secrecy 
is understood as a purposeful attempt to maintain ignorance of the very fact 
of profiling.33 

While such worries are particularly pronounced when the government 
engages in algorithmic decision-making,34 similar objections arise in the 
commercial sector, where there are a remarkable number of scoring systems 

 

 28. See generally id. 
 29. Our parsing of the issues is similar to the taxonomy proposed by Ed Felten in a short 
blog post on Freedom to Tinker. Ed Felten, What Does It Mean to Ask for an “Explainable” 
Algorithm?, FREEDOM TO TINKER (May 31, 2017), https://freedom-to-tinker.com/2017/05/31/ 
what-does-it-mean-to-ask-for-an-explainable-algorithm/ [https://perma.cc/QF7B-RTC6]. 
 30. We intentionally use the term “nonintuitive” rather the word “unintuitive” or 
“counterintuitive.”  In our view, “unintuitive” implies a result that would not be expected but 
is easily understood once explained, and “counterintuitive” suggests a phenomenon that is 
opposite one’s expectations.  Instead, we intend to refer to a phenomenon about which 
intuitive reasoning is not possible. 
 31. WOODROW HARTZOG, PRIVACY’S BLUEPRINT:  THE BATTLE TO CONTROL THE DESIGN 
OF NEW TECHNOLOGIES 56 (2018); Robert Gellman, Fair Information Practices:  A Basic 
History 3 (Apr. 10, 2017) (unpublished manuscript), https://bobgellman.com/rg-docs/rg-
FIPshistory.pdf [https://perma.cc/CQ9E-HK9A] (discussing the history of the FIPs). 
 32. SEC’Y’S ADVISORY COMM. ON AUTOMATED PERS. DATA SYS., U.S. DEP’T OF HEALTH, 
EDUC. & WELFARE, RECORDS, COMPUTERS, AND THE RIGHTS OF CITIZENS 41 (1973), 
https://www.justice.gov/opcl/docs/rec-com-rights.pdf [https://perma.cc/8TG8-FBL9].  In 
fact, the newly effective GDPR requires, among other things, disclosure of the “existence” of 
an automated decision-making tool. See infra note 142 and accompanying text. 
 33. Algorithmic Transparency:  End Secret Profiling, ELECTRONIC PRIVACY INFO. CTR., 
https://epic.org/algorithmic-transparency/ [https://perma.cc/ZW4W-HKTM] (last visited 
Nov. 15, 2018); see also Margaret Hu, Big Data Blacklisting, 67 FLA. L. REV. 1735, 1745–46 
(2015). 
 34. See Ira S. Rubinstein, Ronald D. Lee & Paul M. Schwartz, Data Mining and Internet 
Profiling:  Emerging Regulatory and Technological Approaches, 75 U. CHI. L. REV. 261, 262–
70 (2008); Tal Z. Zarsky, Governmental Data Mining and Its Alternatives, 116 PENN ST. L. 
REV. 285, 295–97 (2011). 
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of which consumers are simply unaware.35  In many cases, this ignorance 
exists because the companies engaged in such scoring are serving other 
businesses rather than consumers.36  But the fact that more recent forms of 
hidden decision-making involve algorithms or machine learning does not 
change the fundamental secrecy objection—that affected parties are not 
aware of the existence of the decision-making process.37 

The second secrecy concern arises where the existence of a decision-
making process is known, but its actual operation is not.  Affected parties 
might be aware that they are subject to such decision-making but have limited 
or no knowledge of how the decision-making process works.38  Among the 
many terms used to describe this situation, “opacity” seems most apt, as there 
is enough visibility to see that the model exists but not enough to discern any 
of its details. 

While this is perhaps the most frequent critique of algorithms and machine 
learning—that their inner workings remain undisclosed or inaccessible39—
it, too, has little to do with the technology specifically.  It is an objection to 
being subject to a decision where the basis of decision-making remains 
secret, which is a situation that can easily occur without algorithms or 
machine learning.40 

There are sometimes valid reasons for companies to withhold details about 
a decision-making process.  Where a decision-making process holds financial 
and competitive value and where its discovery entails significant investment 
or ingenuity, firms may claim protection for its discovery as a trade secret.41  
Trade-secret protection applies only when firms purposefully restrict 
disclosure of proprietary methods,42 which creates incentives for firms to 
maintain secrecy around the basis for decision-making.  If the use of 
algorithms or machine learning uniquely increases up-front investment or 
competitive advantage, then the incentives to restrict access to the details of 
 

 35. See PAM DIXON & ROBERT GELLMAN, THE SCORING OF AMERICA:  HOW SECRET 
CONSUMER SCORES THREATEN YOUR PRIVACY AND YOUR FUTURE 84 (2014), 
http://www.worldprivacyforum.org/wp-content/uploads/2014/04/WPF_Scoring_of_ 
America_April2014_fs.pdf [https://perma.cc/39RJ-97M6]. 
 36. See FED. TRADE COMM’N, DATA BROKERS:  A CALL FOR TRANSPARENCY AND 
ACCOUNTABILITY i (2014), https://www.ftc.gov/system/files/documents/reports/data-brokers-
call-transparency-accountability-report-federal-trade-commission-may-2014/140527 
databrokerreport.pdf [https://perma.cc/8HQY-6WVP]. 
 37. SEC’Y’S ADVISORY COMM. ON AUTOMATED PERS. DATA SYS., supra note 32, at 29 
(discussing the lack of awareness of record keeping and use of personal data). 
 38. This could refer to secrecy around what data is considered or how it is used. See infra 
Part II.A for a discussion of these concerns with respect to the Fair Credit Reporting Act. 
 39. See, e.g., Robert Brauneis & Ellen P. Goodman, Algorithmic Transparency for the 
Smart City, 20 YALE J.L. & TECH. 103, 107–08 (2018); Citron & Pasquale, supra note 7, at 
10–11.  See generally PASQUALE, supra note 16. 
 40. See, e.g., Daniel J. Solove, Privacy and Power:  Computer Databases and Metaphors 
for Information Privacy, 53 STAN. L. REV. 1393, 1407, 1410 (2001) (discussing the private 
database industry and corporate decision-making based on consumer data). 
 41. Brauneis & Goodman, supra note 39, at 153–60.  See generally Rebecca Wexler, Life, 
Liberty, and Trade Secrets:  Intellectual Property in the Criminal Justice System, 70 STAN. L. 
REV. 1343 (2018). 
 42. Pasquale, supra note 14, at 237. 
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the decision-making process might be understood as peculiar to algorithms 
or machine learning.  But if other attempts to develop decision-making 
processes without algorithms or machine learning involve similar costs and 
competitive advantage, then there is nothing special about the relationship 
between these technologies, trade secrets, and resistance to disclosure.43 

Firms may also reject requests for further details about the basis for 
decision-making if they anticipate that such details may enable strategic 
manipulation, or “gaming,” of the inputs to the decision-making process.44  
If the costs of manipulating one’s characteristics or behavior are lower than 
the expected benefits, rational actors would have good incentive to do so.45  
Yet these dynamics, too, apply outside algorithms and machine learning; in 
the face of some fixed decision procedure, people will find ways to engage 
in strategic manipulation.  The question is whether decision procedures 
developed with machine learning are easier or harder to game than those 
developed using other methods—this is not a question that can be answered 
in general. 

B.  Requiring Specialized Knowledge 

One common approach to ensuring accountability for software-reliant 
decision-making is to require the disclosure of the underlying source code.46  
While such disclosure might seem helpful in figuring out how automated 
decisions are rendered, the ability to make sense of the disclosed source code 
will depend on one’s level of technical literacy.  Some minimal degree of 
training in computer programming is necessary to read code, although even 
that might not be enough.47  The problem, then, is greater than disclosure; in 

 

 43. See, e.g., David S. Levine, Secrecy and Unaccountability:  Trade Secrets in Our 
Public Infrastructure, 59 FLA. L. REV. 135, 139 (2007) (describing the growing application of 
trade secrecy in various technologies used in public infrastructure). 
 44. Jane Bambauer & Tal Z. Zarsky, The Algorithm Game, 94 NOTRE DAME L. REV 
(forthcoming 2018) (manuscript at 10), https://papers.ssrn.com/sol3/papers.cfm? 
abstract_id=3135949 [http://perma.cc/N62U-3UUK]. 
 45. Whether such manipulation is even possible will vary from case to case, depending 
on the degree to which the decision considers immutable characteristics and nonvolitional 
behavior.  At the same time, it is unclear how easily one could even change the appearance of 
one’s characteristics without genuinely changing those characteristics in the process.  Altering 
behavior to game the system might involve adjustments that actually change a person’s 
likelihood of having the sought-after quality or experiencing the event that such behavior is 
meant to predict.  To the extent that “gaming” is a term used to describe validating rather than 
defeating the objectives of a decision system, this outcome should probably not be considered 
“gaming” at all. See Bambauer & Zarsky, supra note 44. 
 46. Deven R. Desai & Joshua A. Kroll, Trust but Verify:  A Guide to Algorithms and the 
Law, 31 HARV. J.L. & TECH. 1, 10 (2017); Kroll et al., supra note 7, at 647–50; Algorithmic 
Transparency:  End Secret Profiling, supra note 33.  Draft legislation in New York City also 
specifically focused on this issue, but the eventual bill convened a more general task force to 
consider different approaches. See Jim Dwyer, Showing the Algorithms Behind New York City 
Services, N.Y. TIMES (Aug. 24, 2017), https://www.nytimes.com/2017/08/24/nyregion/ 
showing-the-algorithms-behind-new-york-city-services.html [https://perma.cc/38V5-P3EE]. 
 47. Desai & Kroll, supra note 46, at 5 (“[F]undamental limitations on the analysis of 
software meaningfully limit the interpretability of even full disclosures of software source 
code.”); Kroll et al., supra note 7, at 647. 
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the absence of the specialized knowledge required to understand source code, 
disclosure may offer little value to affected parties and regulators. 

As Mike Ananny and Kate Crawford have observed, “Transparency 
concerns are commonly driven by a certain chain of logic:  observation 
produces insights which create the knowledge required to govern and hold 
systems accountable.”48  The process of moving from observation to 
knowledge to accountability cannot be assumed; in many cases, the ability to 
leverage observations for accountability requires preexisting knowledge that 
allows observers to appreciate the significance of a disclosure.49  
Transparency of systems of decision-making is important, but incomplete.50  
But while cultivating the knowledge necessary to read source code requires 
time and effort, the problem of expertise—like the problem of secrecy—is 
not unique to algorithms. 

C.  Inscrutable 

Rather than programming computers by hand with explicit rules, machine 
learning relies on pattern-recognition algorithms and a large set of examples 
to uncover relationships in the data that might serve as a reliable basis for 
decision-making.51  The power of machine learning lies not only in its ability 
to relieve programmers of the difficult task of producing explicit instructions 
for computers, but in its capacity to learn subtle relationships in data that 
humans might overlook or cannot recognize.  This power can render the 
models developed with machine learning exceedingly complex and, 
therefore, impossible for a human to parse. 

We define this difficulty as “inscrutability”—a situation in which the rules 
that govern decision-making are so complex, numerous, and interdependent 
that they defy practical inspection and resist comprehension.  While there is 
a long history to such concerns, evidenced most obviously by the term 
“byzantine,” the complexity of rules that result from machine learning can 
far exceed those of the most elaborate bureaucracy.52  The challenge in such 
circumstances is not a lack of awareness, disclosure, or expertise, but the 
sheer scope and sophistication of the model.53 

Intuitively, complexity would seem to depend on the number of rules 
encoded by a model, the length of a rule (i.e., the number of factors that figure 
into the rule), and the logical operations involved in the rule.  These 
properties, however, can be specified more precisely.  Four mathematical 

 

 48. Ananny & Crawford, supra note 24, at 974. 
 49. Burrell, supra note 15, at 4. 
 50. See Danielle Keats Citron, Technological Due Process, 85 WASH. U. L. REV. 1249, 
1254–55 (2008); Kroll et al., supra note 7, at 639, 657–60. 
 51. See David Lehr & Paul Ohm, Playing with the Data:  What Legal Scholars Should 
Learn About Machine Learning, 51 U.C. DAVIS L. REV. 653, 655 (2017). 
 52. Byzantine, MERRIAM-WEBSTER, http://www.merriam-webster.com/dictionary/ 
Byzantine [https://perma.cc/97CM-KNT2] (last visited Nov. 15, 2018) (defining the term as 
“intricately involved”). 
 53. Burrell, supra note 15, at 4–5. 
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properties related to model complexity are linearity, monotonicity, 
continuity, and dimensionality. 

A linear model is one in which there is a steady change in the value of the 
output as the value of the input changes.54  Linear models tend to be easier 
for humans to understand and interpret because the relationship between 
variables is stable and lends itself to straightforward extrapolation.55  In 
contrast, the behavior of nonlinear models can be far more difficult to predict, 
even when they involve simple mathematical operations like exponential 
growth.56 

A monotonic relationship between variables is a relationship that is either 
always positive or always negative.57  That is, for every change in input 
value, the direction of the corresponding change in output value will remain 
consistent, whether an increase or decrease.58  Monotonicity aids 
interpretability because it too permits extrapolation and guarantees that the 
value of the output only moves in one direction.59  If, however, the value of 
the output goes up and down haphazardly as the value of the input moves 
steadily upward, the relationship between variables can be difficult to grasp 
or predict. 

Discontinuous models include relationships where changes in the value of 
one variable do not lead to a smooth change in the associated value of 
another.60  Discontinuities can render models far less intuitive because they 
make it impossible to think in terms of incremental change.  A small change 
in input may typically lead to small changes in outputs, except for occasional 
and seemingly arbitrary large jumps.61 

The dimensionality of a model is the number of variables it considers.62  
Two-dimensional models are easy to understand because they can be 
visualized graphically with a standard plot (with the familiar x and y axes).63  
Three-dimensional models also lend themselves to effective visualization (by 
adding a z axis), but humans have no way to visualize models with more than 
three dimensions.64  While people can grasp relationships between multiple 

 

 54. Mathematically, this means that the function is described by a constant slope, which 
can be represented by a line. Yin Lou et al., Intelligible Models for Classification and 
Regression, in PROCEEDINGS OF THE 18TH ACM SIGKDD INTERNATIONAL CONFERENCE ON 
KNOWLEDGE DISCOVERY AND DATA MINING 150, 150 (2012). 
 55. See id. at 151. 
 56. Cf. DEMI, ONE GRAIN OF RICE:  A MATHEMATICAL FOLKTALE (1997). 
 57. See Monotonicity Function, CONCISE OXFORD DICTIONARY OF MATHEMATICS (3d ed. 
2014). 
 58. See id. 
 59. See id. 
 60. See Continuous Function, CONCISE OXFORD DICTIONARY OF MATHEMATICS (3d ed. 
2014) (noting that a continuous function does not suddenly jump at a given point or take 
widely differing values arbitrarily close to that point). 
 61. See Discontinuity, CONCISE OXFORD DICTIONARY OF MATHEMATICS (3d ed. 2014). 
 62. See Dimension (Dimensionality), A DICTIONARY OF COMPUTER SCIENCE (7th ed. 
2016). 
 63. See Cartesian Plane, CONCISE OXFORD DICTIONARY OF MATHEMATICS (3d ed. 2014). 
 64. See Cartesian Space, CONCISE OXFORD DICTIONARY OF MATHEMATICS (3d ed. 2014); 
n-Dimensional Space, CONCISE OXFORD DICTIONARY OF MATHEMATICS (3d ed. 2014). 
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variables without the aid of a graph, we will struggle to understand the full 
set of relationships that the model has uncovered as the number of 
dimensions grows.  The more variables that the model includes, the more 
difficult it will be to keep all the interactions between variables in mind and 
thus predict how the model would behave given any particular input.65 

In describing how these properties of models might frustrate human 
understanding, we have relied on terms like intuition, extrapolation, and 
prediction.  The same cognitive capacity underlies all three:  mentally 
simulating how a model turns inputs into outputs.66  As computer scientist 
Zachary Lipton explains, simulatability—the ability to practically execute a 
model in one’s mind—is an important form of understanding a model.67  
Such simulations can be either complete or partial.  In the former, a person 
is able to turn any combination of inputs into the correct outputs, while in the 
latter, understanding might be limited to the relationships between a subset 
of input and output variables (i.e., how changes in certain inputs affect the 
output). 

Simulation is a remarkably flat and functional definition of understanding, 
but it seems like a minimum requirement for any more elaborate definition.68  
This notion of understanding has nothing to say about why the model behaves 
the way it does; it is simply a way to account for the facility with which a 
person can play out how a model would behave under different 
circumstances.  When models are too complex for humans to perform this 
task, they have reached the point of inscrutability. 

D.  Nonintuitive 

A different line of criticism has developed that takes issue with disclosures 
that reveal some basis for decision-making that defies human intuition about 
the relevance of certain variables.69  The problem in such cases is not 

 

 65. See Lehr & Ohm, supra note 51, at 700. 
 66. Zachary C. Lipton, The Mythos of Model Interpretability, in PROCEEDINGS OF THE 
2016 ICML WORKSHOP ON HUMAN INTERPRETABILITY IN MACHINE LEARNING 96, 98 (2016). 
 67. Id. 
 68. While we limit our discussion to simulatability, inscrutability is really a broader 
concept.  In particular, models might be difficult to understand if they consider features or 
perform operations that do not have some ready semantic meaning. Burrell, supra note 15, at 
10.  For example, a deep-learning algorithm can learn on its own which features in an image 
are characteristic of different objects (the standard example being cats). Bornstein, supra note 
2.  Part III.A.3, infra, returns to one such example that involves distinguishing between wolves 
and huskies. See infra notes 246–47 and accompanying text.  An algorithm will usually learn 
to detect edges that differentiate an object from its background, but it might also engineer 
features on its own that have no equivalent in human cognition and therefore defy description. 
See Lipton, supra note 66, at 98 (discussing decomposability).  This aspect of inscrutability, 
however, is of slightly less concern for this Article.  Most methods that are common in the 
kinds of applications that apportion important opportunities (e.g., credit) involve features that 
have been handcrafted by experts in the domain (e.g., length of employment) and accordingly 
will usually not face this problem. See infra note 120 and accompanying text. 
 69. Deborah Gage, Big Data Uncovers Some Weird Correlations, WALL ST. J. (Mar. 23, 
2014, 4:36 PM), https://www.wsj.com/articles/big-data-helps-companies-find-some-
surprising-correlations-1395168255 [https://perma.cc/8KYB-LP9W]; Quentin Hardy, 



2018] EXPLAINABLE MACHINES 1097 

inscrutability, but an inability to weave a sensible story to account for the 
statistical relationships in the model.70  Although the statistical relationship 
that serves as the basis for decision-making might be readily identifiable, that 
relationship may defy intuitive expectations about the relevance of certain 
criteria to the decision.71  As Paul Ohm explains: 

We are embarking on the age of the impossible-to-understand reason, when 
marketers will know which style of shoe to advertise to us online based on 
the type of fruit we most often eat for breakfast, or when the police know 
which group in a public park is most likely to do mischief based on the way 
they do their hair or how far from one another they walk.72 

Even though it is clear which statistical relationships serve as the basis for 
decision-making in this case, why such statistical relationships exist is 
mystifying.  This is a crucial and consistent point of confusion.  The demand 
for intuitive relationships is not the demand for disclosure or accessible 
explanations; it is a demand that decision-making rely on reasoning that 
comports with intuitive understanding of the phenomenon in question.  In 
social science, similar expectations are referred to as “face validity”—the 
subjective sense that some measure is credible because it squares with our 
existing understanding of the phenomenon.73  While such demands are not 
unique to algorithms and machine learning, the fact that such computational 
tools are designed to uncover relationships that defy human intuition explains 
why the problem will be particularly pronounced in these cases. 

Critics have pinned this problem on the use of “[m]ere correlation”74 in 
machine learning, which frees it to uncover reliable, if incidental, 
relationships in the data that can then serve as the basis for consequential 
decision-making.75  Despite being framed as an indictment of correlational 
analysis, however, it is really an objection to decision-making that rests on 
particular correlations that defy familiar causal stories76—even though these 
stories may be incorrect.77  This has led to the mistaken belief that forcing 

 

Bizarre Insights from Big Data, N.Y. TIMES:  BITS (Mar. 28, 2012, 8:17 PM), 
https://bits.blogs.nytimes.com/2012/03/28/bizarre-insights-from-big-data/ [https://perma.cc/ 
GKW2-KN8T]. 
 70. See Brennan-Marquez, supra note 19, at 1280–97. 
 71. See Paul Ohm, The Fourth Amendment in a World Without Privacy, 81 MISS. L.J. 
1309, 1318 (2012). 
 72. Id. 
 73. See generally Ronald R. Holden, Face Validity, in 2 CORSINI ENCYCLOPEDIA OF 
PSYCHOLOGY 637 (Irving B. Weiner & W. Edward Craighead eds., 4th ed. 2010). 
 74. Kim, supra note 4, at 875, 883. 
 75. Id.; see also James Grimmelmann & Daniel Westreich, Incomprehensible 
Discrimination, 7 CALIF. L. REV. ONLINE 164, 173 (2016). 
 76. See Brennan-Marquez, supra note 19, at 1280–97. 
 77. See DANIEL KAHNEMAN, THINKING FAST AND SLOW 199–200 (2011) (discussing the 
“narrative fallacy”); id. at 224 (“Several studies have shown that human decision makers are 
inferior to a prediction formula even when they are given the score suggested by the formula!  
They feel that they can overrule the formula because they have additional information about 
the case, but they are wrong more often than not.”). 
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decision-making to rest on causal mechanisms rather than mere correlations 
will ensure intuitive models.78 

Causal relationships can be exceedingly complex and nonintuitive, 
especially when dealing with human behavior.79  Indeed, causal relationships 
uncovered through careful experimentation can be as elaborate and 
unexpected as the kinds of correlations uncovered in historical data with 
machine learning.80  If we consider all the different factors that cause a 
person to take an action—mood, amount of sleep, food consumption, rational 
choice, and many other things—it quickly becomes clear that causality is not 
particularly straightforward.81  The only advantage of models that rely on 
causal mechanisms in such cases would be the reliability of their predictions 
(because the models would be deterministic rather than probabilistic), not the 
ability to interrogate whether the identified causal relationships comport with 
human intuitions and values.  Given that much of the interest in causality 
stems from an unwillingness to simply defer to predictive accuracy as a 
justification for models, improved reliability will not be a satisfying answer. 

*          *          * 

The demand for intuitive relationships reflects a desire to ensure that there 
is a way to assess whether the basis of decision-making is sound, as a matter 
of validity and as a normative matter.  We want to be able to do more than 
simply simulate a model; we want to be able to evaluate it.  One way to 
ensure this possibility is to force a model to rely exclusively on features that 
bear a manifest relationship to the outcome of interest, on the belief that well-
justified decisions are those that rest on relationships that conform to familiar 
and permissible patterns. 

Achieving this type of intuitiveness requires addressing inscrutability as a 
starting point.  An understandable model is necessary because there can be 
nothing intuitive about a model that resists all interrogation.  But addressing 
inscrutability is not sufficient.  A simple, straightforward model might still 
defy intuition if it has not been constrained to only use variables with an 
intuitive relationship to the outcome.82 
 

 78. These critiques also presume that causal mechanisms that exhaustively account for the 
outcomes of interest actually exist (e.g., performance on the job, default, etc.), yet certain 
phenomena might not be so deterministic; extrinsic random factors may account for some of 
the difference in the outcomes of interest. Jake M. Hofman, Amit Sharma & Duncan J. Watts, 
Prediction and Explanation in Social Systems, 355 SCIENCE 486, 488 (2017). 
 79. Id. 
 80. See id. 
 81. Attempts to model causation require limiting the features considered as potential 
causes because, to a certain extent, almost any preceding event could conceivably be causally 
related to the later one. JUDEA PEARL, CAUSALITY:  MODELS, REASONING AND INFERENCE 401–
28 (2d ed. 2009). 
 82. See, e.g., Jiaming Zeng, Berk Ustun & Cynthia Rudin, Interpretable Classification 
Models for Recidivism Prediction, 180 J. ROYAL STAT. SOC’Y 689 (2017).  Note that in this 
and related work, the researchers limit themselves to features that are individually and 
intuitively related to the outcome of interest. See id. at 693–97.  If these methods begin with 
features that do not have such a relationship, the model might be simple enough to inspect but 
too strange to square with intuition. See infra Part III.B. 
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Insisting on intuitive relationships is not the only way to make a model 
evaluable.  To the extent that intuitiveness is taken to be an end in itself rather 
than a particular means to the end of ensuring sound decision-making, its 
proponents risk overlooking other, potentially more effective, ways to 
achieve the same goal.  The remainder of this Article considers the different 
paths we might take to use explanations of machine learning models to 
regulate them. 

II.  LEGAL AND TECHNICAL APPROACHES TO INSCRUTABILITY 

This moment is not the first time that law and computer science have 
attempted to address algorithmic decision-making with explanation 
requirements.  Credit scoring has long been regulated, in part, by requiring 
“adverse action notices,” which explain adverse decisions to consumers.83  In 
Europe, concern about automated decisions has been a neglected part of data 
protection law for more than two decades, with interest in them reinvigorated 
by the GDPR.84  On the machine learning side, the subfield of 
“interpretability”—within which researchers have been attempting to find 
ways to understand complex models—is over thirty years old.85 

What seems to emerge from the law and computer science is a focus on 
two kinds of explanation.  The first concerns accounting for outcomes—how 
particular inputs lead to a particular output.  The second concerns the logic 
of decision-making—full or partial descriptions of the rules of the system.  
This Part reviews the legal and technical approaches to outcome and logic-
based explanations. 

A.  Legal Requirements for Explanation 

Though much of the current concern over inscrutable systems stems from 
the growing importance of machine learning, inscrutable systems predate this 
technique.  As a result, regulations that require certain systems to explain 
themselves already exist.  This section discusses two examples of legal 
systems and strategies that rely on different types of explanations:  credit 
reporting statutes, which rely on outcome-based explanations, and the 
GDPR, which mandates logic-based explanations.  Credit scoring predates 
machine learning, and is governed by two statutes:  the Fair Credit Reporting 
Act (FCRA)86 and the Equal Credit Opportunity Act (ECOA).87  Statistical 
credit-scoring systems take information about consumers as inputs, give the 
 

 83. See infra notes 100–01 and accompanying text. 
 84. See Directive 95/46 of the European Parliament and of the Council of 24 October 1995 
on the Protection of Individuals with Regard to the Processing of Personal Data and on the 
Free Movement of Such Data, art. 3(1), 1995 O.J. (L 281) 31, 39 (EC) [hereinafter Data 
Protection Directive]. 
 85. See, e.g., William van Melle, Edward H. Shortliffe & Bruce G. Buchanan, EMYCIN:  
A Knowledge Engineer’s Tool for Constructing Rule-Based Expert Systems, in RULE-BASED 
EXPERT SYSTEMS:  THE MYCIN EXPERIMENT OF THE STANFORD HEURISTIC PROGRAMMING 
PROJECT 302 (Bruce G. Buchanan & Edward H. Shortliffe eds., 1984). 
 86. 15 U.S.C. §§ 1681–1681x (2012). 
 87. 15 U.S.C. §§ 1691–1691f (2012). 
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inputs certain point values, add them to obtain a total score, and then make 
decisions based on that score.  Each of these statutes require “adverse action 
notices” that must include a statement of reasons for denials of credit or other 
credit-based outcomes.88  This is an example of what we call outcome-based 
explanations:  a description of the facts that proved relevant to a decision, but 
not a description of the decision-making rules themselves. 

Articles 13–15 of the GDPR require data subjects to have access to 
“meaningful information about the logic involved” in any automated 
decision-making that significantly affects them.89  As the law is still new, the 
import and proper interpretation of this requirement remain unclear.  In 
advance of a definitive interpretation, the GDPR appears to ask for a 
functional description of the model—enough of a description of the rules 
governing decision-making such that a data subject can vindicate her 
substantive rights under the GDPR and human rights laws.90  This is an 
example of logic-based explanations:  a description of the reasoning behind 
a decision, not just the relevant inputs to the decision. 

1.  FCRA, ECOA, and Regulation B 

The most straightforward legal requirement to explain inscrutable 
decision-making is the adverse action notice.  In 1970, Congress passed 
FCRA91 to begin to rein in the unregulated credit industry.  FCRA was “the 
first information privacy legislation in the United States.”92  It limits to whom 
and for what purposes credit reports can be disclosed,93 allows consumers 
access to their credit reports,94 and requires credit reporting agencies 
(CRAs)—for example, Experian, Transunion, and Equifax—to employ 
procedures to ensure accuracy and govern dispute resolution.95  FCRA was 
not initially concerned with how decisions were made, but rather with the 
then-new phenomenon of amassing large quantities of information.96  Four 
years later, however, Congress passed ECOA97 and took aim at the decision-

 

 88. 15 U.S.C. §§ 1681m, 1691d(2). 
 89. GDPR, supra note 12, arts. 13(f)(2), 14(g)(2), 15(1)(h) (requiring access to 
“meaningful information about the logic” of automated decisions). 
 90. See Andrew D. Selbst & Julia Powles, Meaningful Information and the Right to 
Explanation, 7 INT’L DATA PRIVACY L. 233, 236 (2017).  There is a vigorous debate in the 
literature about the “right to explanation” in the GDPR. See infra notes 143–45 and 
accompanying text.  As a discussion of positive law, this debate is connected to, but different 
than, the point we seek to make about the GDPR—that it is one example of a law that operates 
by asking for the logic of a system.  Even if there is held to be no “right to explanation” in the 
GDPR, one could imagine an equivalent law that encodes such a requirement. 
 91. Fair Credit Reporting Act, Pub. L. No. 91-508, 84 Stat. 1127 (1970) (codified as 
amended at 15 U.S.C. §§ 1681–1681x (2012)). 
 92. PRISCILLA M. REGAN, LEGISLATING PRIVACY:  TECHNOLOGY, SOCIAL VALUES, AND 
PUBLIC POLICY 101 (1995). 
 93. 15 U.S.C. § 1681b. 
 94. Id. § 1681g. 
 95. Id. §§ 1681e(b), 1681i. 
 96. 115 CONG. REC. 2410 (1969). 
 97. Equal Credit Opportunity Act, Pub. L. No. 93-495, 88 Stat. 1521 (1974) (codified as 
amended at 15 U.S.C. §§ 1691–1691f (2012)). 
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making process.98  ECOA prohibits discrimination in credit decisions on the 
basis of race, color, religion, national origin, sex, marital status, age (for 
adults), receipt of public assistance income, or exercise in good faith of the 
rights guaranteed under the Consumer Credit Protection Act.99 

ECOA introduced the adverse action notice requirement.100  When a 
creditor takes an adverse action against an applicant, the creditor must give a 
statement of “specific reasons” for the denial.101  When FCRA later adopted 
a similar requirement, it expanded the notice to cover uses of credit 
information beyond decisions made by creditors, including the use of such 
information in employment decisions.102 

ECOA’s notice requirement was implemented by the Federal Reserve 
Board via Regulation B,103 which mandates that the “statement of reasons . . . 
must be specific and indicate the principal reason(s) for the adverse 
action.”104  The regulation also notes that it is insufficient to “state[] that the 
adverse action was based on the creditor’s internal standards or policies or 
that the applicant . . . failed to achieve a qualifying score on the creditor’s 
credit scoring system.”105  An appendix to Regulation B offers a sample 
notification form designed to satisfy both the rule’s and FCRA’s notification 
requirements.  Sample Form 1 offers twenty-four reason codes, including 
such varied explanations as “no credit file,” “length of employment,” or 
“income insufficient for amount of credit requested.”106  Though it is not 
 

 98. Id. § 502, 88 Stat. at 1521 (noting that the purpose of the legislation is to ensure credit 
is extended fairly, impartially, and without regard to certain protected classes). 
 99. 15 U.S.C. § 1691 (2012). 
 100. Id. § 1691(d)(2)(B); Winnie F. Taylor, Meeting the Equal Credit Opportunity Act’s 
Specificity Requirement:  Judgmental and Statistical Scoring Systems, 29 BUFF. L. REV. 73, 
82 (1980) (“For the first time, federal legislation afforded rejected credit applicants an 
automatic right to discover why adverse action was taken.”). 
 101. 15 U.S.C. § 1691(d)(2)–(3). 
 102. 15 U.S.C. § 1681m (2012). 
 103. Regulation B, 12 C.F.R. §§ 1002.1–.16 (2018). 
 104. 12 C.F.R. § 202.9(b)(2) (2018). 
 105. Id. 
 106. 12 C.F.R. pt. 1002, app. C (2018).  The form’s listed options are: 

__Credit application incomplete 
__Insufficient number of credit references provided 
__Unacceptable type of credit references provided 
__Unable to verify credit references 
__Temporary or irregular employment 
__Unable to verify employment 
__Length of employment 
__Income insufficient for amount of credit requested 
__Excessive obligations in relation to income 
__Unable to verify income 
__Length of residence 
__Temporary residence 
__Unable to verify residence 
__No credit file 
__Limited credit experience 
__Poor credit performance with us 
__Delinquent past or present credit obligations with others 
__Collection action or judgment 
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necessary to use the form, most creditors tend to report reasons contained on 
that form because there is a safe harbor for “proper use” of the form.107 

Adverse action notices aim to serve three purposes:  (1) to alert a consumer 
that an adverse action has occurred;108 (2) to educate the consumer about how 
such a result could be changed in the future;109 and (3) to prevent 
discrimination.110  As the rest of this section will show, these are commonly 
cited reasons for relying on explanations as a means of regulation as a general 
matter.  The first rationale, consumer awareness, is straightforward enough.  
It is a basic requirement of any information-regulation regime that consumers 
be aware of systems using their information.111  But the relationship between 
adverse action notices and the other two rationales—consumer education and 
antidiscrimination—requires further exploration. 

Adverse action notices can be helpful for consumer education.  As Winnie 
Taylor pointed out shortly after the passage of ECOA, some reasons—“no 
credit file” and “unable to verify income”—are self-explanatory and would 
allow a consumer to take appropriate actions to adjust.112  Conversely, some 
explanations, such as “length of employment” and home ownership, are 
harder to understand or act on.113  This suggests that an explanation of a 
specific decision may be informative, but it may not reveal an obvious path 
to an alternative outcome. 

There are also situations in which it may not even be informative.  Taylor 
imagined a hypothetical additive credit-scoring system with eight different 
features—including whether an applicant owns or rents, whether he has a 
home phone, and what type of occupation he has, among other things—each 
assigned different point values.114  In a system like that, someone who comes 
up one point short could find himself with every factor listed as a “principal 

 

__Garnishment or attachment 
__Foreclosure or repossession 
__Bankruptcy 
__Number of recent inquiries on credit bureau report 
__Value or type of collateral not sufficient 
__Other, specify:  _________ 

Id. 
 107. Equal Credit Opportunity, 76 Fed. Reg. 41,590, 41,592 (July 15, 2011) (“A creditor 
receives a safe harbor for compliance with Regulation B for proper use of the model forms.”). 
 108. See S. REP. NO. 94-589, at 4 (1976). 
 109. Id. (“[R]ejected credit applicants will now be able to learn where and how their credit 
status is deficient and this information should have a pervasive and valuable educational 
benefit.  Instead of being told only that they do not meet a particular creditor’s standards, 
consumers particularly should benefit from knowing, for example, that the reason for the 
denial is their short residence in the area, or their recent change of employment, or their already 
over-extended financial situation.”). 
 110. Id. (“The requirement that creditors give reasons for adverse action is . . . a strong and 
necessary adjunct to the antidiscrimination purpose of the legislation, for only if creditors 
know they must explain their decisions will they effectively be discouraged from 
discriminatory practices.”). 
 111. See supra note 32 and accompanying text. 
 112. Taylor, supra note 100, at 97. 
 113. Id. at 95. 
 114. Id. at 105–07. 
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reason”115 for the denial.  In one sense, this must be correct because a positive 
change in any factor at all would change the outcome.  In another sense, 
however, choosing arbitrarily among equivalently valid reasons runs counter 
to the instruction to give specific and actionable notice. 

Taylor also described a real system from that era, complex in all the 
various ways described in Part I—nonlinear, nonmonotonic, discontinuous, 
and multidimensional: 

[A]pplicants who have lived at their present address for less than six months 
are awarded 39 points, a level which they could not reach again until they 
had maintained the same residence for seven and one-half years.  
Furthermore, applicants who have been residents for between six months 
and 1 year 5 months (30 points) are considered more creditworthy than 
those who have been residents for between 1 and 1/2 years and 3 years 5 
months (27 points).116 

If the creditor tried to explain these rules simply, it would leave information 
out, but if the creditor were to explain in complete detail, it would likely 
overwhelm a credit applicant.  This is an equivalent problem to simply 
disclosing how a model works under the banner of transparency; access to 
the model is not the same as understanding.117 

The Federal Reserve Board recognized this problem, observing that, 
although all the principal reasons must be disclosed, “disclosure of more than 
four reasons is not likely to be helpful to the applicant.”118  The difficulty is 
that there will be situations where complexity cannot be avoided in a faithful 
representation of the scoring system, and listing factors alone will fail to 
accurately explain the decision, especially when the list is limited to four.119  
It is worth noting that modern credit systems appear not to be based on such 
complex models,120 likely due to the very existence of FCRA and ECOA.  
Credit predictions tend to rely on features that bear an intuitive relationship 
to default, such as past payment history.121  But the point is more general:  
 

 115. See supra note 104 and accompanying text. 
 116. Taylor, supra note 100, at 123. 
 117. See Ananny & Crawford, supra note 24, at 979 (“Transparency can intentionally 
occlude.”). 
 118. 12 C.F.R. pt. 1002 supp. I, para. 9(b)(2) (2018).  FCRA later codified the same 
limitation. 15 U.S.C. § 1681g(f)(1)(C) (2012). 
 119. The document also states that the “specific reasons . . . must relate to and accurately 
describe the factors actually considered or scored by a creditor . . . .  A creditor need not 
describe how or why a factor adversely affected an applicant . . . .  If a creditor bases the . . . 
adverse action on a credit scoring system, the reasons disclosed must relate only to those 
factors actually scored in the system.” 12 C.F.R. pt. 1002 supp. I, para. 9(b)(2). 
 120. Patrick Hall, Wen Phan & SriSatish Ambati, Ideas on Interpreting Machine Learning, 
O’REILLY (Mar. 15, 2017), https://www.oreilly.com/ideas/ideas-on-interpreting-machine-
learning [https://perma.cc/57XK-NU7G]. 
 121. Carol A. Evans, Keeping Fintech Fair:  Thinking About Fair Lending and UDAP 
Risks, CONSUMER COMPLIANCE OUTLOOK (Fed. Res. Sys., Phila., Pa.), 2017, at 4–5, 
https://consumercomplianceoutlook.org/assets/2017/second-issue/ccoi22017.pdf 
[https://perma.cc/52XP-PQN4]; see also ROBINSON + YU, KNOWING THE SCORE:  NEW DATA, 
UNDERWRITING, AND MARKETING IN THE CONSUMER CREDIT MARKETPLACE 21 (2014), 
https://www.teamupturn.com/static/files/Knowing_the_Score_Oct_2014_v1_1.pdf 
[https://perma.cc/9FCY-4K2K]. 
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approaches based on giving specific reasons for outcomes can fail where the 
system is too complex. 

The adverse action notice fares worse as an antidiscrimination measure.  
By 1974, forcing hidden intentions into the open was a common technique 
for addressing discrimination.122  Just one year before ECOA’s passage, 
McDonnell Douglas Corp. v. Green123 laid out the canonical Title VII 
burden-shifting framework for disparate treatment, which requires a 
defendant to rebut a prima facie case of employment discrimination with a 
nondiscriminatory reason and gives plaintiffs a chance to prove that the 
proffered reason is pretextual.124  Just two years before that, the U.S. 
Supreme Court in Griggs v. Duke Power Co.125 recognized disparate impact 
doctrine.126  Disparate impact attributes liability for a facially neutral 
decision that has a disproportionate adverse effect on a protected class unless 
the decision maker can provide a legitimate business reason for the decision 
and no equally effective but less discriminatory alternative exists.127  Its 
initial purpose was arguably to smoke out intentional discrimination where 
intent was hidden.128  Thus, ECOA pursued the same goal—to prevent 
discrimination by forcing decision-making into the open. 

While forcing stated reasons into the open captures the most egregious 
forms of intentional discrimination, it does not capture much else.  Although, 
in some cases, Regulation B bars collection of protected-class information,129 
race, gender, and other features can be reliably inferred from sufficiently rich 
datasets.130  Should creditors seek to discriminate intentionally by 
considering membership in a protected class, they would have to 
affirmatively lie about such behavior lest they reveal obvious wrongdoing.  
This form of intentional discrimination is thus addressed by disclosure.  
Should creditors rely on known proxies for membership in a protected class, 
however, while they would have to withhold the true relevance of these 
features in predicting creditworthiness, they could cite them honestly as 
reasons for the adverse action.  The notice requirement therefore does not 
place meaningful constraints on creditors, nor does it create additional or 

 

 122. See Olatunde C. A. Johnson, The Agency Roots of Disparate Impact, 49 HARV. C.R.-
C.L.L. REV. 125, 140 (2014) (tracing the history of agency use of disparate impact analysis to 
address latent discrimination). 
 123. 411 U.S. 792 (1973). 
 124. Id. at 805. The Supreme Court later found that a jury may presume that if all the 
employer had was pretext, that itself is evidence of discrimination. St. Mary’s Honor Ctr. v. 
Hicks, 509 U.S. 502, 511 (1993) (“The factfinder’s disbelief of the reasons put forward by the 
defendant (particularly if disbelief is accompanied by a suspicion of mendacity) may, together 
with the elements of the prima facie case, suffice to show intentional discrimination.”). 
 125. 401 U.S. 424 (1971). 
 126. Id. at 431. 
 127. 42 U.S.C. § 2000e-2(k)(1)(A) (2012).  This description ignores the word “refuse” in 
the statute, but is probably the more common reading. Barocas & Selbst, supra note 4, at 709. 
 128. Richard A. Primus, Equal Protection and Disparate Impact:  Round Three, 117 HARV. 
L. REV. 494, 518–21 (2003) (discussing the “evidentiary dragnet” theory of disparate impact). 
 129. 12 C.F.R. § 1002.5 (2018). 
 130. Barocas & Selbst, supra note 4, at 692. 
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unique liability beyond that present in the antidiscrimination provisions of 
the rest of the regulation.131 

More importantly, creditors using quantitative methods that do not 
expressly consider protected-class membership are likely not engaged in 
intentional discrimination, yet the scoring systems might very well evince a 
disparate impact.  While ECOA does not expressly provide for a disparate 
impact theory of discrimination, case law suggests that it is very likely 
available.132 

The adverse action notice approach has two specific shortcomings for a 
disparate impact case.  First, when reviewing such a notice, the consumer 
only has access to her own specific outcome.  Her single point of reference 
does not provide any understanding of the frequency of denials along 
protected-class lines, so she cannot observe disparate impact.  Absent 
understanding of the logic of the system—for example, how different inputs 
are weighted—she cannot even look at the decision-making to try to guess 
whether it is discriminatory; the notice simply provides no basis to bring a 
suit. 

Second, disparate impact has a different relationship to reasons behind 
decisions than does intentional discrimination.  While for intentional 
discrimination, a consumer only needs to know that the decision was not 
made for an improper reason, knowing the specific reasons for which it was 
made becomes important for a disparate impact case.133  That is to say, it is 
not only important to understand how a statistical system converts inputs to 
specific outputs, but also why the system was set up that way. 

As discussed in Part I, one avenue to ensure the existence of an explanation 
of why the rules are the way they are is to require that the rules be based on 
intuitive relationships between input and output variables.  This is the 
approach advocated by several scholars, particularly those focused on 
discrimination.134  As is discussed in Part IV, it is not the only way, but this 
inability to engage with the normative purposes of the statute is a clear 
shortcoming of explanations based solely on the outcome of a single case, 
which provides neither the logic of the system nor any information about its 
normative elements. 

 

 131. John H. Matheson, The Equal Credit Opportunity Act:  A Functional Failure, 21 
HARV. J. ON LEGIS. 371, 388 (1984). 
 132. The Supreme Court has not ruled that it is available, but most circuit courts that have 
considered it have permitted it. See Mikella Hurley & Julius Adebayo, Credit Scoring in the 
Era of Big Data, 18 YALE J.L. & TECH. 148, 193 (2016) (citing Golden v. City of Columbus, 
404 F.3d 950, 963 (6th Cir. 2005)).  In addition, the Supreme Court ruled in 2015 that disparate 
impact theory was cognizable in the Fair Housing Act, which also does not expressly provide 
for it. Texas Dep’t of Hous. & Cmty. Affairs v. Inclusive Cmtys. Project, Inc., 135 S. Ct. 2507, 
2518 (2015). 
 133. Barocas & Selbst, supra note 4, at 702. 
 134. See infra Part III.A.3. 
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2.  GDPR 

In 2016, the European Union (EU) passed the GDPR, which took effect on 
May 25, 2018, and replaced the 1995 Data Protection Directive.135  Both laws 
regulate automated decision-making,136 but in the twenty-three years of the 
Directive’s existence, little jurisprudence developed around that particular 
aspect of the law.  The GDPR has created renewed interest in these 
provisions.137 

The GDPR’s discussion of automated decisions is contained in Articles 
22, 13(2)(f), 14(2)(g), and 15(1)(h).  Article 22 is the primary provision and 
states, in relevant part, the following: 

1.  The data subject shall have the right not to be subject to a decision based 
solely on automated processing, including profiling, which produces legal 
effects concerning him or her or similarly significantly affects him or her. 
2.  Paragraph 1 shall not apply if the decision: 
(a) is necessary for entering into, or performance of, a contract between the 
data subject and a data controller; 
(b) . . . 
(c) is based on the data subject’s explicit consent. 
3.  In the cases referred to in points (a) and (c) of paragraph 2, the data 
controller shall implement suitable measures to safeguard the data subject's 
rights and freedoms and legitimate interests, at least the right to obtain 
human intervention on the part of the controller, to express his or her point 
of view and to contest the decision.138 

Articles 13–15 spell out a data subject’s right to be informed about the 
information that data controllers have about her.139  Articles 13 and 14 
describe the obligations of data controllers to affirmatively notify data 
subjects about the uses of their information,140 and Article 15 delineates the 
access rights that data subjects have to information about how their own data 
is used.141  All three demand that the following information be available to 
data subjects:  “the existence of automated decision-making, including 
profiling, referred to in Article 22(1) and (4) and, at least in those cases, 
meaningful information about the logic involved, as well as the significance 
and the envisaged consequences of such processing for the data subject.”142 

 

 135. GDPR, supra note 12, art. 99. 
 136. Id. art. 22(1) (“The data subject shall have the right not to be subject to a decision 
based solely on automated processing, including profiling, which produces legal effects 
concerning him or her or similarly significantly affects him or her.”); Data Protection 
Directive, supra note 84, art. 15. 
 137. Isak Mendoza & Lee A. Bygrave, The Right Not to Be Subject to Automated Decisions 
Based on Profiling, in EU INTERNET LAW 77, 80–81 (2017). 
 138. GDPR, supra note 12, art. 22.  Article 22(4) is omitted because it is not relevant to 
this discussion. 
 139. Wachter et al., supra note 23, at 89. 
 140. See GDPR, supra note 12, arts. 13–14. 
 141. See id. art. 15. 
 142. Id. arts. 13(2)(f), 14(2)(g), 15(1)(h). 
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Since passage of the GDPR, scholars have debated whether these 
requirements amount to a “right to explanation.”143  As one of us has argued 
elsewhere, that debate has been bogged down in proxy battles over what the 
phrase “right to explanation” means, but no matter whether one calls it a right 
to explanation, requiring that data subjects have meaningful information 
about the logic must mean something related to explanation.144  Importantly 
for this discussion, the Regulation demands that the “meaningful 
information” must be about the logic of the decisions.145  As we defined it in 
Part I, a model is inscrutable when it defies practical inspection and resists 
comprehension.  An explanation of the logic therefore appears to precisely 
target inscrutability.  The most important aspect of this type of explanation 
is that it is concerned with the operation of the model in general, rather than 
as it pertains to a particular outcome. 

The particular type of explanation required by the GDPR will depend on 
the legal standards developed in the EU by the authorities charged with 
interpreting that law.  The overall purposes of the GDPR are much broader 
than FCRA and ECOA.  The EU treats data protection as a fundamental 
right,146 and the GDPR seeks to vindicate the following principles with 
respect to personal data:  lawfulness, fairness, and transparency; purpose 
limitation; data minimization; accuracy; storage limitation; integrity and 
confidentiality; and accountability.147  Several of these principles are a 
restatement of the FIPs that have shaped privacy policy for decades.148  
 

 143. See Margot E. Kaminski, The Right to Explanation, Explained, 34 BERKELEY TECH. 
L.J. (forthcoming 2019) (manuscript at 17–24), https://papers.ssrn.com/sol3/ 
papers.cfm?abstract_id=3196985 [https://perma.cc/92GH-W6HV] (reviewing the literature); 
see also Lilian Edwards & Michael Veale, Slave to the Algorithm?  Why a “Right to an 
Explanation” Is Probably Not the Remedy You Are Looking For, 16 DUKE L. & TECH. REV. 
18, 44 (2017) (arguing that even if a right to explanation exists, it may not be useful); 
Gianclaudio Malgieri & Giovanni Comandé, Why a Right to Legibility of Automated Decision-
Making Exists in the General Data Protection Regulation, 7 INT’L DATA PRIVACY L. 243, 245, 
250 (2017) (arguing that the GDPR creates a right to “legibility” that combines transparency 
and comprehensibility); Mendoza & Bygrave, supra note 137 (arguing that a right to 
explanation can be derived as a necessary precursor to the right to contest the decision); Selbst 
& Powles, supra note 90 (arguing that a right to meaningful information is a right to 
explanation); Sandra Wachter et al., Counterfactual Explanations Without Opening the Black 
Box:  Automated Decisions and the GDPR, 31 HARV. J.L. & TECH 841 (2018) (arguing that a 
legal right to explanations of automated decisions does not exist); Wachter et al., supra note 
23 (arguing that there is no legal right to explanation of specific automated decisions); 
Goodman & Flaxman, supra note 20, at 2 (arguing that a right to explanation exists); Maja 
Brkan, Do Algorithms Rule the World?  Algorithmic Decision-Making and Data Protection 
in the Framework of the GDPR and Beyond 15 (Aug. 1, 2017) (unpublished manuscript), 
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3124901 [https://perma.cc/C9PN-4PL6] 
(arguing that “information about the logic involved” and the right to contest decisions imply 
a right to explanation). 
 144. See Selbst & Powles, supra note 90, at 233. 
 145. GDPR, supra note 12, arts. 13(2)(f), 14(2)(g), 15(1)(h). 
 146. Id. art. 1. 
 147. Id. art. 5. 
 148. Kate Crawford & Jason Schultz, Big Data and Due Process:  Toward a Framework 
to Redress Predictive Privacy Harms, 55 B.C. L. REV. 93, 106–07 (2014).  While different 
lists of FIPs conflict, one prominent example is the Organisation for Economic Co-Operation 
and Development’s (OECD) list:  Collection Limitation Principle, Data Quality Principle, 
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Considered as a whole, they begin to sound like the general idea of due 
process in all its expansiveness. 

Satisfying this requirement may in some cases involve disclosing the full 
set of rules behind all decision-making—that is, the entire model.149  But in 
some cases, it will not involve such radical disclosure.  Depending on the 
specific goals at issue, the types of rules disclosed can be narrower, or the 
explanation can perhaps be met interactively by providing data subjects with 
the tools to examine how changes in their information relate to changes in 
outcome.  One of us has argued that the GDPR’s meaningful information 
requirement applies “to the data subject herself”150 and “should be 
interpreted functionally and flexibly,” and that the legal standard should be 
that the explanation “at a minimum, enable[s] a data subject to exercise his 
or her rights under the GDPR and human rights law.”151 

Although the GDPR’s goals are broader than those of ECOA and FCRA, 
evaluating the ability of logic-based explanations to vindicate the goals of 
those statutes can demonstrate how explanations of the logic of decision-
making can improve upon the shortcomings of the outcome-based approach.  
The three reasons were awareness, consumer (here, data subject) education, 
and antidiscrimination.152  Like in the credit domain, awareness is 
straightforward and encapsulated by the requirement that a data subject be 
made aware of the “existence” of automated decision-making.  The other two 
rationales operate differently when logic-based explanations are provided. 

Data subject education becomes more straightforward as a legal matter, if 
not a technical one.  Absent inscrutability, a data subject would be told the 
rules of the model and would be able to comprehend his situation and how to 
achieve any particular outcome.  This solves both problems that Taylor 
identified.153  Consider the system where, after the creditor totaled the point 
values from eight factors, a person missed on her credit application by one 
point.  While it might be impossible to point to four factors that were 
“principal reasons,” the explanation of the logic—what the eight factors 
were, that they were all assigned point values, and that the hypothetical 
applicant just missed by a point—would be much more useful to that 
 

Purpose Specification Principle, Use Limitation Principle, Security Safeguards Principle, 
Openness Principle, Individual Participation Principle, and Accountability Principle. Org. for 
Econ. Co-operation & Dev. [OECD], The OECD Privacy Framework, at 14–15 (2013), 
http://www.oecd.org/sti/ieconomy/oecd_privacy_framework.pdf [https://perma.cc/RWM2-
EUD4]. 
 149. The guidelines issued by the Article 29 Working Party, a body tasked with giving 
official interpretations of EU law, states that the full model is not required. See Article 29 Data 
Protection Working Party, Guidelines on Automated Individual Decision-Making and 
Profiling for the Purposes of Regulation 2016/679, at 25, WP 251 (Feb. 6, 2018) (“The GDPR 
requires the controller to provide meaningful information about the logic involved, not 
necessarily a complex explanation of the algorithms used or disclosure of the full algorithm.”).  
As a matter of positive law, then, this is likely to be the outcome, but in some cases it may fall 
short of something actually meaningful to the data subject. 
 150. See Selbst & Powles, supra note 90, at 236. 
 151. Id. at 233. 
 152. See supra notes 108–10 and accompanying text. 
 153. See supra notes 112–16 and accompanying text. 
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particular rejected applicant.154  In Taylor’s real nonlinear, nonmonotonic, 
discontinuous, and multidimensional example, the full complexity can be 
appreciated in the paragraph-long description, where a reason code would in 
many cases be totally unhelpful.  Once machine learning enters the picture, 
and models become more complex, the limits on technical ability to solve 
inscrutability may prevent these explanations from coming to fruition. But at 
least in theory, explanations of the logic are sufficient for data subject 
education. 

Turning to discrimination—which serves as a stand-in for broader 
normative questions about model justification—while logic-based 
explanations do fare better than outcome-based ones, they do not completely 
address the shortcomings.  Any rule that is manifestly objectionable becomes 
visible under logic-based explanations, making them an improvement over 
outcome-only explanations, which shed no light on rules.  This disclosure 
might enable one to speculate if facially neutral rules will nevertheless have 
a disparate impact, based on the different rates at which certain input features 
are held across the population.  But this is ultimately little more than 
guesswork.155  Although there might not be anything about a rule that appears 
likely to generate a disparate impact, it still could.  Alternatively, a set of 
rules could appear objectionable or discriminatory, but ultimately be 
justified.  It will often be impossible to tell without more information, and 
the possibility of happening on a set of rules that lend themselves to intuitive 
normative assessment is only a matter of chance. 

B.  Interpretability in Machine Learning 

The overriding question that has prompted fierce debates about 
explanation and machine learning has been whether machine learning can be 
made to comply with the law.  As discussed in Part I, machine learning poses 
unique challenges for explanation and understanding—and thus challenges 
for meeting the apparent requirements of the law.  Part II.A further 
demonstrated that even meeting the requirements of the law does not 
automatically provide the types of explanations that would be necessary to 
assess whether decisions are well justified.  Nevertheless, addressing the 
potential inscrutability of machine learning models remains a fundamental 
step in meeting this goal. 

As it happens, machine learning has a well-developed toolkit to deal with 
calls for explanation.  There is an extensive literature on “interpretability.”156  
Early research recognized and grappled with the challenge of explaining the 
decisions of machine learning models such that people using these systems 

 

 154. The Article 29 Working Party has, however, suggested that this approach is central to 
the “meaningful information” requirement. See Article 29 Data Protection Working Party, 
supra note 149, at 25. 
 155. See infra Part III.A.3. 
 156. See generally, e.g., Riccardo Guidotti et al., A Survey of Methods for Explaining Black 
Box Models, 51 ACM COMPUTING SURVEYS, Aug. 2018, at 1; Lipton, supra note 66. 
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would feel comfortable acting upon them.157  Practitioners and researchers 
have developed a wide variety of strategies and techniques to ensure that they 
can produce interpretable models from data—many of which may be useful 
for complying with existing law, such as FCRA, ECOA, and the GDPR. 

Interpretability has received considerable attention in research and practice 
due to the widely held belief that there is a tension between how well a model 
will perform and how well humans will be able to interpret it.158  This view 
reflects the reasonable idea that models that consider a larger number of 
variables, a larger number of relationships between these variables, and a 
more diverse set of potential relationships is likely to be both more accurate 
and more complex.159  This will certainly be the case when the phenomenon 
that machine learning seeks to model is itself complex.  This intuition 
suggests that practitioners may face a difficult choice:  favor simplicity for 
the sake of interpretability or accept complexity to maximize performance.160 

While such views seem to be widely held,161 over the past decade, methods 
have emerged that attempt to sidestep these difficult choices altogether, 
promising to increase interpretability while retaining performance.162  
Researchers have developed at least three different ways to respond to the 
demand for explanations:  (1) purposefully orchestrating the machine 
learning process such that the resulting model is interpretable;163 
(2) applying special techniques after model creation to approximate the 
model in a more readily intelligible form or identify features that are most 
salient for specific decisions;164 and (3) providing tools that allow people to 
interact with the model and get a sense of its operation.165 

1.  Purposefully Building Interpretable Models 

Practitioners have a number of different levers at their disposal to 
purposefully design simpler models.  First, they may choose to consider only 
a limited set of all possible variables.166  By limiting the analysis to a smaller 
set of variables, the total number of relationships uncovered in the learning 
process might be sufficiently limited to be intelligible to a human.167  It is 
 

 157. van Melle et al., supra note 85, at 302. 
 158. See, e.g., Leo Breiman, Statistical Modeling:  The Two Cultures, 16 STAT. SCI. 199, 
206 (2001); Lou et al., supra note 54, at 150. 
 159. See Breiman, supra note 158, at 208. 
 160. See generally id. 
 161. See DEF. ADVANCED RESEARCH PROJECTS AGENCY, BROAD AGENCY ANNOUNCEMENT:  
EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI) (2016), https://www.darpa.mil/attachments/ 
DARPA-BAA-16-53.pdf [https://perma.cc/3FZV-TZGA]; Henrik Brink & Joshua Bloom, 
Overcoming the Barriers to Production-Ready Machine-Learning Workflows, STRATA (Feb. 
11, 2014), https://conferences.oreilly.com/strata/strata2014/public/schedule/detail/32314 
[https://perma.cc/2GBV-2QRR]. 
 162. For a recent survey, see Michael Gleicher, A Framework for Considering 
Comprehensibility in Modeling, 4 BIG DATA 75 (2016). 
 163. See, e.g., id. at 81–82. 
 164. See, e.g., id. at 82–83. 
 165. See, e.g., id. at 83. 
 166. See id. at 81. 
 167. Zeng et al., supra note 82, at 690–91. 
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very likely that a model with five features, for example, will be more 
interpretable than a model with five hundred. 

Second, practitioners might elect to use a learning method that outputs a 
model that can be more easily parsed than the output of other learning 
methods.168  For example, decision tree algorithms are perceived as likely to 
produce interpretable models because they learn nested rules that can be 
represented visually as a tree with subdividing branches.  To understand how 
the model would process any particular case, practitioners need only walk 
through the relevant branches of the tree; to understand the model overall, 
practitioners can explore all the branches to develop a sense of how the model 
would determine all possible cases. 

The experience of applying machine learning to real-world problems has 
led to common beliefs among practitioners about the relative interpretability 
of models that result from different learning methods and how well they 
perform.  Conventional wisdom suggests that there is a trade-off between 
interpretability and accuracy.169  Methods like linear regression170 generate 
models perceived as highly interpretable, but relatively low performing, 
while methods like deep learning171 result in high-performing models that 
are exceedingly difficult to interpret.172  While researchers have pointed out 
that such comparisons do not rest on a rigorous definition of interpretability 
or empirical studies,173 such beliefs routinely guide practitioners’ decisions 
when applying machine learning to different kinds of problems.174 

Another method is to set the parameters of the learning process to ensure 
that the resulting model is not so complex that it defies human 
comprehension.  For example, even decision trees will become unwieldy for 
humans if they involve an exceedingly large number of branches and 
leaves.175  Practitioners routinely set an upper bound on the number of leaves 
to constrain the complexity of the model.176  For decades, practitioners in 
regulated industries like credit and insurance have purposefully limited 
themselves to a relatively small set of features and less sophisticated learning 
methods.177  In so doing, they have been able to generate models that lend 
themselves to sensible explanation, but they may have forgone the increased 
accuracy that would result from a richer and more advanced analysis.178 

 

 168. See Lehr & Ohm, supra note 51, at 688–95. 
 169. See, e.g., Breiman, supra note 158, at 208. 
 170. See Regression, CONCISE OXFORD DICTIONARY OF MATHEMATICS (3d ed. 2014). 
 171. See generally Jürgen Schmidhuber, Deep Learning in Neural Networks:  An 
Overview, 61 NEURAL NETWORKS 85 (2015) (providing an explanation of deep learning in 
artificial intelligence). 
 172. Breiman, supra note 158, at 206. 
 173. Alex A. Freitas, Comprehensible Classification Models—a Position Paper, 
15 SIGKDD EXPLORATIONS, June 2013, at 1. 
 174. See Lipton, supra note 66, at 99. 
 175. Id. at 98. 
 176. See id. at 99. 
 177. Hall et al., supra note 120. 
 178. Id. 
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Linear models remain common in industry because they allow companies 
to much more readily comply with the law.179  When they involve a 
sufficiently small set of features, linear models are concise enough for a 
human to grasp the relevant statistical relationships and to simulate different 
scenarios.180  They are simple enough that a full description of the model 
may amount to the kind of meaningful information about the logic of 
automated decisions required by the GDPR.  At the same time, linear models 
also immediately highlight the relative importance of different features by 
assigning a specific numerical weight to each feature, which allows 
companies to quickly extract the principal factors for an adverse action notice 
under ECOA. 

Beyond the choice of features, learning method, or learning parameters, 
there are techniques that can make simplicity an additional and explicit 
optimization criterion in the learning process.  The most common such 
method is regularization.181  Much like setting an upper limit on the number 
of branches in a decision tree, regularization allows the learning process to 
factor in model complexity by assigning a cost to excess complexity.182  In 
doing so, model simplicity becomes an additional objective alongside model 
performance, and the learning process can be set up to find the optimal trade-
off between these sometimes-competing objectives.183 

Finally, the learning process can also be constrained such that all features 
exhibit monotonicity.184  Monotonicity constraints are widespread in credit 
scoring because they make it easier to reason about how scores will change 
when the value of specific variables change, thereby allowing creditors to 
automate the process of generating the reason codes required by FCRA and 
ECOA.185  As a result of these legal requirements, creditors and other data-
 

 179. Id. 
 180. See Lipton, supra note 66, at 98. 
 181. See Gleicher, supra note 162, at 81–82. 
 182. See id. at 81.  One commonly used version of this method is Lasso. See generally 
Robert Tibshirani, Regression Shrinkage and Selection via the Lasso, 58 J. ROYAL STAT. 
SOC’Y 267 (1996).  It was originally designed to increase accuracy by avoiding overfitting, 
which occurs when a model assigns significance to too many features and thus accidentally 
learns patterns that are peculiar to the training data and not representative of real-world 
patterns. See id. at 267.  Machine learning is only effective in practice when it successfully 
identifies robust patterns while also ignoring patterns that are specific to the training data. See 
David J. Hand, Classifier Technology and the Illusion of Progress, 21 STAT. SCI. 1, 2 (2006).  
Lasso increases accuracy by forcing the learning process to ignore relationships that are 
relatively weak, and therefore more likely to be artifacts of the training data. See Tibshirani, 
supra, at 268.  Because Lasso works by strategically removing unnecessary features, the 
technique can simultaneously improve interpretability (by reducing complexity) in many real-
world applications and increase performance (by avoiding overfitting). See id. at 267.  As 
such, improved interpretability need not always decrease performance.  But where potential 
overfitting is not a danger, regularization methods may result in degradations in performance. 
See Gleicher, supra note 162, at 81–82. 
 183. Gleicher, supra note 162, at 81. 
 184. Recall that monotonicity implies that an increase in an input variable can only result 
in either an increase or decrease in the output; it can never change from one to the other. See 
supra notes 57–58 and accompanying text. 
 185. See, e.g., Hall et al., supra note 120.  Monotonicity allows creditors to rank order 
variables according to how much the value of each variable in an applicant’s file differs from 
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driven decision makers often have incentives to ensure their models are 
interpretable by design. 

2.  Post Hoc Methods 

There exists an entirely different set of techniques for improved 
interpretability that does not place any constraints on the model-building 
process.  Instead, these techniques begin with models learned with more 
complex methods and attempt to approximate them with simpler and more 
readily interpretable methods.  Most methods in this camp generate what can 
be understood as a model of the model. 

These methods attempt to overcome the fact that simpler learning methods 
cannot always reliably discover as many useful relationships in the data.  For 
example, the learning process involved in decision trees is what is known as 
a “greedy algorithm.”186  Once the learning process introduces a particular 
branch, the method does not permit walking back up the branch.187  
Therefore, relationships between items on two different branches will not be 
discovered.188  Despite lacking the same limitation, more complex learning 
methods, such as deep learning, do not result in models as interpretable as 
decision trees.  Nonetheless, rules that cannot be learned with simpler 
methods can often be represented effectively by simpler models.189  
Techniques like rule extraction190 allow simple models to “cheat” because 
the answers that simpler learning methods would otherwise miss are known 
ahead of time.191 

This approach can be costly and it does not have universal success.192  
Despite practitioners’ best efforts, replicating the performance of more 
complex models in a simple enough form might not be possible where the 
phenomena are particularly complex.  For example, using a decision tree to 
approximate a model developed with deep learning might require too large a 
number of branches and leaves to be understandable in practice.193 

When these methods work well, they ensure that the entire set of 
relationships learned by the model can be expressed concisely, without 

 

the corresponding value of each variable for the ideal customer—the top four variables can 
function as reason codes. Id. 
 186. STUART RUSSELL & PETER NORVIG, ARTIFICIAL INTELLIGENCE:  A MODERN APPROACH 
92–93 (3d ed. 2014). 
 187. Id. 
 188. Id. at 93 (noting that, although the greedy algorithm may find a nonoptimal solution, 
it will not discover relationships between unrelated branches). 
 189. Gleicher, supra note 162, at 82. 
 190. Rule extraction is the name for a set of techniques used to create a simplified model 
of a model.  The technical details of their operation are beyond the scope of this paper. See 
generally Nahla Barakat & Andrew P. Bradley, Rule Extraction from Support Vector 
Machines:  A Review, 74 NEUROCOMPUTING 178 (2010); David Martens et al., 
Comprehensible Credit Scoring Models Using Rule Extraction from Support Vector 
Machines, 183 EUR. J. OPERATIONAL RES. 1466 (2007). 
 191. Gleicher, supra note 162, at 82. 
 192. Id. 
 193. See Lipton, supra note 66, at 98. 
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giving up much performance.  Accordingly, they serve a similar role to the 
interpretability-driven design constraints discussed above.194  When they do 
not work as well, arriving at an interpretable model might necessitate 
sacrificing some of the performance gained by using the more complex 
model.  But even when these methods involve a notable loss in performance, 
the resulting models frequently perform far better than simple methods 
alone.195 

Other tools have also emerged that attack the problem of interpretability 
from a different direction.  Rather than attempting to ensure that machine 
learning generates an intelligible model overall, these new tools furnish more 
limited explanations that only account for the relative importance of different 
features in particular outcomes—similar to the reason codes required by 
FCRA and ECOA.196  At a high level, most of these methods adopt a similar 
approach:  they attempt to establish the importance of any feature to a 
particular decision by iteratively varying the value of that feature while 
holding the value of other features constant.197 

These tools seem well suited for the task set by ECOA, FCRA, or other 
possible outcome-oriented approaches:  explaining the principal reasons that 
account for the specific adverse decision.198  As we further discuss in the next 
section, there are several reasonable ways to explain the same specific 
outcome.  These methods are useful for two of the most common:  
(1) determining the relative contribution of different features, or 
(2) identifying the features whose values would have to change the most to 
change the outcome.199  One could imagine applying these methods to 
models that consider an enormous range of features and map out an 
exceedingly complex set of relationships.  While such methods will never 
make these relationships completely sensible to a human, they can provide a 
list of reasons that might help provide reason codes for a specific decision. 

 

 194. See supra Part II.B.1. 
 195. Johan Huysmans et al., Using Rule Extraction to Improve the Comprehensibility of 
Predictive Models (Katholieke Universiteit Leuven Dep’t of Decision Scis. & Info. Mgmt., 
Working Paper No. 0612, 2006), https://papers.ssrn.com/sol3/papers.cfm? 
abstract_id=961358 [https://perma.cc/8AKQ-LXVE]. 
 196. See supra note 106 and accompanying text. 
 197. See generally Philip Adler et al., Auditing Black-Box Models for Indirect Influence, 
54 KNOWLEDGE & INFO. SYSTEMS 95 (2018); David Baehrens et al., How to Explain Individual 
Classification Decisions, 11 J. MACHINE LEARNING RES. 1803 (2010); Anupam Datta et al., 
Algorithmic Transparency via Quantitative Input Influence:  Theory and Experiments with 
Learning Systems, in PROCEEDINGS OF THE 2016 IEEE SYMPOSIUM ON SECURITY & PRIVACY 
598 (2016); Andreas Henelius et al., A Peek into the Black Box:  Exploring Classifiers by 
Randomization, 28 DATA MINING & KNOWLEDGE DISCOVERY 1503 (2014); Marco Tulio 
Ribeiro et al., “Why Should I Trust You?”  Explaining the Predictions of Any Classifier, in 
PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE 
DISCOVERY AND DATA MINING 1135 (2016). 
 198. See supra note 88 and accompanying text. 
 199. These methods are generally sensitive to interactions among variables and can 
measure indirect as well as direct influence. See, e.g., Adler et al., supra note 197; Datta et al., 
supra note 197; Julius Adebayo, FairML:  Auditing Black-Box Predictive Models, CLOUDERA 
FAST FORWARD LABS (Mar. 9, 2017), http://blog.fastforwardlabs.com/2017/03/09/fairml-
auditing-black-box-predictive-models.html [https://perma.cc/S5PK-K6GQ]. 
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Unfortunately, these methods may not work well in cases where models 
take a much larger set of features into account.  Should many features each 
contribute a small amount to a particular determination, listing each feature 
in an explanation is not likely to be helpful.  This is the machine learning 
version of Taylor’s hypothetical eight-factor credit example.200  The number 
of features identified as influential might be sufficiently large that the 
explanation would simply reproduce the problem of inscrutability that it aims 
to address.  The only alternative in these cases—arbitrarily listing fewer 
reasons than the correct number—is also unsatisfying when all features are 
equivalently, or nearly equivalently, important.  As it happens, post hoc 
explanations for credit and other similarly important decisions are likely to 
be most attractive precisely when they do not seem to work well—that is, 
when the only way to achieve a certain level of performance is to vastly 
expand the range of features under consideration. 

These methods are also unlikely to generate explanations that satisfy logic-
like approaches like the GDPR.  Indeed, such techniques pose a unique 
danger of misleading people into believing that the reasons that account for 
specific decisions must also apply in the same way for others—that the 
reasons for a specific decision illustrate a general rule.  Understandably, 
humans tend to extrapolate from explanations of specific decisions to similar 
cases, but the model—especially a complex one—may have a very different 
basis for identifying similar-seeming cases.201  These methods offer 
explanations that apply only to the case at hand and cannot be extrapolated 
to decisions based on other input data.202 

3.  Interactive Approaches 

One final set of approaches is interactive rather than explanatory.  
Practitioners can allow people to get a feel for their models by producing 
interactive interfaces that resemble the methods described in the previous 
sections.  This can take two quite different forms.  One is the type proposed 
by Danielle Citron and Frank Pasquale203 and implemented, for example, by 
Credit Karma.204  Beginning with a person’s baseline credit information, 
Credit Karma offers a menu of potential changes, such as opening new credit 
cards, obtaining a new loan, or going into foreclosure.205  A person using the 
interface can see how each action would affect his credit score.206  This does 

 

 200. See supra notes 114–15 and accompanying text. 
 201. See Finale Doshi-Velez & Mason Kortz, Accountability of AI Under the Law:  The 
Role of Explanation 3 (Harvard Univ. Berkman Klein Ctr. Working Grp. on Explanation & 
the Law, Working Paper No. 18-07, 2018), https://papers.ssrn.com/sol3/papers.cfm? 
abstract_id=3064761 [https://perma.cc/SJ5S-HJ3T] (discussing the problem of cases where 
similar situations lead to differing outcomes and vice versa). 
 202. See id. 
 203. See Citron & Pasquale, supra note 7, at 28–30 (discussing “interactive modeling”). 
 204. See Credit Score Simulator, CREDIT KARMA, https://www.creditkarma.com/tools/ 
credit-score-simulator [https://perma.cc/XQ2S-GYUE] (last visited Nov. 15, 2018). 
 205. Id. 
 206. Id. 
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not amount to a full explanation because a person at a different starting point 
could make similar moves with different outcomes, but it gives the individual 
user a partial functional feel for the logic of the system as it applies to him 
specifically. 

The second is more complicated and abstract.  Mireille Hildebrandt has 
proposed something she terms “transparency-enhancing technologies.”207  
Such technologies would implement an interface that would allow people to 
simultaneously adjust the value of multiple features in a model with the goal 
of providing a loose sense of the relationship between these features and a 
specific outcome, as well as the connection between the features 
themselves.208  The goal of this type of technology is not to tell the user what 
changes in his results specifically but to allow him to get a feel from an 
arbitrary starting point.209 

Where models are simple enough, these approaches seem to achieve the 
educational goals of both ECOA and the GDPR by allowing data subjects to 
gain an intuitive feel for the system.  Ironically, this would be accomplished 
by complying with neither law because a person will not know a specific 
reason for denial or have an account of a model’s logic after playing with it, 
even if they feel that they understand the model better afterward. 

While regulators have expressed interest in this idea,210 however, it poses 
a technical challenge.  The statistical relationships at work in these models 
may be sufficiently complex that no consistent rule may become evident by 
tinkering with adjustable sliders.  Models might involve a very large number 
of inputs with complex and shifting interdependencies such that even the 
most systematic tinkering would generate outcomes that would be difficult 
for a person to explain in a principled way. 

One danger of this approach, then, is that it could do more to placate than 
elucidate.  People could try to make sense of variations in the observed 
outputs by favoring the simplest possible explanation that accounts for the 
limited set of examples generated by playing with the system.  Such an 
explanation is likely to take the form of a rule that incorrectly assigns a small 
set of specific variables unique significance and treats their effect on the 
outcome as linear, monotonic, and independent.  Thus, for already simple 
models that can be explained, interactive approaches may be useful for 
giving people a feel without disclosing the algorithm, but for truly inscrutable 
systems, they could well be dangerous. 
 

 207. Mireille Hildebrandt, Profiling:  From Data to Knowledge, 30 DATENSCHUTZ UND 
DATENSICHERHEIT 548, 552 (2006); see also Mireille Hildebrandt & Bert-Jaap Koops, The 
Challenges of Ambient Law and Legal Protection in the Profiling Era, 73 MODERN L. REV. 
428, 449 (2010).  See generally NICHOLAS DIAKOPOULOS, ALGORITHMIC ACCOUNTABILITY 
REPORTING:  ON THE INVESTIGATION OF BLACK BOXES (2013), http://towcenter.org/wp-
content/uploads/2014/02/78524_Tow-Center-Report-WEB-1.pdf [https://perma.cc/H9UU-
WK6V]. 
 208. See Hildebrandt & Koops, supra note 207, at 450. 
 209. See id. 
 210. See INFO. COMM’R’S OFFICE, BIG DATA, ARTIFICIAL INTELLIGENCE, MACHINE 
LEARNING AND DATA PROTECTION 87–88 (2017), https://ico.org.uk/media/for-organisations/ 
documents/2013559/big-data-ai-ml-and-data-protection.pdf [https://perma.cc/J97E-N5NV]. 
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*          *          * 

Remarkably, the techniques available within machine learning for 
ensuring interpretability correspond well to the different types of explanation 
required by existing law.  There are, on the one hand, varied strategies and 
techniques available to practitioners that can deliver models whose inner 
workings can be expressed succinctly and sensibly to a human observer, 
whether an expert (e.g., a regulator) or lay person (e.g., an affected 
consumer).  Laws like the GDPR that seek logic-like explanations would be 
well served by these methods.  On the other hand, outcome-focused laws like 
ECOA that care only about principal reasons—and not the set of rules that 
govern all decisions—have an obvious partner in tools that furnish post hoc 
accounts of the factors that influenced any particular determination. 

Where they succeed, these methods can be used to meet the demands of 
regulatory regimes that demand outcome- and logic-like explanations.  Both 
techniques have their limitations, however.  If highly sophisticated machine 
learning tools continue to be used, interpretability may be difficult to achieve 
in some instances, especially when the phenomena at issue are themselves 
complex.  Post hoc accounts that list the factors most relevant to a specific 
decision may not work well when the number of relevant factors grows 
beyond a handful—a situation that is most likely to occur when such methods 
would be most attractive. 

Notably, neither the techniques nor the laws go beyond describing the 
operation of the model.  Though they may help to explain why a decision was 
reached or how decisions are made, they cannot address why decisions 
happen to be made that way.  As a result, standard approaches to explanation 
might not help determine whether the particular way of making decisions is 
normatively justified. 

III.  FROM EXPLANATION TO INTUITION 

So far, the majority of discourse around understanding machine learning 
models has seen the proper task as opening the black box and explaining what 
is inside.211  Where Part II.A discussed legal requirements and Part II.B 
discussed technical approaches, here we discuss the motivations for both.  
Based on a review of the literature, scholars, technologists, and policymakers 
seem to have three different beliefs about the value of opening the black 
box.212  The first is a fundamental question of autonomy, dignity, and 
 

 211. See supra note 16 and accompanying text. 
 212. These three rationales seem to track the rationales for ECOA’s adverse action notices 
as described in Part II.A.1.  There is also scholarship that offers a fourth rationale, which 
includes due process and rule-of-law concerns.  We set these concerns aside because they 
pertain to government use of algorithms, while this Article focuses on regulation of the private 
sector. See Brennan-Marquez, supra note 19, at 1288–94 (discussing “rule-of-law” principles 
with respect to police and judicial actions); Cary Coglianese & David Lehr, Regulating by 
Robot:  Administrative Decision Making in the Machine-Learning Era, 105 GEO. L.J. 1147, 
1184–90, 1206–09 (2017) (discussing due process and reason-giving in administrative law); 
ECLT Seminars, [HUML16] 03:  Katherine Strandburg, Decision-Making, Machine Learning 
and the Value of Explanation, YOUTUBE (Jan. 23, 2017), https://www.youtube.com/ 
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personhood.  The second is a more instrumental value:  educating the subjects 
of automated decisions about how to achieve different results.  The third is a 
more normative question—the idea that explaining the model will allow 
people to debate whether the model’s rules are justifiable. 

The black-box-only approach is limited for the purposes of justifying 
decision-making.  The first two beliefs are not about justifying decisions at 
all, and therefore serve a different purpose.  The third is explicitly about 
justification, so our critique is directed not at its intent, but its operation.  For 
those concerned with the justification for decision-making, the goal of 
explanation should be to find a way to bring intuition to bear in deciding 
whether the model is well justified.  This Part explains both the power and 
limitations of such an approach. 

A.  The Value of Opening the Black Box 

This Part identifies and elaborates the three rationales that apparently 
underlie most of the popular and scholarly calls for explanation. 

1.  Explanation as Inherent Good 

There are several reasons to view explanation as a good unto itself, and 
perhaps a necessary part of a system constrained by law, including a respect 
for autonomy, dignity, and personhood.213  There is a fundamental difference 
between wanting an explanation for its own sake and wanting an explanation 
for the purpose of vindicating certain specific empowerment or 
accountability goals.  Fears about a system that lacks explanation are visceral.  
This fear is best exemplified in popular consciousness by Franz Kafka’s The 
Trial,214 a story about a faceless bureaucracy that makes consequential 
decisions without input or understanding from those affected.215 

This concern certainly motivates some lawmakers and scholars.  In his 
article, “Privacy and Power,” Daniel Solove refers to this as a 
“dehumanizing” state of affairs characterized by the “powerlessness and 
vulnerability created by people’s lack of any meaningful form of 
participation” in the decision.216  David Luban, Alan Strudler, and David 
Wasserman argue that “one central aspect of the common good”—which 
they argue forms the basis of law’s legitimacy—“lies in what we might call 
the moral intelligibility of our lives” and that the “horror of the bureaucratic 
process lies not in officials’ mechanical adherence to duty, but rather in the 

 

watch?v=LQj3nbfSkrU [https://perma.cc/CX7S-GCUG] (discussing procedural due process 
and explanations). 
 213. See Lawrence B. Solum, Legal Personhood for Artificial Intelligences, 70 N.C. L. 
REV. 1231, 1238–39 (1992) (explaining that while “person” usually means human being in 
the law, “personhood” is a question of the attendant “bundle of rights and duties”). 
 214. FRANZ KAFKA, DER PROCESS (1925). 
 215. See Daniel J. Solove, Privacy and Power:  Computer Databases and Metaphors for 
Information Privacy, 53 STAN. L. REV. 1393, 1397–98 (2001) (arguing that Kafka’s The Trial 
is a better metaphor than George Orwell’s 1984 for modern anxieties over data). 
 216. Id. at 1423. 
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individual’s ignorance of what the fulfillment of his or her duty may 
entail.”217  The concerns of dignity and personhood certainly motivate the 
data protection regime in Europe,218 if less directly the law in the United 
States.219 

We lack the space (and the expertise) to do proper justice to the 
personhood argument for explanation.  Accordingly, our goal here is to flag 
it and set it aside as a concern parallel to our broader concerns about enabling 
justifications for automated decisions. 

To the extent that the personhood rationale can be converted to a more 
actionable legal issue, it is reflected in the concept of “procedural justice,” 
which was most famously championed by Tom Tyler.  Procedural justice is 
the essential quality of a legal system that shows respect for its participants, 
which might entail transparency, consistency, or even politeness.220  Tyler 
and others have shown that people care deeply about procedural justice, to 
the point that they might find a proceeding more tolerable and fair if their 
procedural-justice concerns are satisfied even if they do not obtain their 
preferred outcome in the proceeding.221  Procedural justice, Tyler argues, is 
necessary on a large scale because it allows people to buy into the legal 
system and voluntarily comply with the law, both of which are essential parts 
of a working and legitimate legal system.222  Presumably, to the extent that 
automated decisions can be legally or morally justified, people must accept 
them rather than have them imposed, and as a result, the personhood rationale 
for model explanation also implicates procedural justice. 

Ultimately, that there is inherent value in explanation is clear.  But as a 
practical matter, those concerns are difficult to administer, quantify, and 
compare to other concerns.  Where there are genuine trade-offs between 
explanation and other normative values such as accuracy or fairness, the 
inherent value of explanation neither automatically trumps competing 
considerations nor provides much guidance as to the type of explanation 
required.  Therefore, while inherent value cannot be ignored, other rationales 
remain important. 

 

 217. David Luban, Alan Strudler & David Wasserman, Moral Responsibility in the Age of 
Bureaucracy, 90 MICH. L. REV. 2348, 2354 (1992). 
 218. Lee A. Bygrave, Minding the Machine:  Article 15 of the EC Data Protection 
Directive and Automated Profiling, 17 COMPUTER L. & SECURITY REP. 17, 19 (2001); Meg 
Leta Jones, The Right to a Human in the Loop:  Political Constructions of Computer 
Automation and Personhood, 47 SOC. STUD. SCI. 216, 223–24 (2017). 
 219. See James Q. Whitman, The Two Western Cultures of Privacy:  Dignity Versus 
Liberty, 113 YALE L.J. 1151, 1214–15 (2004). 
 220. Tom R. Tyler, What Is Procedural Justice?:  Criteria Used by Citizens to Assess the 
Fairness of Procedures, 22 LAW & SOC’Y REV. 103, 132 (1988). 
 221. See, e.g., Tom R. Tyler, Procedural Justice, Legitimacy, and the Effective Rule of 
Law, 30 CRIME & JUST. 283, 291 (2003); Tyler, supra note 220, at 128. 
 222. TOM R. TYLER, WHY PEOPLE OBEY THE LAW 6–7 (2006). 
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2.  Explanation as Enabling Action 

For others, the purpose of explanation extends to providing actionable 
information about the rendering of decisions, such that affected parties can 
learn if and how they might achieve a different outcome.  Explanations are 
valuable, on this account, because they empower people to effectively 
navigate the decision-making process.  Such beliefs are evident in the adverse 
action notice requirements of credit-scoring regulations,223 but they have 
come to dominate more recent debates about the regulatory function of 
requiring explanations of model-driven decisions more generally. 

Across a series of recent papers, the debate has coalesced around two 
distinct, but related, questions.  The first is whether and when the GDPR 
requires explanations of the logic or outcome of decision-making.  The 
second is how to best explain outcomes in an actionable way. 

The first question, whether to focus on outcome- or logic-based 
explanations, originates with an article by Sandra Wachter, Brent Mittelstadt, 
and Luciano Floridi.224  These scholars split explanations between “system 
functionality” and “specific decisions”—a distinction functionally similar to 
our outcome- and logic-based framework.225  This mirrors the debate in the 
technical community about the best way to understand the meaning of 
interpretability.  As described in Part II.B, the main split is whether to aim 
for interpretable models or to account for specific decisions.  Drawing 
together the legal and machine learning literature, Lilian Edwards and 
Michael Veale have created a similar, but slightly altered distinction between 
“model-centric” and “subject-centric” explanations.226  While not identical, 
subject-centric explanations are another way to explain specific outcomes to 
individuals.227 

As the discussion has evolved in both the legal and computer science 
scholarship, new work has converged on the belief that explaining specific 
outcomes is the right approach.  The debate has therefore shifted to the 

 

 223. See supra Part II.A.1. 
 224. Wachter et al., supra note 23. 
 225. Id. at 78.  As Wachter and colleagues define it, system functionality is “the logic, 
significance, envisaged consequences, and general functionality of an automated decision-
making system,” and explanations of specific decisions are “the rationale, reasons, and 
individual circumstances of a specific automated decision.” Id.  While the distinction is 
broadly useful, our definitions differ from theirs and we believe the line between outcome- 
and logic-based explanations is less clear than they suggest. See Selbst & Powles, supra note 
90, at 239 (arguing that, given the input data, a description of the logic will provide a data 
subject with the means to determine any particular outcome, and thus, explanations of the 
logic will often also explain individual outcomes). 
 226. Edwards & Veale, supra note 143, at 55–56.  They define these terms as follows:  
“Model-centric explanations (MCEs) provide broad information about a [machine learning] 
model which is not decision or input-data specific,” while “[s]ubject-centric explanations 
(SCEs) are built on and around the basis of an input record.” 
 227. Ultimately, Edwards and Veale argue, as we do, that the explanation debate had been 
restricted to this question. Id.  Recognizing that explanations are no panacea, the rest of their 
paper argues that the GDPR provides tools other than a right to explanation that could be more 
useful for algorithmic accountability. 
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second question, which focuses on the many different methods by which 
outcomes can be explained. 

An interdisciplinary working group at the Berkman Klein Center for 
Internet and Society begin by recognizing that explanations are infinitely 
variable in concept, but claim that “[w]hen we talk about an explanation for 
a decision, . . . we generally mean the reasons or justifications for that 
particular outcome, rather than a description of the decision-making process 
in general.”228  They propose three ways to examine a specific decision:  
(1) the main factors in a decision, (2) the minimum change required to switch 
the outcome of a decision, and (3) the explanations for similar cases with 
divergent outcomes or divergent cases with similar outcomes.229  Wachter, 
Mittelstadt, and Chris Russell have a still narrower focus, writing about 
counterfactual explanations that represent “the smallest change to the world” 
that would result in a different answer.230  They envision a distance metric 
where, if one were to plot all n features in an n-dimensional space, the 
counterfactual is the shortest “distance” from the data subject’s point in the 
space (defined by the values of the features she possesses) to the surface that 
makes up the outer edge of a desirable outcome.231 

Accordingly, counterfactual explanations are seen as fulfilling the three 
goals of explanations discussed in this Part:  (1) to help an individual 
understand a decision, (2) to enable that individual to take steps to achieve a 
better outcome, and (3) to provide a basis for contesting the decision.232  
When applying the strategy of counterfactual explanations, however, it is 
clear that most of the value comes from the second rationale:  actionable 
explanations.  Wachter and colleagues assert that counterfactual explanations 
are an improvement over the existing requirements of the GDPR because, as 
a matter of positive law, the Regulation requires almost nothing except a 
“meaningful overview,” which can be encapsulated via pictorial “icons” 
depicting the type of data processing in question.233  Counterfactual 
explanations, in contrast, offer something specific to the data subject and will 
thus be more useful in informing an effective response.  But if their 
interpretation of the law is correct—that the GDPR requires no 

 

 228. Doshi-Velez & Kortz, supra note 201, at 2. 
 229. Id. at 3. 
 230. Wachter et al., supra note 143, at 845. 
 231. Id. at 850–54.  Distance metrics are a way to solve this problem.  Hall and colleagues 
describe another distance metric that is used in practice. Hall et al., supra note 120.  They 
employ a distance metric to identify the features that need to change the most to turn a credit 
applicant into the ideal applicant. Id.  Alternatively, other methods could be identifying the 
features over which a consumer has the most control, the features that would cost a consumer 
the least to change, or the features least coupled to other life outcomes and thus easier to 
isolate.  The main point is that the law provides no formal guidance as to the proper metric for 
determining what reasons are most salient, and this part of the debate attempts to resolve this 
question. See 12 C.F.R. § 1002.9 supp. I (2018). 
 232. Wachter et al., supra note 143, at 843. 
 233. Id. at 865. 
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explanation234—then their claim is that counterfactuals offer more than 
literally nothing, which is not saying much.  On contestability, Wachter, 
Mittelstadt, and Russell ultimately concede that to contest a decision, it is 
likely necessary to understand the logic of decision-making rather than to just 
have a counterfactual explanation of a specific decision.235  The real value, 
then, of their intervention and others like it, is to better allow data subjects to 
alter their behavior when a counterfactual suggests that a decision is based 
on alterable characteristics.236 

Empowering people to navigate the algorithms that affect their lives is an 
important goal and has genuine value.  This is a pragmatic response to a 
difficult problem, but it casts the goal of explanations as something quite 
limited:  ensuring people know the rules of the game so they can play it better.  
This approach is not oriented around asking if the basis of decisions is well 
justified; rather it takes decisions as a given and seeks to allow those affected 
by them to avoid or work around bad outcomes.237  Rather than using 
explanations to ask about the justifications for decision-making, this 
approach shifts responsibility for bad outcomes from the designers of 
automated decisions to those affected by them.238 

3.  Explanation as Exposing a Basis for Evaluation 

The final value ascribed to explanation is that it forces the basis of 
decision-making into the open and thus provides a way to question the 
validity and justifiability of making decisions on these grounds.  As Pauline 
Kim has observed: 

 

 234. The positive law debate about the right to explanation is not the subject of this Article, 
but suffice it to say, there is a healthy debate about it in the literature. See supra note 143 and 
accompanying text for a discussion. 
 235. Wachter et al., supra note 143, at 878.  Their one example where a counterfactual can 
lead to the ability to contest a decision is based on data being inaccurate or missing rather than 
based on the inferences made.  Thus, it is actually the rare situation specifically envisioned by 
FCRA, where the adverse action notice reveals that a decision took inaccurate information 
into account.  Because of the deficiencies of the FCRA approach, discussed supra in Part II.A, 
this will not solve the general problem. 
 236. As Berk Ustun and colleagues point out, an explanation generated by counterfactual 
techniques will not necessarily be actionable unless intentionally structured to be so. Berk 
Ustun et al., Actionable Recourse in Linear Classification 2 (Sept. 18, 2018) (unpublished 
manuscript), https://arxiv.org/abs/1809.06514 [https://perma.cc/RPJ4-P4AP]. 
 237. Mireille Hildebrandt, Primitives of Legal Protection in the Era of Data-Driven 
Platforms, 2 GEO. L. TECH. REV. 252, 271 (2018) (“Though it is important that decisions of 
automated systems can be explained (whether ex ante or ex post; whether individually or at a 
generic level), we must keep in mind that in the end what counts is whether such decisions 
can be justified.”). 
 238. This is remarkably similar to the longstanding privacy and data protection debate 
around notice and consent, where the goal of notice is to better inform consumers and data 
subjects, and the assumption is that better information will lead to preferable results. See 
generally Daniel J. Solove, Privacy Self-Management and the Consent Dilemma, 126 HARV. 
L. REV. 1880 (2013).  In reality, this often fails to protect privacy because it construes privacy 
as a matter of individual decision-making that a person can choose to protect rather than 
something that can be affected by others with more power. See, e.g., Roger Ford, Unilateral 
Invasions of Privacy, 91 NOTRE DAME L. REV 1075 (2016). 
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When a model is interpretable, debate may ensue over whether its use 
is justified, but it is at least possible to have a conversation about whether 
relying on the behaviors or attributes that drive the outcomes is normatively 
acceptable.  When a model is not interpretable, however, it is not even 
possible to have the conversation.239 

But what does it mean to have a conversation based on what an interpretable 
model reveals? 

In a seminal study, Rich Caruana and colleagues provide an answer to that 
question.240  They discovered that a model trained to predict complications 
from pneumonia had learned to associate asthma with a reduced risk of 
death.241  To anyone with a passing knowledge of asthma and pneumonia, 
this result was obviously wrong.  The model was trained on clinical data from 
past pneumonia patients, and it turns out that patients who suffer from asthma 
truly did end up with better outcomes.242  What the model missed was that 
these patients regularly monitored their breathing, causing them to go to the 
hospital earlier.243  Then, once at the hospital, they were considered higher 
risk, so they received more immediate and focused treatment.244  Caruana 
and colleagues drew a general lesson from this experience:  to avoid learning 
artifacts in the data, the model should be sufficiently simple that experts can 
inspect the relationships uncovered to determine if they correspond with 
domain knowledge.  Thus, on this account, the purpose of explanation is to 
permit experts to check the model against their intuition. 

This approach assumes that when a model is made intelligible, experts can 
assess whether the relationships uncovered by the model seem appropriate, 
given their background knowledge of the phenomenon being modeled.  This 
was indeed the case for asthma, but this is not the general case.  Often, rather 
than assigning significance to features in a way that is obviously right or 
wrong, a model will uncover a relationship that is simply perceived as 
strange.  For example, if the hospital’s data did not reveal a dependence on 
an asthma diagnosis—which is clearly linked to pneumonia through 
breathing—but rather revealed a dependence on skin cancer, it would be less 
obvious what to make of that fact.  It would be wrong to simply dismiss it as 
an artifact of the data, but it also does not fit with any intuitive story even a 
domain expert could tell. 

Another example of this view of explanation is the approach to 
interpretability known as Local Interpretable Model-Agnostic Explanations 
(“LIME”).245  It has generated one of the canonical examples of the value of 
 

 239. Kim, supra note 4, at 922–23. 
 240. Rich Caruana et al., Intelligible Models for HealthCare:  Predicting Pneumonia Risk 
and Hospital 30-Day Readmission, in PROCEEDINGS OF THE 21TH ACM SIGKDD 
INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING 1721, 1721 
(2015). 
 241. Id. 
 242. Id. 
 243. Id. 
 244. Id. 
 245. Ribeiro et al., supra note 197.  This is one of the methods described supra in Part 
II.B.2. 
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interpretability in machine learning.  Marco Ribeiro and colleagues used 
LIME to investigate a deep-learning model trained to distinguish images of 
wolves from huskies.  The authors discovered that the model did not rely 
primarily on the animals’ features, but on whether snow appeared in the 
background of a photo.246 

There are three reasons this is such a compelling example.  First, what 
LIME identified as the distinguishing feature—snow—is legible to humans.  
Second, this feature is obviously not a property of the category “wolf.”  
Third, humans can tell a story about why this mistake occurred:  wolves are 
more likely to be found in an environment with snow on the ground.  
Although this story may not actually be true, the important point is that we 
can convince ourselves it is.247  Like the asthma example, the ability to 
determine that the model has overfit the training data relies on the inherent 
legibility of the relevant feature, the existence of background knowledge 
about that feature, and our ability to use the background knowledge to tell a 
story about why the feature is important.  In this example, the realization 
relies on something closer to common sense than to specialized expertise, but 
the explanation serves the same function—to allow observers to bring their 
intuition to bear in evaluating the model. 

The final examples come from James Grimmelmann and Daniel 
Westreich,248 as well as Kim, whose work was discussed earlier.249  
Grimmelmann and Westreich imagine a scenario in which a model learns to 
distinguish between job applicants on the basis of a feature—musical taste—
that is both correlated with job performance and membership in a protected 
class.250  They further stipulate that job performance varies by class 
membership.251  As they see it, this poses the challenge of determining 
whether the model, by relying on musical tastes, is in fact relying on 
protected-class membership.252 

Grimmelmann and Westreich then argue that if one cannot tell a story 
about why musical taste correlates with job performance, the model must be 
learning something else.253  They propose a default rule that the “something 
else” be considered membership in a protected class unless it can be shown 
 

 246. Ribeiro et al., supra note 197, at 1142–43.  This is a textbook example of overfitting 
the training data. 
 247. In fact, while writing this section, we remembered the finding, but until we consulted 
the original source we disagreed with each other about whether the wolves or huskies were 
the ones pictured in snow.  This suggests that the story would have been equally compelling 
if the error had been reversed. 
 248. Grimmelmann & Westreich, supra note 75. 
 249. Kim, supra note 4. 
 250. Grimmelmann & Westreich, supra note 75, at 166–67. 
 251. Id. at 167. 
 252. The only reason a model would learn to do this is if:  (1) class membership accounts 
for all the variance in the outcome of interest or (2) class membership accounts for more of 
the variance than the input features.  In the second case, the easy fix would be to include a 
richer set of features until class membership no longer communicates any useful information.  
The only way that adding features could have this effect, though, is if the original model was 
necessarily less than perfectly accurate, in which case a better model should have been used. 
 253. Grimmelmann & Westreich, supra note 75, at 174. 
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otherwise, specifically by the defendant.254  The problem with this reasoning 
is that the model might not be learning protected-class membership, but a 
different latent variable that explains the relationship between musical taste 
and job performance—an unobserved or unknown characteristic that affects 
both musical taste and job performance.  By assuming that it should be 
possible to tell a story about such a variable if it exists, they—as in the 
examples above—fail to account for the possibility of a strange, but 
legitimate, result.  They use the ability to tell a story as a proxy for the 
legitimacy of the decision-making, but that only works if a justification, or 
lack thereof, immediately falls out of the description, as it did in the asthma 
and snow examples. 

Kim uses a real example to make a similar point.  She cites a study stating 
that employees who installed web browsers that did not come with their 
computers stay longer on their job.255  She then speculates that either there is 
an unobserved variable that would explain the relationship or it is “entirely 
coincidental.”256  To Kim, what determines whether the relationship is 
“substantively meaningful” rather than a mere statistical coincidence is 
whether we can successfully tell ourselves such stories.257  Like 
Grimmelmann and Westreich, for Kim, if no such story can be told, and the 
model has a disparate impact, it should be illegal.258  What these examples 
demonstrate is that, whether one seeks to adjudicate model validity or 
normative justifications, intuition actually plays the same role. 

Unlike the first two values of explanation, this approach has the ultimate 
goal of evaluating whether the basis of decision-making is well justified.  It 
does not, however, ask the question:  “Why are these the rules?”  Instead, it 
makes two moves.  The first two examples answered the question, “What are 
the rules?” and expected that intuition will furnish an answer for both why 
the rules are what they are and whether they are justified.  The latter two 
examples instead argued that decisions should be legally restricted to 
intuitive relationships.  Such a restriction short-circuits the need to ask why 
the rules are what they are by guaranteeing up front that an answer will be 
available.259 

 

 254. Id. at 173. 
 255. Kim, supra note 4, at 922. 
 256. Id.  So too did the chief analytics officer in the company involved, in an interview. 
Joe Pinsker, People Who Use Firefox or Chrome Are Better Employees, ATLANTIC (Mar. 16, 
2015), https://www.theatlantic.com/business/archive/2015/03/people-who-use-firefox-or-
chrome-are-better-employees/387781/ [https://perma.cc/3MYM-SXAQ] (“‘I think that the 
fact that you took the time to install Firefox on your computer shows us something about you.  
It shows that you’re someone who is an informed consumer,’ he told Freakonomics Radio.  
‘You’ve made an active choice to do something that wasn’t default.’”). 
 257. Kim, supra note 4, at 917. 
 258. Id. 
 259. This might also explain the frequent turn to causality as a solution.  Restricting the 
model to causal relationships also short-circuits the need to ask the “why” question because 
the causal mechanism is the answer.  Ironically, a causal model need not be intuitive, so it may 
not satisfy the same normative desires as intuition seems to. See supra note 78. 
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These two approaches are similar, but differ in the default rule they apply 
to strange cases.  In the case of the two technical examples, the assumption 
is that obviously flawed relationships will present themselves and should be 
overruled; relationships for which there is no intuitive explanation may 
remain.  The two legal examples, by contrast, are more conservative.  They 
presume that obviously correct relationships will show themselves, so that 
everything else should be discarded by default, while allowing for the 
possibility of defeating such a presumption.  Both are forced to rely on 
default rules to handle strange, but potentially legitimate, cases because the 
fundamental reliance on intuition does not give them tools to evaluate these 
cases. 

B.  Evaluating Intuition 

Much of the anxiety around inscrutable models comes from the legal 
world’s demands for justifiable decision-making.  That decisions based on 
machine learning reflect the particular patterns in the training data cannot be 
a sufficient explanation for why a decision is made the way it is.  Evaluating 
whether some basis for decision-making is fair, for example, will require 
tools that go beyond standard technical tests of validity that would already 
have been applied to the model during its development.260  While the law 
gives these tests some credence, reliance on accuracy is not normatively 
adequate with respect to machine learning.261 

For many, the presumed solution is requiring machine learning models to 
be intelligible.262  What the prior discussion demonstrates, though, is that this 
presumption works on a very specific line of reasoning that is based on the 
idea that with enough explanation, we can bring intuition to bear in 
evaluating decision-making.  As Kim observes: 

Even when a model is interpretable, its meaning may not be clear.  Two 
variables may be strongly correlated in the data, but the existence of a 
statistical relationship does not tell us if the variables are causally related, 
or are influenced by some common unobservable factor, or are completely 
unrelated.263 

 

 260. Even among practitioners, the interest in interpretability stems from warranted 
suspicion of the power of validation; there are countless reasons why assessing the likely 
performance of a model against an out-of-sample test set will fail to accurately predict a 
model’s real-world performance.  Yet even with these deep suspicions, practitioners still 
believe in validation as the primary method by which the use of models can and should be 
justified. See Hand, supra note 182, at 12–13.  In contrast, the law has concerns that are 
broader than real-world performance, which demand very different justifications for the basis 
of decision-making encoded in machine learning models. 
 261. Barocas & Selbst, supra note 4, at 673 (“[T]he process can result in disproportionately 
adverse outcomes concentrated within historically disadvantaged groups in ways that look a 
lot like discrimination.”). 
 262. See Brennan-Marquez, supra note 19, at 1253; Grimmelmann & Westreich, supra 
note 75, at 173; Kim, supra note 4, at 921–22. 
 263. Kim, supra note 4, at 922. 
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Her response is to constrain the model to features that bear an intuitive 
relationship to the outcome.264 

This way of thinking originates in disparate impact doctrine, which—
among several ways of describing the requirement—calls for an employment 
test to have a “manifest relationship” to future job performance.265  But there 
is a difference between a manifest relationship of a model to job performance 
and a manifest relationship of a particular feature to job performance.  
Models can be shown to have a manifest relationship to job performance if 
the target variable is manifestly related to job performance and the model is 
statistically valid.  This is true even if none of the individual features are 
manifestly related.266  People who advocate for a nexus between features and 
the outcome are dissatisfied with a purely statistical test and want some other 
basis to subject a model to normative assessment.  Models must be restricted 
to intuitive relationships, the logic goes, so that such a basis will exist. 

Regulatory guidance evinces similar reasoning.  In 2011, the Federal 
Reserve issued formal guidance on model risk management.267  The purpose 
of the document was to expand on prior guidance that was limited to model 
validation.268  The guidance notes that models “may be used incorrectly or 
inappropriately” and that banks need diverse methods to evaluate them 
beyond statistical validation.269  Among other recommendations discussed in 
Part IV, the guidance recommends “outcomes analysis,” which calls for 
“expert judgment to check the intuition behind the outcomes and confirm that 
the results make sense.”270 

In an advisory bulletin about new financial technology, the Federal 
Reserve Board recommended that individual features have a “nexus” with 
creditworthiness to avoid discriminating in violation of fair lending laws.271  
In their view, a nexus enables a “careful analysis” about the features assigned 

 

 264. Id.; cf. Nick Seaver, Algorithms as Culture, BIG DATA & SOC’Y, July–Dec. 2017, at 6 
(“To make something [accountable] means giving it qualities that make it legible to groups of 
people in specific contexts.  An accountable algorithm is thus literally different from an 
unaccountable one—transparency changes the practices that constitute it.  For some critics, 
this is precisely the point:  the changes that transparency necessitates are changes that we want 
to have.”). 
 265. Barocas & Selbst, supra note 4, at 702 (“A challenged employment practice must be 
‘shown to be related to job performance,’ have a ‘manifest relationship to the employment in 
question,’ be ‘demonstrably a reasonable measure of job performance, bear some relationship 
to job-performance ability,’ []or ‘must measure the person for the job and not the person in 
the abstract.’” (quoting Linda Lye, Comment, Title VII’s Tangled Tale:  The Erosion and 
Confusion of Disparate Impact and the Business Necessity Defense, 19 BERKELEY J. EMP. & 
LAB. L. 315, 321 (1998) (footnotes omitted) (quoting Griggs v. Duke Power Co., 401 U.S. 424 
(1971)))). 
 266. Id. at 708. 
 267. BD. OF GOVERNORS OF THE FED. RESERVE SYS., OFFICE OF THE COMPTROLLER OF THE 
CURRENCY, SR LETTER 11-7, SUPERVISORY GUIDANCE ON MODEL RISK MANAGEMENT (2011), 
https://www.federalreserve.gov/supervisionreg/srletters/sr1107a1.pdf [https://perma.cc/AR 
85-AASR]. 
 268. Id. at 2. 
 269. Id. at 4. 
 270. Id. at 13–14. 
 271. Evans, supra note 121, at 4. 
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significance in a model predicting creditworthiness.272  Here, intuitiveness is 
read into ECOA as a natural requirement of having to justify decision-making 
that generates a disparate impact via the “business-necessity” defense.273  
The business-necessity defense asks whether the particular decision-making 
mechanism has a tight enough fit with the legitimate trait being predicted274 
and whether there were equally effective but less discriminatory ways to 
accomplish the same task.  With a model that lacks intuitive relationships, a 
plaintiff could argue that the model is indirectly—and thus poorly—
measuring some latent and more sensible variable that should serve as the 
actual basis of decision-making.  The Federal Reserve Board guidance 
suggests that one way to avoid an uncertain result in such litigation is to limit 
decision-making to features that bear an intuitive—and therefore 
justifiable—relationship to the outcome of interest.  While it is not clear that 
relying on proxies for an unrecognized latent variable presents problems 
under current disparate impact doctrine,275 the guidance treats an intuition 
requirement as a prophylactic.  This reasoning seems to underlie the 
recommendations of Kim as well as Grimmelmann and Westreich. 

What should be clear by now is that intuition is the typical bridge from 
explanation to normative assessment.  This can be a good thing.  Intuition is 
powerful.  It is a ready mechanism by which considerable knowledge can be 
brought to bear in evaluating machine learning models.  Such models are 
myopic, having visibility into only the data upon which they were trained.276  
Humans, in contrast, have a wealth of insights accumulated through a broad 
range of experiences, typically described as “common sense.”  This 
knowledge allows us to immediately identify and discount patterns that 
violate our well-honed expectations and to recognize and affirm discoveries 
that align with experience.  In fact, intuition is so powerful that humans 
cannot resist speculating about latent variables or causal mechanisms when 
confronted by unexplained phenomena. 

Intuition can also take the form of domain expertise, which further 
strengthens the capacity to see where models may have gone awry.  The 
social sciences have a long history of relying on face validity to determine 
whether a model is measuring what it purports to measure.277  A model that 
assigns significance to variables that seem facially irrelevant is given little 
credence or is subject to greater scrutiny.  Such a practice might seem ad hoc, 
but questioning face validity is a fundamental part of the social-scientific 
 

 272. Id. 
 273. It is interesting that the demand for intuitiveness, on this account, comes not from the 
procedural requirements of the adverse action notices—the part of ECOA most obviously 
concerned with explanations—but from the substantive concerns of disparate impact doctrine. 
 274. See, e.g., Watson v. Fort Worth Bank & Tr., 487 U.S. 977, 1010 (1988) (Blackmun, 
J., concurring) (explaining that a business-necessity defense must be carefully tailored to 
objective, relevant job qualifications). 
 275. See Barocas & Selbst, supra note 4, at 709–10 (discussing the problems with the “fix-
the-model” approach to alternative practice claims). 
 276. Andrew D. Selbst, A Mild Defense of Our New Machine Overlords, 70 VAND. L. REV. 
EN BANC 87, 101 (2017). 
 277. See supra note 73 and accompanying text. 
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process.  Crucially, intuition allows us to generate competing explanations 
that account for the observed facts and to debate their plausibility.278 

Importantly, however, intuition has its downsides.  Most immediately, it 
can be wrong.  It can lead us to discount valid models because they are 
unexpected or unfamiliar, or to endorse false discoveries because they align 
with existing beliefs.279  Intuition encourages us to generate “just so” stories 
that appear to make good sense of the presented facts.  Such stories may feel 
coherent but are actually unreliable.  In fact, the rich literature on cognitive 
biases—including the “narrative fallacy”—is really an account of the dangers 
of intuition.280  While intuition is helpful for assessing evidently good and 
bad results, it is less useful when dealing with findings that do not comport 
with or even run counter to experience.  The overriding power of intuition 
means that strange results will stand out, but intuition may not point in a 
productive direction for making these any more sensible. 

This is a particularly pronounced problem in the case of machine learning, 
as its value lies largely in finding patterns that go well beyond human 
intuition.  The problem in such cases is not only that machine learning models 
might depart from intuition, but that they might not even lend themselves to 
hypotheses about what accounts for the models’ discoveries.  Parsimonious 
models lend themselves to more intuitive reasoning, but they have limits—a 
complex world may require complex models.  In some cases, machine 
learning will have the power to detect the subtle patterns and intricate 
dependencies that can better account for reality. 

If the interest in explanation stems from its intrinsic or pragmatic value, 
then addressing inscrutability is worthwhile for its own sake.  But if we are 
interested in whether models are well justified, then addressing inscrutability 
only gets us part of the way.  We should consider how else to justify models.  
We should think outside the black box and return to the question:  Why are 
these the rules? 

IV.  DOCUMENTATION AS EXPLANATION 

Limiting explanation of a model to its internal mechanics forces us to rely 
on intuition to guess at why the model’s rules are what they are.  But what 
would it look like for regulation to directly seek an answer to that question?  
By now, it is well understood that data are human constructs281 and that 
subjective decisions pervade the modeling and decision-making process.282  

 

 278. See, e.g., Brennan-Marquez, supra note 19; Michael Pardo & Ronald J. Allen, 
Juridical Proof and the Best Explanation, 27 LAW & PHIL. 223, 230 (2008). 
 279. Raymond S. Nickerson, Confirmation Bias:  A Ubiquitous Phenomenon in Many 
Guises, 2 REV. GEN. PSYCHOL. 175, 175 (1998). 
 280. See generally KAHNEMAN, supra note 77. 
 281. Lisa Gitelman & Virginia Jackson, Introduction to RAW DATA IS AN OXYMORON 1, 3 
(Lisa Gitelman ed., 2013); see also danah boyd & Kate Crawford, Critical Questions for Big 
Data:  Provocations for a Cultural, Technological, and Scholarly Phenomenon, 15 INFO., 
COMM. & SOC’Y 662, 666–68 (2012). 
 282. Barocas & Selbst, supra note 4, at 673; see also Seaver, supra note 264, at 5. 
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Explaining why the model works as it does requires accounting for these 
decisions. 

Furnishing such answers will require process, documentation, and access 
to that documentation.  This can be done in a public format, with impact 
assessments, or companies can do it privately, with access triggered on some 
basis, like discovery in litigation. 

A.  The Information Needed to Evaluate Models 

When we seek to evaluate the justifications for decision-making that relies 
on a machine learning model, we are actually asking about the institutional 
and subjective process behind its development.  The Federal Reserve Board 
guidance discussed in Part III.B moves in this direction by recommending 
documentation, but its approach appears to be mostly about validation—how 
to validate well, thoroughly, on an ongoing basis, and in preparation for a 
future legal challenge.283  Careful validation is essential and nontrivial,284 
but it is also not enough.  Normatively evaluating decision-making requires, 
at least, an understanding of:  (1) the values and constraints that shape the 
conceptualization of the problem, (2) how these values and constraints 
inform the development of machine learning models and are ultimately 
reflected in them, and (3) how the outputs of models inform final decisions. 

To illustrate how each of these components work, consider credit scoring.  
What are the values embedded in credit-scoring models and under what 
constraints do developers operate?  Lenders could attempt to achieve 
different objectives with credit scoring at the outset:  Credit scoring could 
aim to ensure that all credit is ultimately repaid, thus minimizing default.  
Lenders could use credit scoring to maximize profit.  Lenders could also seek 
to find ways to offer credit specifically to otherwise overlooked applicants, 
as many firms engaged in alternative credit scoring seek to do.  Each of these 
different goals reflects different core values, but other value judgments might 
be buried in the projects as well.  For example, a creditor could be morally 
committed to offering credit as widely as possible, while for others that does 
not factor into the decision.  Or a creditor’s approach to regulation could be 
to either get away with as much as possible or steer far clear of regulatory 
scrutiny.  Each of these subjective judgments will ultimately inform the way 
a project of credit scoring is conceived. 

The developers of credit-scoring models will also face constraints and 
trade-offs.  For example, there might be limits on available talent with both 
domain expertise and the necessary technical skills to build models.  Models 
might be better informed if there were much more data available, even though 

 

 283. BD. OF GOVERNORS OF THE FED. RESERVE SYS., supra note 267.  The guidance wants 
developers to consider where the data comes from, whether it suffers from bias, whether the 
model is robust to new situations, whether due care has been taken with respect to potential 
limitations and outright faults with the model, and so on. Id. at 5–16; see also Edwards & 
Veale, supra note 143, at 55–56; Pauline T. Kim, Auditing Algorithms for Discrimination, 166 
U. PA. L. REV. ONLINE 189, 196 (2017). 
 284. Barocas & Selbst, supra note 4, at 680–92. 
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there are practical challenges to collecting so much data.  Ultimately, both 
trade-offs are issues of cost,285 but they include more practical realities as 
well, such as limitations on talent in the geographical area of the firm or 
privacy concerns that limit the collection of more data.  How to deal with 
these trade-offs is a judgment call every firm will have to make.286 

Another cost-related trade-off is competition.  Before credit scoring was 
popular, creditors used to work with borrowers over the lifetime of the loan 
to ensure repayment; credit scores first took hold in banks as a way to reduce 
the cost of this practice.287  Creditors today could return to that model, but it 
would likely involve offering higher interest rates across the board to account 
for increased operating costs, perhaps pushing such a firm out of the market.  
As a result, competition operates as a constraint that ultimately changes the 
decision process. 

The values of and constraints faced by a firm will lead to certain choices 
about how to build and use models.  As we have discussed in prior work, the 
subjective choices a developer makes include choosing target variables, 
collecting training data, labeling examples, and choosing features.288  
Developers must also make choices about other parts of the process, such as 
how to treat outliers, how to partition their data for testing, what learning 
algorithms to choose, and how and how much to tune the model, among other 
things.289  The act of developing models is quite complex and involves many 
subjective decisions by the developers. 

In the credit example, the values discussed above may manifest in the 
model in several ways.  For example, consider the different project objectives 
discussed above.  If a firm seeks to maximize profit, it may employ a model 
with a different target variable than a firm that seeks to minimize defaults.  
The target variable is often the outcome that the model developers want to 
maximize or minimize, so in the profit-seeking case, it would be expected 
profit per applicant, and in the risk-based case, it could be likelihood of 
default.  While the alternative credit-scoring model hypothesized above 
might rely on the same likelihood-of-default target variable, firms’ values are 
likely to influence the type of data they collect; they might seek alternative 
data sources, for example, because they are trying to reach underserved 
populations.  In addition to the values embedded a priori, the values of the 
firms dictate how they resolve the different constraints they face—for 
example, cost and competition.  The traditional credit scorers tend to not 
 

 285. See FREDERICK SCHAUER, PROFILES, PROBABILITIES, AND STEREOTYPES 124–26 
(2003). 
 286. Watson v. Fort Worth Bank & Tr., 487 U.S. 977, 998 (1988) (plurality opinion) 
(considering costs and other burdens relevant to a discrimination case). 
 287. Martha Ann Poon, What Lenders See—a History of the Fair Isaac Scorecard 109, 120 
(Jan. 1, 2012) (unpublished Ph.D. dissertation, University of California, San Diego), 
https://cloudfront.escholarship.org/dist/prd/content/qt7n1369x2/qt7n1369x2.pdf?t=o94tcd 
[https://perma.cc/V24B-8G3M]. 
 288. Barocas & Selbst, supra note 4, at 677–92. 
 289. Lehr & Ohm, supra note 51, at 683–700; see also Brian d’Alessandro, Cathy O’Neil 
& Tom LaGatta, Conscientious Classification:  A Data Scientist’s Guide to Discrimination-
Aware Classification, 5 BIG DATA 120, 125 (2017). 
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make the extra effort or spend the extra money to obtain the data needed to 
make predictions about people on the margins of society.290  There is also 
regulatory uncertainty regarding the permissibility of new types of credit 
data.291  Therefore, their models reflect the fact that the developers are more 
sensitive to cost and regulatory penalty than inclusion. 

Models are not self-executing; an additional layer of decisions concerns 
the institutional process that surrounds the model.  Are the model outputs 
automatically accepted as the ultimate decisions?292  If not, how central is 
the model to the decision?  How do decision makers integrate the model into 
their larger decision frameworks?  How are they trained to do so?  What role 
does discretion play? 

These questions are all external to the model, but they directly impact the 
model’s importance and normative valence.  For example, certain creditors 
may automatically reject applicants with a predicted likelihood of default that 
exceeds 50 percent.293  Others, however, may opt to be more inclusive.  
Perhaps a local credit union that is more familiar with its members and has a 
community-service mission might decide that human review is necessary for 
applicants whose likelihood of default sits between 40 percent and 
60 percent, leaving the final decision to individual loan officers.  A similar 
creditor might adopt a policy where applicants that the model is not able to 
score with confidence are subject to human review, especially where the 
outcome would otherwise be an automatic rejection of members of legally 
protected classes. 

Many of these high-level questions about justifying models or particular 
uses of models are not about models at all, but whether certain policies are 

 

 290. Request for Information Regarding Use of Alternative Data and Modeling Techniques 
in the Credit Process, 82 Fed. Reg. 11,183, 11,185 (Feb. 21, 2017). 
 291. Id. at 11,187–88. 
 292. The distinction between models and ultimate decisions is the focus of the GDPR’s 
prohibition on “decision[s] based solely on automated processing.” Article 29 Data Protection 
Working Party, supra note 149, at 19–22 (emphasis added). 
 293. This is not how credit typically works in the real world, but for demonstrative 
purposes, we decided to work with a single hypothetical.  In reality, the best examples of this 
divergence between model and use come from policing and criminal justice.  For example, the 
predictive-policing measure in Chicago, known as the Strategic Subject List, was used to 
predict the 400 likeliest people in a year to be involved in violent crime. Monica Davey, 
Chicago Police Try to Predict Who May Shoot or Be Shot, N.Y. TIMES (May 23, 2016), 
http://www.nytimes.com/2016/05/24/us/armed-with-data-chicago-police-try-to-predict-who-
may-shoot-or-be-shot.html [https://perma.cc/TZ2T-NMEJ].  When Chicago sought funding 
for the initiative, the city premised it on the idea of providing increased social services to those 
400 people, but in the end only targeted them for surveillance. DAVID ROBINSON & LOGAN 
KOEPKE, STUCK IN A PATTERN:  EARLY EVIDENCE ON “PREDICTIVE POLICING” AND CIVIL 
RIGHTS 9 (2016).  The fairness concerns are clearly different between those use cases. See 
Selbst, supra note 4, at 142–44.  Similarly, COMPAS, the now-infamous recidivism risk score, 
was originally designed to figure out who would need greater access to social services upon 
reentry to reduce the likelihood of rearrest but is now commonly used to decide whom to 
detain pending trial. Julia Angwin et al., Machine Bias, PROPUBLICA (May 23, 2016), 
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing 
[https://perma.cc/F9CK-Z995]. 
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acceptable independent of whether they use machine learning.294  Questions 
about justifying a model are often just questions about policy in disguise.295  
For example, a predatory lender could use the exact same prediction of 
default to find prime candidates in underserved communities and offer them 
higher interest rates than they might otherwise receive.  This will create more 
profit because the underserved loan candidates will be more willing to pay a 
higher rate, but it is clearly predation:  interest rates are not being used to 
offset risk, but to extract maximum profit from vulnerable consumers.296  
Most importantly, that this practice is predatory can be judged with no 
reference to the credit-scoring model. 

Evaluating models in a justificatory sense means comparing the reasoning 
behind the choices made by the developers against society’s broader 
normative priorities, as expressed in law and policy.  In order to perform this 
evaluation, then, documentation about the decisions that lie behind and 
become part of models must exist and be made available for scrutiny.  With 
an understanding of what that information looks like, the next section begins 
to explore how to ensure access. 

B.  Providing the Necessary Information 

Assuming the documentation exists, there are numerous ways it can 
become open to scrutiny.  For purposes of demonstration, two are discussed 
here, although many more are possible:  (1) the possibility that 
documentation is made publicly available from the start and (2) that it 
becomes accessible upon some trigger, like litigation.  The former is 
essentially an algorithmic impact statement (AIS),297 a proposed variant of 
the original impact statements required by the National Environmental Policy 
Act.298  The most common trigger of the latter is a lawsuit, in which 
documents can be obtained and scrutinized and witnesses can be deposed or 
examined on the stand, but auditing requirements are another possibility.  In 
both approaches, the coupling of existing documentation with a way to access 
it create answers to the question of what happened in the design process, with 
the goal of allowing overseers to determine whether those choices were 
justifiable.  Like FCRA and ECOA, these examples have no inherent 

 

 294. See VIRGINIA EUBANKS, AUTOMATING INEQUALITY 37 (2018) (“[W]hen we focus on 
programs specifically targeted at poor and working-class people, the new regime of data 
analytics is more evolution than revolution.  It is simply an expansion and continuation of 
moralistic and punitive poverty management strategies that have been with us since the 
1820s.”). 
 295. See, e.g., id. at 38; Jessica M. Eaglin, Constructing Recidivism Risk, 67 EMORY L.J. 
59, 99–101 (2017); Margaret Hu, Algorithmic Jim Crow, 86 FORDHAM L. REV. 633 (2017); 
Sonia Katyal, Algorithmic Civil Rights, 104 IOWA L. REV. (forthcoming 2018) (draft on file 
with authors); Sandra G. Mayson, Dangerous Defendants, 127 YALE L.J. 490, 507–18 (2018). 
 296. According to sociologist Jacob Faber, this is actually what happened in the subprime 
crisis to people of color. Jacob W. Faber, Racial Dynamics of Subprime Mortgage Lending at 
the Peak, 28 HOUSING POL’Y DEBATE 328, 343 (2013). 
 297. Selbst, supra note 4, at 169–93. 
 298. See 42 U.S.C. § 4332(C) (2012). 
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connection to machine learning, but the methods can be easily applied in this 
context. 

An impact statement is a document designed to explain the process of 
decision-making and the anticipated effects of that decision in such a way as 
to open the process up to the public.  Generally, the requirement is designed 
to ensure that developers do their homework, create a public record, and 
include public comments.299  Impact statements are an idea that originated in 
1970 with the National Environmental Policy Act300 and have since been 
emulated repeatedly at all levels of government, in many substantive areas of 
policy.301  Aside from environmental law, the federal government requires 
privacy impact assessments “when developing or procuring information 
technology systems that include personally identifiable information.”302  
Individual states not only have their own legislation requiring environmental 
impact statements,303 but also racial impact statements for sentencing policy, 
among other requirements.304  Recently, led by the ACLU’s Community 
Control Over Police Surveillance (CCOPS) initiative,305 counties and cities 
have begun requiring impact statements that apply to police purchases of new 
technology.306 

One of us has argued that a future AIS requirement should be expressly 
modeled on the environmental impact statement (EIS):  the original and most 
thorough version, with the fullest explanation requirements.  Such an impact 
statement would require thoroughly explaining the types of choices discussed 
above.  This includes direct choices about the model, such as target variables, 
whether and how new data was collected, and what features were considered.  
It also requires a discussion of the options that were considered but not 
chosen, and the reasons for both.307  Those reasons would—either explicitly 
or implicitly—include discussion of the practical constraints faced by the 
developers and the values that drove decisions.  The AIS must also discuss 
the predicted impacts of both the chosen and unchosen paths, including the 

 

 299. Selbst, supra note 4, at 169. 
 300. 42 U.S.C. §§ 4321–4347. 
 301. Bradley C. Karkkainen, Toward a Smarter NEPA:  Monitoring and Managing 
Government’s Environmental Performance, 102 COLUM. L. REV. 903, 905 (2002). 
 302. Kenneth A. Bamberger & Deirdre K. Mulligan, Privacy Decision-Making in 
Administrative Agencies, 75 U. CHI. L. REV. 75, 76 (2008). 
 303. E.g., California Environmental Quality Act (CEQA), CAL. PUB. RES. CODE §§ 21000–
21178 (2018). 
 304. Jessica Erickson, Comment, Racial Impact Statements:  Considering the 
Consequences of Racial Disproportionalities in the Criminal Justice System, 89 WASH. L. 
REV. 1425, 1445 (2014). 
 305. AN ACT TO PROMOTE TRANSPARENCY AND PROTECT CIVIL RIGHTS AND CIVIL 
LIBERTIES WITH RESPECT TO SURVEILLANCE TECHNOLOGY § 2(B) (ACLU Jan. 2017), 
https://www.aclu.org/files/communitycontrol/ACLU-Local-Surveillance-Technology-
Model-City-Council-Bill-January-2017.pdf [https://perma.cc/AQ8T-3NKM] (ACLU CCOPS 
Model Bill). 
 306. See, e.g., SANTA CLARA COUNTY, CAL., CODE OF ORDINANCES § A40-3 (2016). 
 307. Selbst, supra note 4, at 172–75. 
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possibility of no action, and the effects of any potential mitigation 
procedures.308 

The typical American example of an impact statement is a public 
document.  Thus, a law requiring them would also require that the developers 
publish the document and allow for comments between the draft and final 
impact statements.309  Of course, such an idea is more palatable in the case 
of regulation of public agencies.  While disclosure of the kinds of information 
we describe does not actually imply disclosure of the model itself—obviating 
the need for a discussion of trade secrets and gaming—firms may still be 
reluctant to publish an AIS that reveals operating strategy, perceived 
constraints, or even embedded values.  Thus, it is also useful to consider a 
documentation requirement that allows the prepared documents to remain 
private but available as needed for accountability.310 

A provision of the GDPR actually does just this.  Article 35 requires “data 
protection impact assessments” (DPIAs) whenever data processing “is likely 
to result in a high risk to the rights and freedoms of natural persons.”311  As 
Edwards and Veale discuss, the DPIA requirement is very likely to apply to 
machine learning,312 and the assessments require “appropriate technical and 
organizational measures” to protect data subject rights.313  In Europe, DPIAs 
are private documents, though making summaries public is officially 
encouraged.314  The European solution to making this private document 
available is to require consultation with the member state data protection 
authorities whenever the DPIA indicates a high risk of interference with data 
subject rights.315 

One could imagine another way of making an essentially private impact 
assessment accessible, initiated by private litigation.  Interrogatories, 
depositions, document subpoenas, and trial testimony are all tools that enable 
litigation parties to question human witnesses and examine documents.  
These are all chances to directly ask model developers what choices they 
made and why they made them. 

A hypothetical will help clarify how these opportunities, coupled with 
documentation—whether a DPIA or something similar—differ from the use 
of intuition as a method of justification.  Imagine a new alternative credit-
scoring system that relies on social media data.316  This model assigns 

 

 308. Id. 
 309. Id. at 177. 
 310. See W. Nicholson Price, Regulating Black-Box Medicine, 116 MICH. L. REV. 421, 
435–37 (2017). 
 311. GDPR, supra note 12, art. 35. 
 312. Edwards & Veale, supra note 143, at 77–78. 
 313. GDPR, supra note 12, art. 35. 
 314. Article 29 Data Protection Working Party, Guidelines on Data Protection Impact 
Assessment (DPIA) and Determining Whether Processing Is “Likely to Result in a High Risk” 
for the Purposes of Regulation 2016/679, at 18, WP 248 (Apr. 4, 2017). 
 315. Edwards & Veale, supra note 143, at 78. 
 316. See, e.g., Astra Taylor & Jathan Sadowski, How Companies Turn Your Facebook 
Activity into a Credit Score, NATION (May 27, 2015), https://www.thenation.com/article/how-
companies-turn-your-facebook-activity-credit-score/ [https://perma.cc/P9FW-DSTN]. 
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significance to data points that are unintuitive but reliably predict default.  
Suppose the model also evinces a disparate impact along racial lines, as 
revealed by investigative journalists. 

Black applicants denied credit then bring suit under the substantive 
nondiscrimination provisions of ECOA.  Assuming, reasonably, that the 
judge agrees that disparate impact is a viable theory under ECOA,317 the case 
will turn on the business-necessity defense.  Thus, in order to determine 
whether there was a legal violation, it is necessary to know why the designer 
of the model proceeded in using the particular features from social media and 
whether there were equally effective alternatives with less disparate impact. 

Under an intuition-driven regime, such as that proposed by either Kim or 
Grimmelmann and Westreich, the case would begin with a finding of prima 
facie disparate impact, and then, to evaluate the business-necessity defense, 
the plaintiffs might put the lead engineer on the stand.  The attorney would 
ask why social media data was related to the ultimate judgment of 
creditworthiness.  The engineer would respond that the model showed they 
were related:  “the data says so.”  She is not able to give a better answer 
because the social media data has no intuitive link to creditworthiness.318  
Under their proposed regime, the inquiry would end.  The defendant has not 
satisfied its burden and would be held liable.319 

Under a regime of mandated documentation and looking beyond the logic 
of the model, other explanations could be used in the model’s defense.  
Rather than be required to intuitively link the social media data to the 
creditworthiness, the engineer would be permitted to answer why the model 
relies on the social media data in the first place.  The documentation might 
show, or the engineer might testify, that her team tested the model with and 
without the social media data and found that using the data reduced the 
disproportionate impact of the model.320  Alternatively, the documentation 
might demonstrate that the team considered more intuitive features that 
guaranteed similar model performance but discovered that such features were 
exceedingly difficult or costly to measure.  The company then used social 
media data because it improved performance and reduced disparate impact 
under the practical constraints faced by the company. 

 

 317. See CONSUMER FIN. PROT. BUREAU, CFPB BULL. 2012-04 (FAIR LENDING), LENDING 
DISCRIMINATION 2 (2012), https://files.consumerfinance.gov/f/201404_cfpb_bulletin_ 
lending_discrimination.pdf [https://perma.cc/M42R-W9J7]. 
 318. The engineer might have been able to come up with a story for why social media 
relates to credit—perhaps many of the applicant’s friends have low credit scores and the 
operating theory is that people associate with others who have similar qualities—and under 
this regime, such a story might have satisfied the defense.  But the engineer knows this is a 
post hoc explanation that may bear little relationship to the actual dynamic that explains the 
model. 
 319. Grimmelmann & Westreich, supra note 75, at 170. 
 320. In fact, a recent Request for Information by the Consumer Financial Protection Bureau 
seems to anticipate such a claim.  Request for Information Regarding Use of Alternative Data 
and Modeling Techniques in the Credit Process, 82 Fed. Reg. 11,183, 11,185–86 (Feb. 21, 
2017). 
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These justifications are not self-evidently sufficient to approve of the 
credit model in this hypothetical.  Certainly, reducing disparate impact seems 
like a worthwhile goal.  In fact, prohibiting or discouraging decision makers 
from using unintuitive models that exhibit any disparate impact may have the 
perverse effect of maintaining a disparate impact.  Cost is a more difficult 
normative line321 and would likely require a case-by-case analysis.  While 
intuition-based evaluation—and its reliance on default rules—would forbid 
the consideration of either of these motivations for using social media data, 
both rationales should at least enter into the discussion.322 

Having to account for all the decisions made in the process of project 
inception and model development should reveal subjective judgments that 
can and should be evaluated.  This kind of explanation is particularly useful 
where intuition fails.  In most cases, these decisions would not be 
immediately readable from the model.323  Recall that intuition is most useful 
where explanations of a model reveal obviously good or bad reasons for 
decision-making but will often offer no help to evaluate a strange result.  
Documentation will help because it provides a different way of connecting 
the model to normative concerns.  In cases where the individual features are 
not intuitively related to the outcome of interest but there is an obviously 
good or bad reason to use them anyway, documentation will reveal those 
reasons where explanation of the model will not.  Accordingly, these high-
level explanations are a necessary complement to any explanation of the 
internals of the model. 

Documentation will not, however, solve every problem. Even with 
documentation, some models will both defy intuition and resist normative 
clarity.  Regardless, a regime of documentation leaves open the possibility of 
developing other ways of asking whether this was a well-executed project, 
including future understanding of what constitutes best practice.  As common 
flaws become known, checking for them becomes simply a matter of being 
responsible.  A safe harbor or negligence-based oversight regime may 
emerge or become attractive as the types of choices faced by firms become 
known and standardized.324  Documentation of the decisions made will be 
necessary to developing such a regime. 

 

 321. See generally Ernest F. Lidge III, Financial Costs as a Defense to an Employment 
Discrimination Claim, 58 ARK. L. REV. 1 (2006). 
 322. Documentation provides a further benefit unrelated to explanation.  If the requirement 
for an intuitive link is satisfied, then the case moves to the alternative practice prong, which 
looks to determine whether there was another model the creditor “refuses” to use. Cf. 42 
U.S.C. § 2000e-2(k)(1)(A)(ii) (2012).  Normally, a “fix-the-model” response will not be 
persuasive because it is difficult to tell exactly how it went wrong, and what alternatives the 
developers had. Barocas & Selbst, supra note 4, at 705.  With documentation, the alternatives 
will be plainly visible because that is exactly what has been documented. 
 323. Barocas & Selbst, supra note 4, at 715. 
 324. See generally William Smart, Cindy Grimm & Woody Hartzog, An Education Theory 
of Fault for Autonomous Systems (Mar. 22, 2017) (unpublished manuscript), 
http://www.werobot2017.com/wp-content/uploads/2017/03/Smart-Grimm-Hartzog-
Education-We-Robot.pdf [https://perma.cc/6WJM-4ZQH]. 
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While there will certainly still be strange results for which neither intuition 
nor documentation works today, the overall set of cases we cannot evaluate 
will shrink considerably with documentation available. 

CONCLUSION 

Daniel Kahneman has referred to the human mind as a “machine for 
jumping to conclusions.”325  Intuition is a basic component of human 
reasoning, and reasoning about the law is no different.  It should therefore 
not be surprising that we are suspicious of strange relationships in models 
that admit no intuitive explanation at all.  The natural inclination at this point 
is to regulate machine learning such that its outputs comport with intuition. 

This has led to calls for regulation by explanation.  Inscrutability is the 
property of machine learning models that is seen as the problem, and the 
target of the majority of proposed remedies.  The legal and technical work 
addressing the problem of inscrutability has been motivated by different 
beliefs about the utility of explanations:  inherent value, enabling action, and 
providing a way to evaluate the basis of decision-making.  While the first two 
rationales may have their own merits, the law has more substantial and 
concrete concerns that must be addressed.  Those who believe solving 
inscrutability provides a path to normative evaluation also fall short because 
they fail to recognize the role of intuition. 

Solving inscrutability is a necessary step, but the limitations of intuition 
will prevent normative assessment in many cases.  Where intuition fails, the 
task should be to find new ways to regulate machine learning so that it 
remains accountable.  Otherwise, maintaining an affirmative requirement for 
intuitive relationships will potentially impede discoveries and opportunities 
that machine learning can offer, including those that would reduce bias and 
discrimination. 

Just as restricting evaluation to intuition will be costly, so would 
abandoning it entirely.  Intuition serves as an important check that cannot be 
provided by quantitative modes of validation.  But while there will always be 
a role for intuition, we will not always be able to use it to bypass the question 
of why the rules are the rules.  We need the developers to show their work. 

Documentation can relate the subjective choices involved in applying 
machine learning to the normative goals of substantive law.  Much of the 
discussion surrounding models implicates important policy discussions, but 
does so indirectly.  Often, when models are employed to change a way of 
making decisions, too much focus is placed on the technology itself instead 
of the policy changes that either led to the adoption of the technology or were 
wrought by its adoption.326  Quite aside from correcting one failure mode of 
intuition, documentation has a separate worth in laying bare the kinds of 
value judgments that go into designing these systems and allowing society to 
engage in a clearer normative debate in the future. 

 

 325. KAHNEMAN, supra note 77, at 185. 
 326. See generally EUBANKS, supra note 294. 
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We cannot and should not abandon intuition.  But only by recognizing the 
role intuition plays in our normative reasoning can we recognize that there 
are other ways.  To complement intuition, we need to ask whether people 
have made reasonable judgments about competing values under their real-
world constraints.  Only humans can answer these questions. 
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The imperative of interpretable machines
As artificial intelligence becomes prevalent in society, a framework is needed to connect interpretability and trust in 
algorithm-assisted decisions, for a range of stakeholders.

Julia Stoyanovich, Jay J. Van Bavel and Tessa V. West

We are in the midst of a global 
trend to regulate the use of 
algorithms, artificial intelligence 

(AI) and automated decision systems 
(ADS). As reported by the One Hundred 
Year Study on Artificial Intelligence1: “AI 
technologies already pervade our lives. 
As they become a central force in society, 
the field is shifting from simply building 
systems that are intelligent to building 
intelligent systems that are human-aware 
and trustworthy.” Major cities, states and 
national governments are establishing task 
forces, passing laws and issuing guidelines 
about responsible development and use of 
technology, often starting with its use in 
government itself, where there is, at least in 
theory, less friction between organizational 
goals and societal values.

In the United States, New York City has 
made a public commitment to opening 
the black box of the government’s use of 
technology: in 2018, an ADS task force was 
convened, the first of such in the nation, and 
charged with providing recommendations 
to New York City’s government agencies for 
how to become transparent and accountable 
in their use of ADS. In a 2019 report, the 
task force recommended using ADS where 
they are beneficial, reduce potential harm 
and promote fairness, equity, accountability 
and transparency2. Can these principles 
become policy in the face of the apparent 
lack of trust in the government’s ability to 
manage AI in the interest of the public? We 
argue that overcoming this mistrust hinges 
on our ability to engage in substantive 
multi-stakeholder conversations around 
ADS, bringing with it the imperative of 
interpretability — allowing humans to 
understand and, if necessary, contest the 
computational process and its outcomes.

Remarkably little is known about how 
humans perceive and evaluate algorithms 
and their outputs, what makes a human trust 
or mistrust an algorithm3, and how we can 
empower humans to exercise agency — to 
adopt or challenge an algorithmic decision. 
Consider, for example, scoring and ranking 
— data-driven algorithms that prioritize 
entities such as individuals, schools, or 
products and services. These algorithms 
may be used to determine credit worthiness, 

and desirability for college admissions or 
employment. Scoring and ranking are as 
ubiquitous and powerful as they are opaque. 
Despite their importance, members of the 
public often know little about why one 
person is ranked higher than another by a 
résumé screening or a credit scoring tool, 
how the ranking process is designed and 
whether its results can be trusted.

As an interdisciplinary team of scientists 
in computer science and social psychology, 
we propose a framework that forms 
connections between interpretability and 
trust, and develops actionable explanations 
for a diversity of stakeholders, recognizing 
their unique perspectives and needs. We 
focus on three questions (Box 1) about 
making machines interpretable: (1) what 
are we explaining, (2) to whom are we 
explaining and for what purpose, and (3) 
how do we know that an explanation is 
effective? By asking — and charting the 
path towards answering — these questions, 
we can promote greater trust in algorithms, 

and improve fairness and efficiency of 
algorithm-assisted decision making.

What are we explaining?
Existing legal and regulatory frameworks, 
such as the US’s Fair Credit Reporting 
Act and the EU’s General Data Protection 
Regulation, differentiate between two 
kinds of explanations. The first concerns 
the outcome: what are the results for an 
individual, a demographic group or the 
population as a whole? The second concerns 
the logic behind the decision-making 
process: what features help an individual or 
group get a higher score, or, more generally, 
what are the rules by which the score is 
computed? Selbst and Barocas4 argue for 
an additional kind of an explanation that 
considers the justification: why are the 
rules what they are? Much has been written 
about explaining outcomes5, so we focus on 
explaining and justifying the process.

Procedural justice aims to ensure 
that algorithms are perceived as fair and 

Box 1 | Research questions

•	 What are we explaining? Do people 
trust algorithms more or less than they 
would trust an individual making the 
same decisions? What are the perceived 
trade-offs between data disclosure 
and the privacy of individuals whose 
data are being analysed, in the context 
of interpretability? Which potential 
sources of bias are most likely to trigger 
distrust in algorithms? What is the 
relationship between the perceptions 
about a dataset’s fitness for use and the 
overall trust in the algorithmic system?

•	 To whom are we explaining and 
why? How do group identities shape 
perceptions about algorithms? Do 
people lose trust in algorithmic deci-
sions when they learn that outcomes 
produce disparities? Is this only the 
case when these disparities harm their 
in-group? Are people more likely to 
see algorithms as biased if members of 
their own group were not involved in 

algorithm construction? What kinds  
of transparency will promote trust,  
and when will transparency decrease 
trust? Do people trust the moral cogni-
tion embedded within algorithms? 
Does this apply to some domains  
(for example, pragmatic decisions,  
such as clothes shopping) more than 
others (for example, moral domains, 
such as criminal sentencing)? Are 
certain decisions taboo to delegate 
to algorithms (for example, religious 
advice)?

•	 Are explanations effective? Do people 
understand the label? What kinds of 
explanations allow individuals to exer-
cise agency: make informed decisions, 
modify their behaviour in light of the 
information, or challenge the results 
of the algorithmic process? Does the 
nutrition label help create trust? Can 
the creation of nutrition labels lead 
programmers to alter the algorithm?

NatuRe MachiNe iNtelligeNce | VOL 2 | ApriL 2020 | 197–199 | www.nature.com/natmachintell
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legitimate. Research demonstrates that, as 
long as a process is seen as fair, people will 
accept outcomes that may not benefit them. 
This finding is supported in numerous 
domains, including hiring and employment, 
legal dispute resolution and citizen reactions 
to police and political leaders6, and it 
remains relevant when decisions are made 
with the assistance of algorithms. A recent 
lawsuit against Harvard University, filed 
by Students for Fair Admissions, stems, at 
least in part, from a lack of transparency 
and sense of procedural justice among 
some applicant groups. Similar allegations 
of injustice were levelled against the New 
York City Department of Education when 
only seven black students (out of 895 spots) 
had been admitted into New York’s most 
selective high school7. To increase feelings 
of procedural justice, interests of different 
stakeholders should be taken into account 
when building and evaluating algorithms, 
prior to observing any outcomes8.

Data transparency is a dimension of 
explainability unique to algorithm-assisted 
— rather than purely human — decision 
making. In applications involving predictive 
analytics, data are used to customize 
generic algorithms for specific situations: 
algorithms are trained using data. The same 
algorithm may exhibit radically different 
behaviour — making different predictions 
and different kinds of mistakes — when 
trained on two different datasets. Without 
access to the training data, it is impossible 
to know how an algorithm will behave. For 
example, predictive policing algorithms 
often reproduce the systemic historical bias 
towards poor or black neighbourhoods 
because of their reliance on historical 
policing data. This can amplify historical 
patterns of discrimination, rather than 
provide insight into crime patterns9. 
Transparency of the algorithm alone is 
insufficient to understand and counteract 
these particular errors.

The requirement for data transparency is 
in keeping with the justification dimension 
of interpretability: if the rules derived 
by the algorithm are due to the data on 
which it was trained, then justifying these 
rules must entail explaining the rationale 
behind the data selection and collection 
process. Why was this particular dataset 
used, or not used? It is also important 
to make statistical properties of the data 
available and interpretable, along with the 
methodology that was used to produce it, 
substantiating the fitness for use of the data 
for the task at hand10.

to whom are we explaining and why?
Different stakeholder groups take on distinct 
roles in algorithm-assisted decision making, 

and so have different interpretability 
requirements. While much important work 
focuses on interpretability for computing 
professionals5 — those who design, develop 
and test technical solutions — less is known 
about the interpretability needs of others. 
These include members of the public who 
are affected by algorithmic decisions: 
doctors, judges and college admissions 
officers who make — and take responsibility 
for — these decisions; and auditors, 
policymakers and regulators who assess the 
systems’ legal compliance and alignment 
with societal norms.

Social identity is key to understanding 
the values, beliefs and interpretations of 
the world held by members of a group11. 
People tend to trust in-group members 
more than out-group members, and if their 
group is not represented during decision 
making, they will not trust the system 
to make judgments that are in their best 
interest12. Numerous identities may play a 
critical role in how algorithms are evaluated 
and whether the results they produced 
should be trusted. One recent case that 
highlights the contentious role of group 
identity is the effect of political ideology 
on search engines and news feeds. Liberal 
and conservative politicians both demand 
that technology platforms like Facebook 
become ‘neutral’13, and have repeatedly 
criticized Google for embedding bias into 
its algorithms14. In this case, the identity  
of the programmers can overshadow  
more central features, such as the accuracy 
of the news source.

Moral cognition is concerned with how 
people determine whether an action or 
outcome is morally right or wrong. Moral 
cognition is influenced by intuitions, 
and therefore is often inconsistent with 
reasoning15. A large body of evidence 
suggests that people evaluate decisions 
made by humans differently from those 
made by computers (although this may be 
changing, see ref. 16); as such, they may be 
uncomfortable delegating certain types of 
decisions to algorithms. Consider the case 
of driverless vehicles. Even though people 
approve of autonomous vehicles that might 
sacrifice passengers to save a larger number 
of non-passengers, they would prefer not 
to ride in such vehicles17. Thus, utilitarian 
algorithms designed to minimize net harm 
may ironically increase harm by making 
objectively safer technology aversive to 
consumers. Failing to understand how 
people evaluate the moral programming 
of algorithms could thus unwittingly 
cause harm to large groups of people. The 
problem is compounded by the fact that 
moral preferences for driverless vehicles 
vary dramatically across cultures18. Solving 

these sorts of problems will require an 
understanding of social dilemmas, since 
self-interest might come directly in conflict 
with collective interest19.

are explanations effective?
A promising approach for interpretability 
is to develop labels for data and models 
analogous to nutritional labels used in the 
food industry, where simple, standard labels 
convey information about the ingredients 
and nutritional value. Nutritional labels 
are designed to inform specific decisions 
rather than provide exhaustive information. 
Proposals for hand-designed labels for 
data, models or both have been suggested 
in the literature20,21. We advocate instead 
for generating such labels automatically 
or semi-automatically as a part of the 
computational process itself, embodying the 
paradigm of interpretability by design10,22.

We expect that data and model labels will 
inform different design choices by computer 
scientists and data scientists who implement 
algorithms and deploy them in complex 
multi-step decision-making processes. 
These processes typically use a combination 
of proprietary and third-party algorithms 
that may encode hidden assumptions, and 
rely on datasets that are often repurposed 
(used outside of the original context for 
which they were intended). Labels will 
help determine the ‘fitness for use’ of a 
given model or dataset, and assess the 
methodology that was used to produce it.

Information disclosure does not always 
have the intended effect. For instance, 
nutritional and calorie labelling for food 
are in broad use today. However, the 
information conveyed in the labels does 
not always affect calorie consumption23. 
A plausible explanation is that “When 
comparing a $3 Big Mac at 540 calories with 
a similarly priced chicken sandwich with 360 
calories, the financially strapped consumer 
[…] may well conclude that the Big Mac is a 
better deal in terms of calories per dollar”23. 
It is therefore important to understand, with 
the help of experimental studies, what  
kinds of disclosure are effective, and for 
what purpose.

conclusion
The integration of expertise from 
behavioural science and computer 
science is essential to making algorithmic 
systems interpretable by a wide range of 
stakeholders, allowing people to exercise 
agency and ultimately building trust. 
Individuals and groups who distrust 
algorithms may be less likely to harness the 
potential benefits of new technology, and, 
in this sense, interpretability intimately 
relates to equity. Education is an integral 
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part of making explanations effective. 
Recent studies found that individuals who 
are more familiar with AI fear it less, and 
are more optimistic about its potential 
societal impacts24. We share this cautious 
optimism, but predicate it on helping 
different stakeholders move beyond the 
extremes of unbounded techno-optimism 
and techno-criticism, and into a nuanced 
and productive conversation about the role 
of technology in society. ❐
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Abstract

An essential ingredient of successful machine-assisted decision-making, particularly in high-stakes
decisions, is interpretability –– allowing humans to understand, trust and, if necessary, contest, the
computational process and its outcomes. These decision-making processes are typically complex: carried
out in multiple steps, employing models with many hidden assumptions, and relying on datasets that are
often used outside of the original context for which they were intended. In response, humans need to be
able to determine the “fitness for use” of a given model or dataset, and to assess the methodology that
was used to produce it.

To address this need, we propose to develop interpretability and transparency tools based on the
concept of a nutritional label, drawing an analogy to the food industry, where simple, standard labels
convey information about the ingredients and production processes. Nutritional labels are derived
automatically or semi-automatically as part of the complex process that gave rise to the data or model
they describe, embodying the paradigm of interpretability-by-design. In this paper we further motivate
nutritional labels, describe our instantiation of this paradigm for algorithmic rankers, and give a vision
for developing nutritional labels that are appropriate for different contexts and stakeholders.

1 Introduction

An essential ingredient of successful machine-assisted decision-making, particularly in high-stakes decisions, is
interpretability –– allowing humans to understand, trust and, if necessary, contest, the computational process and
its outcomes. These decision-making processes are typically complex: carried out in multiple steps, employing
models with many hidden assumptions, and relying on datasets that are often repurposed — used outside of the
original context for which they were intended.1 In response, humans need to be able to determine the “fitness for
use” of a given model or dataset, and to assess the methodology that was used to produce it.

To address this need, we propose to develop interpretability and transparency tools based on the concept of a
nutritional label, drawing an analogy to the food industry, where simple, standard labels convey information about
the ingredients and production processes. Short of setting up a chemistry lab, the consumer would otherwise

Copyright 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗This work was supported in part by NSF Grants No. 1926250, 1916647, and 1740996.
1See Section 1.4 of Salganik’s “Bit by Bit” [24] for a discussion of data repurposing in the Digital Age, which he aptly describes as

”mixing readymades with custommades.”
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have no access to this information. Similarly, consumers of data products cannot be expected to reproduce the
computational procedures just to understand fitness for their use. Nutritional labels, in contrast, are designed to
support specific decisions by the consumer rather than completeness of information. A number of proposals for
hand-designed nutritional labels for data, methods, or both have been suggested in the literature[9, 12, 17]; we
advocate deriving such labels automatically or semi-automatically as a side effect of the computational process
itself, embodying the paradigm of interpretability-by-design.

Interpretability means different things to different stakeholders, including individuals being affected by
decisions, individuals making decisions with the help of machines, policy makers, regulators, auditors, vendors,
data scientists who develop and deploy the systems, and members of the general public. Designers of nutritional
labels must therefore consider what they are explaining, to whom, and for what purpose. In the remainder of this
section, we will briefly describe two regulatory frameworks that mandate interpretability of data collection and
processing to members of the general public, auditors, and regulators, where nutritional labels offer a compelling
solution (Section 1.1). We then discuss interpretability requirements in data sharing, particularly when data is
altered to protect privacy or mitigate bias (Section 1.2).

1.1 Regulatory Requirements for Interpretability

The European Union recently enacted a sweeping regulatory framework known as the General Data Protection
Regulation, or the GDPR [30]. The regulation was adopted in April 2016, and became enforceable about two
years later, on May 25, 2018. The GDPR aims to protect the rights and freedoms of natural persons with regard
to how their personal data is processed, moved, and exchanged (Article 1). The GDPR is broad in scope, and
applies to “the processing of personal data wholly or partly by automated means” (Article 2), both in the private
sector and in the public sector. Personal data is broadly construed, and refers to any information relating to an
identified or identifiable natural person, called the data subject (Article 4).

According to Article 4, lawful processing of data is predicated on the data subject’s informed consent, stating
whether their personal data can be used, and for what purpose (Articles 6, 7). Further, data subjects have the right
to be informed about the collection and use of their data. 2 Providing insight to data subjects about the collection
and use of their data requires technical methods that support interpretability.

Regulatory frameworks that mandate interpretability are also starting to emerge in the US. New York City
was the first US municipality to pass a law (Local Law 49 of 2018) [32], requiring that a task force be put
in place to survey the current use of “automated decision systems” (ADS) in city agencies. ADS are defined
as “computerized implementations of algorithms, including those derived from machine learning or other data
processing or artificial intelligence techniques, which are used to make or assist in making decisions.” The task
force is developing recommendations for enacting algorithmic transparency by the agencies, and will propose
procedures for: (i) requesting and receiving an explanation of an algorithmic decision affecting an individual
(Section 3 (b) of Local Law 49); (ii) interrogating ADS for bias and discrimination against members of legally
protected groups, and addressing instances in which a person is harmed based on membership in such groups
(Sections 3 (c) and (d)); (iii) and assessing how ADS function and are used, and archiving the systems together
with the data they use (Sections 3 (e) and (f)).

Other government entities in the US are following suit. Vermont is convening an Artificial Intelligence Task
Force to “... make recommendations on the responsible growth of Vermont’s emerging technology markets, the use
of artificial intelligence in State government, and State regulation of the artificial intelligence field.” [33]. Idaho’s
legislature has passed a law that eliminates trade secret protections for algorithmic systems used in criminal
justice [31]. In early April 2019, Senators Booker and Wyden introduced the Algorithmic Accountability Act of
2019 to the US Congress [6]. The Act, if passed, would use “automated decision systems impact assessment”
to address and remedy harms caused by algorithmic systems to federally protected classes of people. The act

2https://gdpr-info.eu/issues/right-to-be-informed/
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empowers the Federal Trade Commission to issue regulations requiring larger companies to conduct impact
assessments of their algorithmic systems.

The use of nutritional labels in response to these and similar regulatory requirements can benefit a variety of
stakeholders. The designer of a data-driven algorithmic method may use them to validate assumptions, check
legal compliance, and tune parameters. Government agencies may exchange labels to coordinate service delivery,
for example when working to address the opioid epidemic, where at least three sectors must coordinate: health
care, criminal justice, and emergency housing, implying a global optimization problem to assign resources to
patients effectively, fairly and transparently. The general public may review labels to hold agencies accountable
to their commitment to equitable resource distribution.

1.2 Interpretability with Semi-synthetic Data

A central issue in machine-assisted decision-making is its reliance on historical data, which often embeds results
of historical discrimination, also known as structural bias. As we have seen time and time again, models trained
on data will appear to work well, but will silently and dangerously reinforce discrimination [1, 7, 13]. Worse
yet, these models will legitimize the bias — “the computer said so.” Nutritional labels for data and models are
designed specifically to mitigate the harms implied by these scenarios, in contrast to the more general concept of
“data about data.”

Good datasets drive research: they inform new methods, focus attention on important problems, promote a
culture of reproducibility, and facilitate communication across discipline boundaries. But research-ready datasets
are scarce due to the high potential for misuse. Researchers, analysts, and practitioners therefore too often find
themselves compelled to use the data they have on hand rather than the data they would (or should) like to
use. For example, aggregate usage patterns of ride hailing services may overestimate demand in early-adopter
(i.e., wealthy) neighborhoods, creating a feedback loop that reduces service in poorer neighborhoods, which
in turn reduces usage. In this example, and in many others, there is a need to alter the input dataset to achieve
specific properties in the output, while preserving all other relevant properties. We refer to such altered datasets
as semi-synthetic.

Recent examples of methods that produce semi-synthetic data include database repair for causal fairness [25],
database augmentation for coverage enhancement [4], and privacy-preserving and bias-correcting data release [21,
23]. A semi-synthetic datasets may be altered in different ways. Noise may be added to it to protect privacy, or
statistical bias may be removed or deliberately introduced. When a dataset of this kind is released, its composition
and the process by which it was derived must be made interpretable to a data scientist, helping determine fitness
for use. For example, datasets repaired for racial bias are unsuitable for studying discrimination mitigation
methods, while datasets with bias deliberately introduced are less appropriate for research unrelated to fairness.
This gives another compelling use case for nutritional labels.

2 Nutritional Labels for Algorithmic Rankers

To make our discussion more concrete, we now describe Ranking Facts, a system that automatically derives
nutritional labels for rankings [36]. Algorithmic decisions often result in scoring and ranking individuals — to
determine credit worthiness, desirability for college admissions and employment, and compatibility as dating
partners. Algorithmic rankers take a collection of items as input and produce a ranking – a sorted list of items – as
output. The simplest kind of a ranker is a score-based ranker, which computes a score for each item independently,
and then sorts the items on their scores. While automatic and seemingly objective, rankers can discriminate
against individuals and protected groups [5], and exhibit low diversity at top ranks [27]. Furthermore, ranked
results are often unstable — small changes in the input or in the ranking methodology may lead to drastic changes
in the output, making the result uninformative and easy to manipulate [11]. Similar concerns apply in cases where
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Figure 1: Ranking Facts for the CS departments dataset. The Ingredients widget (green) has been expanded
to show the details of the attributes that strongly influence the ranking. The Fairness widget (blue) has been
expanded to show the computation that produced the fair/unfair labels.

items other than individuals are ranked, including colleges, academic departments, and products.
In a recent work, we developed Ranking Facts, a nutritional label for rankings [36]. Ranking Facts

is available as a Web-based tool3, and its code is available in the open source 4. Figure 1 presents Ranking
Facts that explains a ranking of Computer Science departments. The data in this example was obtained from CS
Rankings5, augmented with attributes from the NRC dataset 6. Ranking Facts is made up of a collection of visual
widgets, each with an overview and a detailed view. Each widget addresses an essential aspect of transparency
and interpretability, and is based on our recent technical work on fairness [3, 35], diversity [8, 27, 28, 34], and
stability [2] in algorithmic rankers. We now describe each widget in some detail.

2.1 Recipe and Ingredients

These two widgets help to explain the ranking methodology. The Recipe widget succinctly describes the ranking
algorithm. For example, for a linear scoring formula, each attribute would be listed together with its weight. The

3http://demo.dataresponsibly.com/rankingfacts/
4https://github.com/DataResponsibly/RankingFacts
5https://github.com/emeryberger/CSRankings
6http://www.nap.edu/rdp/
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Ingredients widget lists attributes most material to the ranked outcome, in order of importance. For example,
for a linear model, this list could present the attributes with the highest learned weights. Put another way, the
explicit intentions of the designer of the scoring function about which attributes matter, and to what extent, are
stated in the Recipe, while Ingredients may show attributes that are actually associated with high rank. Such
associations can be derived with linear models or with other methods, such as rank-aware similarity in our prior
work [27]. The detailed Recipe and Ingredients widgets list statistics of the attributes in the Recipe and in the
Ingredients: minimum, maximum and median values at the top-10 and over-all.

2.2 Stability

The Stability widget explains whether the ranking methodology is robust on this particular dataset. An unstable
ranking is one where slight changes to the data (e.g., due to uncertainty and noise), or to the methodology (e.g.,
by slightly adjusting the weights in a score-based ranker) could lead to a significant change in the output. This
widget reports a stability score, as a single number that indicates the extent of the change required for the ranking
to change. As with the widgets above, there is a detailed Stability widget to complement the overview widget.

An example is shown in Figure 2, where the stability of the ranking is quantified as the slope of the line that
is fit to the score distribution, at the top-10 and over-all. A score distribution is unstable if scores of items in
adjacent ranks are close to each other, and so a very small change in scores will lead to a change in the ranking.
In this example the score distribution is considered unstable if the slope is 0.25 or lower. Alternatively, stability
can be computed with respect to each scoring attribute, or it can be assessed using a model of uncertainty in the
data. In these cases, stability quantifies the extent to which a ranked list will change as a result of small changes
to the underlying data. A complementary notion of stability quantifies the magnitude of change as a result of
small changes to the ranking model. We explored this notion in our recent work, briefly discussed below.

In [2] we develped methods for quantifying the stability of a score-based ranker with respect to a given dataset.
Specifically, we considered rankers that specify non-negative weights, one for each item attribute, and compute
the score as a weighted sum of attribute values. We focused on a notion of stability that quantifies whether the
output ranking will change due to a small change in the attribute weights. This notion of stability is natural for
consumers of a ranked list (i.e., those who use the ranking to prioritize items and make decisions), who should be
able to assess the magnitude of the region in the weight space that produces the observed ranking. If this region is
large, then the same ranked order would be obtained for many choices of weights, and the ranking is stable. But
if this region is small, then we know that only a few weight choices can produce the observed ranking. This may
suggest that the ranking was engineered or “cherry-picked” by the producer to obtain a specific outcome.

2.3 Fairness

The Fairness widget quantifies whether the ranked output exhibits statistical parity (one interpretation of fairness)
with respect to one or more sensitive attributes, such as gender or race of individuals [35]. We denote one or
several values of the sensitive attribute as a protected feature. For example, for the sensitive attribute gender, the
assignment gender=F is a protected feature.

A variety of fairness measures have been proposed in the literature [38], with a primary focus on classification
or risk assessment tasks. One typical fairness measure for classification compares the proportion of members of
a protected group (e.g., female gender or minority race) who receive a positive outcome to their proportion in
the overall population. For example, if the dataset contains an equal number of men and women, then among
the individuals invited for a job interview, one half should be women. A measure of this kind can be adapted to
rankings by quantifying the proportion of members of a protected group in some selected set of size k (treating
the top-k as a set).

In [35], we were the first to propose a family of fairness measures specifically for rankings. Our measures are
based on a generative process for rankings that meet a particular fairness criterion (fairness probability f ) and
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Figure 2: Stability: detailed widget.

are drawn from a dataset with a given proportion of members of a binary protected group (p). This method was
subsequently used in FA*IR [37] to quantify fairness in every prefix of a top-k list. We also developed a pairwise
measure that directly models the probability that a member of a protected group is preferred to a member of the
non-protected group.

Let us now return to the Fairness widget in Figure 1. We select a binary version of the department size
attribute DeptSizeBin from the CS departments dataset as the sensitive attribute, and treat the value and “small”
as the protected feature. The summary view of the Fairness widget in our example presents the output of three
fairness measures: FA*IR [37], proportion [38], and our own pairwise measure. All these measures are statistical
tests, and whether a result is fair is determined by the computed p-value. The detailed Fairness widget provides
additional information about the tests and explains the process.

2.4 Diversity

Fairness is related to diversity: ensuring that different kinds of objects are represented in the output of an
algorithmic process [8]. Diversity has been considered in search and recommender systems, but in a narrow
context, and was rarely applied to profiles of individuals. The Diversity widget shows diversity with respect to a
set of demographic categories of individuals, or a set of categorical attributes of other kinds of items [8]. The
widget displays the proportion of each category in the top-10 ranked list and over-all, and, like other widgets, is
updated as the user selects different ranking methods or sets different weights. In our example in Figure 1, we
quantify diversity with respect to department size and to the regional code of the university. By comparing the pie
charts for top-10 and over-all, we observe that only large departments are present in the top-10.

This simple diversity measure that is currently included in Ranking Facts can be augmented by, or replaced
with, other measures, including, for example, those we developed in our recent work [28, 34].

3 Learning Labels

The creation of nutritional labels is often cast as a design problem rather than a computational problem [9, 12].
Standard labels with broad applicability can amortize the cost of design, but the diversity of datasets, methods,
and desirable properties for nutritional labels suggest a learning approach to help develop labels for a variety
of situations. Since opaque automation is what motivated the need for labels in the first place, automating their
creation may seem like a step backwards. But there are several benefits:

18



Task Draco-CQL Draco-Learn
learned weightshand-tuned weights

Value

Summary

advertisement
bias
elapses

N

0.0 0.5 1.0 1.5 2.0
!2

0.0

0.5

1.0

1.5

2.0

Q
1

0.0 2.0

Q2

ad
ve

rti
se

m
en

t

bi
as

el
ap

se
s

N

0.0

0.5

1.0

1.5

2.0

Q
1

advertisement
bias
elapses

N

0.0 0.5 1.0 1.5 2.0
!2

0.0

0.5

1.0

1.5

2.0

Q
1

advertisement
bias
elapses

N

0.0 0.5 1.0 1.5 2.0
!2

0.0

0.5

1.0

1.5

2.0

Q
1

Figure 3: Draco can be used to re-implement existing visualization systems like CQL by hand-tuning weights
(left) or be used to learn weights automatically from preference data (right). The visualizations selected can vary
significantly, affording customization for specific applications. A similar approach can be used when generating
nutritional labels for data and models.

• Coverage: some information provided in (nearly) all cases is preferable to all information provided in some
cases, as there are many models and datasets being deployed.

• Correctness: Hand-designed labels imply human metadata attachment, but curation of metadata is essen-
tially an unsolved problem. Computable labels reduce reliance on human curation efforts.

• Retroactivity: Some information can only be manually collected at the time of data collection (e.g.,
demographics of authors in a speech corpus to control for nationality bias). This opportunity is lost for
existing datasets. However, inferring relevant properties based on the content of the data may be “better
than nothing.”

We now consider two approaches to the problem of learning labels, one based on the visualization recommen-
dation literature, and one based on bin-packing optimization.

3.1 Learning as Visualization Recommendation

Moritz et al. proposed Draco [19], a formal model that represents visualizations as sets of logical facts, and
represents design guidelines as a collection of hard and soft constraints over these facts, following an earlier
proposal for the VizDeck system [14]. Draco enumerates the visualizations that do not violate the hard constraints
and finds the most preferred visualizations according to the weights of the soft constraints. Formalized visual-
ization descriptions are derived from the Vega-Lite grammar [26] extended with rules to encode expressiveness
criteria [16], preference rules validated in perception experiments, and general visualization design best practices.
Hard constraints must be satisfied (e.g., shape encodings cannot express quantitative values), whereas soft
constraints express a preference (e.g., temporal values should use the x-axis by default). The weights associated
with soft constraints can be learned from preference or utility data, when available (see example in Figure 3).

Draco implements the constraints using Answer Set Programming (ASP) semantics, and casts the problem
of finding appropriate encodings as finding optimal answer sets [10]. Draco has been extended to optimize for
constraints over multiple visualizations [22], and adapted for use in specialized domains.

Using Draco (or similar formalizations), the specialized constraints governing the construction of nutritional
labels can be developed in the general framework of ASP, while borrowing the foundational constraints capturing
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general visualization design principles. This approach can help reduce the cost of developing hundreds of
application-specific labels by encoding common patterns, such as including descriptive statistics in all labels, or
only showing fairness visualizations when bias is detected.

3.2 Learning as Optimization

Sun et al. proposed MithraLabel [29], focusing on generating task-specific labels for datasets to determine
fitness for specific tasks. Considering the dataset as a collection of items over a set of attributes, each widget
provides specific information (such as functional dependencies) about the whole dataset or some selected part
of it. For example, if a data scientist is considering the use of a number-of-prior-arrests attribute to predict
likelihood of recidivism, she should know that the number of prior arrests is highly correlated with the likelihood
of re-offending, but it introduces bias as the number of prior arrests is higher for African Americans than for other
races due to policing practices and segregation effects in poor neighborhoods. Widgets that might appear in the
nutritional label for prior arrests include the count of missing values, correlation with the predicted attribute or a
protected attribute, and the distribution of values.

4 Properties of a nutritional label

The database and cyberinfrastructure communities have been studying systems and standards for metadata,
provenance, and transparency for decades [20, 18]. We are now seeing renewed interest in these topics due to the
proliferation of data science applications that use data opportunistically. Several recent projects explore these
concepts for data and algorithmic transparency, including the Dataset Nutrition Label project [12], Datasheets for
Datasets [9], and Model Cards [17]. All these method rely on manually constructed annotations. In contrast, our
goal is to generate labels automatically or semi-automatically.

To differentiate a nutritional label from more general forms of metadata, we articulate several properties:

• Comprehensible: The label is not a complete (and therefore overwhelming) history of every processing
step applied to produce the result. This approach has its place and has been extensively studied in the
literature on scientific workflows, but is unsuitable for the applications we target. The information on a
nutritional label must be short, simple, and clear.

• Consultative: Nutritional labels should provide actionable information, rather than just descriptive meta-
data. For example, universities may invest in research to improve their ranking, or consumers may cancel
unused credit card accounts to improve their credit score.

• Comparable: Nutritional labels enable comparisons between related products, implying a standard. The
IEEE is developing a series of ethics standards, known as the IEEE P70xx series, as part of its Global
Initiative on Ethics of Autonomous and Intelligent Systems.7 These standards include “IEEE P7001:
Transparency of Autonomous Systems” and “P7003: Algorithmic Bias Considerations” [15]. The work on
nutritional labels is synergistic with these efforts.

• Concrete: The label must contain more than just general statements about the source of the data; such
statements do not provide sufficient information to make technical decisions on whether or not to use the
data.

Data and models are chained together into complex automated pipelines — computational systems “consume”
datasets at least as often as people do, and therefore also require nutritional labels! We articulate additional
properties in this context:

7https://ethicsinaction.ieee.org/
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• Computable: Although primarily intended for human consumption, nutritional labels should be machine-
readable to enable specific applications: data discovery, integration, automated warnings of potential
misuse.

• Composable: Datasets are frequently integrated to construct training data; the nutritional labels must be
similarly integratable. In some situations, the composed label is simple to construct: the union of sources.
In other cases, the biases may interact in complex ways: a group may be sufficiently represented in each
source dataset, but underrepresented in their join.

• Concomitant: The label should be carried with the dataset; systems should be designed to propagate
labels through processing steps, modifying the label as appropriate, and implementing the paradigm of
transparency by design.

5 Conclusions

In this paper we discussed work on transparency and interpretability for data and models based on the concept of a
nutritional label. We presented Ranking Facts, a system that automatically derives nutritional labels for rankings,
and outlined directions for ongoing research that casts the creation of nutritional labels as a computational
problem, rather than as purely a design problem.

We advocate interpretability tools for a variety of datasets and models, for a broad class of application
domains, and to accommodate the needs of a variety of stakeholders. These tools must be informed by an
understanding of how humans perceive algorithms and the decisions they inform, including issues of trust and
agency to challenge or accept an algorithm-informed decision. These tools aim to reduce bias and errors in
deployed models by preventing the use of an inappropriate dataset or model at design time. Although the extent
of data misuse is difficult to measure directly, we can design experiments to show how well nutritional labels
inform usage decisions, and design the tools accordingly. More broadly, we see the review of human-curated
and machine-computed metadata as a critical step for interpretability in data science, which can lead to lasting
progress in the use of machine-assisted decision-making in society.
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