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Abstract

We present a new class of statistical de-
anonymization attacks against high-dimensional
micro-data, such as individual preferences, recommen-
dations, transaction records and so on. Our techniques
are robust to perturbation in the data and tolerate some
mistakes in the adversary’s background knowledge.

We apply our de-anonymization methodology to the
Netflix Prize dataset, which contains anonymous movie
ratings of 500,000 subscribers of Netflix, the world’s
largest online movie rental service. We demonstrate
that an adversary who knows only a little bit about
an individual subscriber can easily identify this sub-
scriber’s record in the dataset. Using the Internet
Movie Database as the source of background knowl-
edge, we successfully identified the Netflix records of
known users, uncovering their apparent political pref-
erences and other potentially sensitive information.

1 Introduction

Datasets containing micro-data, that is, information
about specific individuals, are increasingly becoming
public in response to “open government” laws and to
support data mining research. Some datasets include
legally protected information such as health histories;
others contain individual preferences and transactions,
which many people may view as private or sensitive.

Privacy risks of publishing micro-data are well-
known. Even if identifiers such as names and Social
Security numbers have been removed, the adversary can
use background knowledge and cross-correlation with
other databases to re-identify individual data records.
Famous attacks include de-anonymization of a Mas-
sachusetts hospital discharge database by joining it with
a public voter database [25] and privacy breaches caused
by (ostensibly anonymized) AOL search data [16].

Micro-data are characterized by high dimensionality

and sparsity. Each record contains many attributes (i.e.,
columns in a database schema), which can be viewed as
dimensions. Sparsity means that for the average record,
there are no “similar” records in the multi-dimensional
space defined by the attributes. This sparsity is empir-
ically well-established [7, 4, 19] and related to the “fat
tail” phenomenon: individual transaction and preference
records tend to include statistically rare attributes.

Our contributions. Our first contribution is a formal
model for privacy breaches in anonymized micro-data
(section 3). We present two definitions, one based on the
probability of successful de-anonymization, the other on
the amount of information recovered about the target.
Unlike previous work [25], we do not assume a pri-
ori that the adversary’s knowledge is limited to a fixed
set of “quasi-identifier” attributes. Our model thus en-
compasses a much broader class of de-anonymization
attacks than simple cross-database correlation.

Our second contribution is a very general class of
de-anonymization algorithms, demonstrating the funda-
mental limits of privacy in public micro-data (section 4).
Under very mild assumptions about the distribution from
which the records are drawn, the adversary with a small
amount of background knowledge about an individual
can use it to identify, with high probability, this individ-
ual’s record in the anonymized dataset and to learn all
anonymously released information about him or her, in-
cluding sensitive attributes. For sparse datasets, such as
most real-world datasets of individual transactions, pref-
erences, and recommendations, very little background
knowledge is needed (as few as 5-10 attributes in our
case study). Our de-anonymization algorithm is robust
to the imprecision of the adversary’s background knowl-
edge and to perturbation that may have been applied to
the data prior to release. It works even if only a subset
of the original dataset has been published.

Our third contribution is a practical analysis of
the Netflix Prize dataset, containing anonymized
movie ratings of 500,000 Netflix subscribers (sec-
tion 5). Netflix—the world’s largest online DVD rental
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service—published this dataset to support the Netflix
Prize data mining contest. We demonstrate that an ad-
versary who knows a little bit about some subscriber can
easily identify her record if it is present in the dataset,
or, at the very least, identify a small set of records which
include the subscriber’s record. The adversary’s back-
ground knowledge need not be precise, e.g., the dates
may only be known to the adversary with a 14-day error,
the ratings may be known only approximately, and some
of the ratings and dates may even be completely wrong.
Because our algorithm is robust, if it uniquely identifies
a record in the published dataset, with high probability
this identification is not a false positive.

2 Related work

Unlike statistical databases [1, 3, 5], micro-
data include actual records of individuals even after
anonymization. A popular approach to micro-data pri-
vacy is k-anonymity [27, 9]. The data publisher de-
cides in advance which of the attributes may be available
to the adversary (these are called “quasi-identifiers”),
and which are the sensitive attributes to be protected.
k-anonymization ensures that each quasi-identifier tu-
ple occurs in at least k records in the anonymized
database. This does not guarantee any privacy, because
the values of sensitive attributes associated with a given
quasi-identifier may not be sufficiently diverse [20, 21]
or the adversary may know more than just the quasi-
identifiers [20]. Furthermore, k-anonymization com-
pletely fails on high-dimensional datasets [2], such as
the Netflix Prize dataset and most real-world datasets of
individual recommendations and purchases.

The de-anonymization algorithm presented in this pa-
per does not assume that the attributes are divided a pri-
ori into quasi-identifiers and sensitive attributes. Ex-
amples include anonymized transaction records (if the
adversary knows a few of the individual’s purchases,
can he learn all of her purchases?), recommendations
and ratings (if the adversary knows a few movies that
the individual watched, can he learn all movies she
watched?), Web browsing and search histories, and so
on. In such datasets, it is hard to tell in advance which
attributes might be available to the adversary; the adver-
sary’s background knowledge may even vary from indi-
vidual to individual. Unlike [25, 22, 14], our algorithm
is robust. It works even if the published records have
been perturbed, if only a subset of the original dataset
has been published, and if there are mistakes in the ad-
versary’s background knowledge.

Our definition of privacy breach is somewhat similar

to that of Chawla et al. [8]. We discuss the differences in
section 3. There is theoretical evidence that for any (san-
itized) database with meaningful utility, there is always
some auxiliary or background information that results
in a privacy breach [11]. In this paper, we aim to quan-
tify the amount of auxiliary information required and its
relationship to the percentage of records which would
experience a significant privacy loss.

We are aware of only one previous paper that consid-
ered privacy of movie ratings. In collaboration with the
MovieLens recommendation service, Frankowski et al.
correlated public mentions of movies in the MovieLens
discussion forum with the users’ movie rating histories
in the internal MovieLens dataset [14]. The algorithm
uses the entire public record as the background knowl-
edge (29 ratings per user, on average), and is not robust
if this knowledge is imprecise, e.g., if the user publicly
mentioned movies which he did not rate.

While our algorithm follows the same basic scoring
paradigm as [14], our scoring function is more complex
and our selection criterion is nontrivial and an impor-
tant innovation in its own right. Furthermore, our case
study is based solely on public data and does not involve
cross-correlating internal Netflix datasets (to which we
do not have access) with public forums. It requires much
less background knowledge (2-8 ratings per user), which
need not be precise. Furthermore, our analysis has pri-
vacy implications for 500,000 Netflix subscribers whose
records have been published; by contrast, the largest
public MovieLens datasets contains only 6,000 records.

3 Model

Database. Define database D to be an N ×M matrix
where each row is a record associated with some indi-
vidual, and the columns are attributes. We are interested
in databases containing individual preferences or trans-
actions. The number of columns thus reflects the total
number of items in the space we are considering, rang-
ing from a few thousand for movies to millions for (say)
the amazon.com catalog.

Each attribute (column) can be thought of as a dimen-
sion, and each individual record as a point in the multidi-
mensional attribute space. To keep our analysis general,
we will not fix the space X from which attributes are
drawn. They may be boolean (e.g., has this book been
rated?), integer (e.g., the book’s rating on a 1-10 scale),
date, or a tuple such as a (rating, date) pair.

A typical reason to publish anonymized micro-data is
“collaborative filtering,” i.e., predicting a consumer’s fu-
ture choices from his past behavior using the knowledge
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of what similar consumers did. Technically, the goal is
to predict the value of some attributes using a combina-
tion of other attributes. This is used in shopping recom-
mender systems, aggressive caching in Web browsers,
and other applications [28].

Sparsity and similarity. Preference databases with
thousands of attributes are necessarily sparse, i.e., each
individual record contains values only for a small frac-
tion of attributes. For example, the shopping history of
even the most profligate Amazon shopper contains only
a tiny fraction of all available items. We call these at-
tributes non-null; the set of non-null attributes is the sup-
port of a record (denoted supp(r)). Null attributes are
denoted ⊥. The support of a column is defined anal-
ogously. Even though points corresponding to database
records are very sparse in the attribute space, each record
may have dozens or hundreds of non-null attributes,
making the database truly high-dimensional.

The distribution of per-attribute support sizes is typi-
cally heavy- or long-tailed, roughly following the power
law [7, 4]. This means that although the supports of the
columns corresponding to “unpopular” items are small,
these items are so numerous that they make up the bulk
of the non-null entries in the database. Thus, any attempt
to approximate the database by projecting it down to the
most common columns is bound to failure.1

Unlike “quasi-identifiers” [27, 9], there are no at-
tributes that can be used directly for de-anonymization.
In a large database, for any except the rarest attributes,
there are hundreds of records with the same value of this
attribute. Therefore, it is not a quasi-identifier. At the
same time, knowledge that a particular individual has
a certain attribute value does reveal some information,
since attribute values and even the mere fact that a given
attribute is non-null vary from record to record.

The similarity measure Sim is a function that maps
a pair of attributes (or more generally, a pair of records)
to the interval [0, 1]. It captures the intuitive notion of
two values being “similar.” Typically, Sim on attributes
will behave like an indicator function. For example, in
our analysis of the Netflix Prize dataset, Sim outputs 1
on a pair of movies rated by different subscribers if and
only if both the ratings and the dates are within a certain
threshold of each other; it outputs 0 otherwise.

To define Sim over two records r1, r2, we “general-
ize” the cosine similarity measure:

Sim(r1, r2) =

∑
Sim(r1i, r2i)

|supp(r1) ∪ supp(r2)|
1The same effect causes k-anonymization to fail on high-

dimensional databases [2].

Figure 1. X-axis (x) is the similarity to
the “neighbor” with the highest similar-
ity score; Y-axis is the fraction of sub-
scribers whose nearest-neighbor similar-
ity is at least x.

Definition 1 (Sparsity) A database D is (ε, δ)-sparse
w.r.t. the similarity measure Sim if

Pr
r
[Sim(r, r′) > ε ∀r′ �= r] ≤ δ

As a real-world example, in fig. 1 we show that the
Netflix Prize dataset is overwhelmingly sparse. For the
vast majority of records, there isn’t a single record with
similarity score over 0.5 in the entire 500,000-record
dataset, even if we consider only the sets of movies rated
without taking into account numerical ratings or dates.

Sanitization and sampling. Database sanitization
methods include generalization and suppression [26, 9],
as well as perturbation. The data publisher may only re-
lease a (possibly non-uniform) sample of the database.
Our algorithm is designed to work against data that have
been both anonymized and sanitized.

If the database is published for collaborative filter-
ing or similar data mining purposes (as in the case of
the Netflix Prize dataset), the “error” introduced by san-
itization cannot be large, otherwise data utility will be
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lost. We make this precise in our analysis. Our defini-
tion of privacy breach allows the adversary to identify
not just his target record, but any record as long as it is
sufficiently similar (via Sim) to the target and can thus
be used to determine its attributes with high probability.

From the viewpoint of our de-anonymization algo-
rithm, there is no difference between the perturbation of
the published records and the imprecision of the adver-
sary’s knowledge about his target. In either case, there
is a small discrepancy between the attribute value(s) in
the anonymous record and the same value(s) as known
to the adversary. In the rest of the paper, we treat pertur-
bation simply as imprecision of the adversary’s knowl-
edge. The algorithm is designed to be robust to the latter.

Adversary model. We sample record r randomly from
database D and give auxiliary information or back-
ground knowledge related to r to the adversary. It is
restricted to a subset of (possibly imprecise, perturbed,
or simply incorrect) values of r’s attributes, modeled as
an arbitrary probabilistic function Aux : XM → XM .
The attributes given to the adversary may be chosen
uniformly from the support of r, or according to some
other rule.2 Given this auxiliary information and an
anonymized sample D̂ of D, the adversary’s goal is
to reconstruct attribute values of the entire record r.
Note that there is no artificial distinction between quasi-
identifiers and sensitive attributes.

If the published records are sanitized by adding ran-
dom noise ZS , and the noise used in generating Aux is
ZA, then the adversary’s task is equivalent to the sce-
nario where the data are not perturbed but noise ZS+ZA

is used in generating Aux. This makes perturbation
equivalent to imprecision of Aux.

Privacy breach: formal definitions. What does it mean
to de-anonymize a record r? The naive answer is to
find the “right” anonymized record in the public sample
D̂. This is hard to capture formally, however, because it
requires assumptions about the data publishing process
(e.g., what if D̂ contains two copies of every original
record?). Fundamentally, the adversary’s objective is is
to learn as much as he can about r’s attributes that he
doesn’t already know. We give two different (but re-
lated) formal definitions, because there are two distinct
scenarios for privacy breaches in large databases.

The first scenario is automated large-scale de-
anonymization. For every record r about which he has
some information, the adversary must produce a single

2For example, in the Netflix Prize case study we also pick uni-
formly from among the attributes whose supports are below a certain
threshold, e.g., movies that are outside the most popular 100 or 500
movies.

“prediction” for all attributes of r. An example is the
attack that inspired k-anonymity [25]: taking the demo-
graphic data from a voter database as auxiliary informa-
tion, the adversary joins it with the anonymized hospital
discharge database and uses the resulting combination to
determine the values of medical attributes for each per-
son who appears in both databases.

Definition 2 A databaseD can be (θ, ω)-deanonymized
w.r.t. auxiliary information Aux if there exists an algo-
rithm A which, on inputs D and Aux(r) where r ← D
outputs r′ such that

Pr[Sim(r, r′) ≥ θ] ≥ ω

Definition 2 can be interpreted as an amplification of
background knowledge: the adversary starts with aux =
Aux(r) which is close to r on a small subset of attributes,
and uses this to compute r′ which is close to r on the
entire set of attributes. This captures the adversary’s
ability to gain information about his target record.
As long he finds some record which is guaranteed to be
very similar to the target record, i.e., contains the same
or similar attribute values, privacy breach has occurred.

If operating on a sample D̂, the de-anonymization al-
gorithm must also detect whether the target record is part
of the sample, or has not been released at all. In the fol-
lowing, the probability is taken over the randomness of
the sampling of r from D̂, Aux and A itself.

Definition 3 (De-anonymization) An arbitrary subset
D̂ of a database D can be (θ, ω)-deanonymized w.r.t.
auxiliary information Aux if there exists an algorithm A
which, on inputs D̂ and Aux(r) where r ← D

• If r ∈ D̂, outputs r′ s.t. Pr[Sim(r, r′) ≥ θ] ≥ ω

• if r /∈ D̂, outputs ⊥ with probability at least ω

The same error threshold (1 − ω) is used for both
false positives and false negatives because the parame-
ters of the algorithm can be adjusted so that both rates
are equal; this is the “equal error rate.”

In the second privacy breach scenario, the adversary
produces a set or “lineup” of candidate records that in-
clude his target record r, either because there is not
enough auxiliary information to identify r in the lineup
or because he expects to perform additional analysis to
complete de-anonymization. This is similar to commu-
nication anonymity in mix networks [24].

The number of candidate records is not a good met-
ric, because some of the records may be much likelier
candidates than others. Instead, we consider the prob-
ability distribution over the candidate records, and use
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as the metric the conditional entropy of r given aux. In
the absence of an “oracle” to identify the target record
r in the lineup, the entropy of the distribution itself can
be used as a metric [24, 10]. If the adversary has such
an “oracle” (this is a technical device used to measure
the adversary’s success; in the real world, the adver-
sary may not have an oracle telling him whether de-
anonymization succeeded), then privacy breach can be
quantified as follows: how many bits of additional in-
formation does the adversary need in order to output a
record which is similar to his target record?

Thus, suppose that after executing the de-
anonymization algorithm, the adversary outputs
records r′1, . . . r

′
k and the corresponding probabilities

p1, . . . pk. The latter can be viewed as an entropy
encoding of the candidate records. According to Shan-
non’s source coding theorem, the optimal code length
for record r′i is (− log pi). We denote by HS(Π, x)
this Shannon entropy of a record x w.r.t. a probability
distribution Π. In the following, the expectation is taken
over the coin tosses of A, the sampling of r and Aux.

Definition 4 (Entropic de-anonymization) A
database D can be (θ,H)-deanonymized w.r.t.
auxiliary information Aux if there exists an algorithm A
which, on inputs D and Aux(r) where r ← D outputs a
set of candidate records D′ and probability distribution
Π such that

E[minr′∈D′,Sim(r,r′)≥θHS(Π, r
′)] ≤ H

This definition measures the minimum Shannon en-
tropy of the candidate set of records which are similar to
the target record. As we will show, in sparse databases
this set is likely to contain a single record, thus taking
the minimum is but a syntactic requirement.

When the minimum is taken over an empty set, we
define it to be H0 = log2 N , the a priori entropy of
the target record. This models outputting a random
record from the entire database when the adversary can-
not compute a lineup of plausible candidates. Formally,
the adversary’s algorithm A can be converted into an al-
gorithmA′, which outputs the mean of two distributions:
one is the output of A, the other is the uniform distribu-
tion overD. Observe that forA′, the minimum is always
taken over a non-empty set, and the expectation for A′

differs from that for A by at most 1 bit.
Chawla et al. [8] give a definition of privacy breach

via isolation which is similar to ours, but requires a met-
ric on attributes, whereas our general similarity measure
does not naturally lead to a metric (there is no feasible
way to derive a distance function from it that satisfies

the triangle inequality). This appears to be essential for
achieving robustness to completely erroneous attributes
in the adversary’s auxiliary information.

4 De-anonymization algorithm

We start by describing an algorithm template or meta-
algorithm. The inputs are a sample D̂ of database D
and auxiliary information aux = Aux(r), r ← D. The
output is either a record r′ ∈ D̂, or a set of candidate
records and a probability distribution over those records
(following Definitions 3 and 4, respectively).

The three main components of the algorithm are the
scoring function, matching criterion, and record selec-
tion. The scoring function Score assigns a numerical
score to each record in D̂ based on how well it matches
the adversary’s auxiliary information Aux. The match-
ing criterion is the algorithm applied by the adversary
to the set of scores to determine if there is a match. Fi-
nally, record selection selects one “best-guess” record
or a probability distribution, if needed.

1. Compute Score(aux, r′) for each r′ ∈ D̂.

2. Apply the matching criterion to the resulting set of
scores and compute the matching set; if the match-
ing set is empty, output⊥ and exit.

3. If a “best guess” is required (de-anonymization ac-
cording to Defs. 2 and 3), output r′ ∈ D̂ with the
highest score. If a probability distribution over can-
didate records is required (de-anonymization ac-
cording to Def. 4), compute and output some non-
decreasing distribution based on the scores.

Algorithm Scoreboard. The following simple instan-
tiation of the above template is sufficiently tractable to
be formally analyzed in the rest of this section.

• Score(aux, r′) = mini∈supp(aux)Sim(auxi, r′i),
i.e., the score of a candidate record is determined
by the least similar attribute between it and the ad-
versary’s auxiliary information.

• The matching set D′ = {r′ ∈ D̂ :
Score(aux, r′) > α} for some fixed constant α.
The matching criterion is that D′ be nonempty.

• Probability distribution is uniform on D′.

Algorithm Scoreboard-RH. Algorithm Scoreboard
is not sufficiently robust for some applications; in par-
ticular, it fails if any of the attributes in the adversary’s
auxiliary information are completely incorrect.
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The following algorithm incorporates several heuris-
tics which have proved useful in practical analysis (see
section 5). First, the scoring function gives higher
weight to statistically rare attributes. Intuitively, if the
auxiliary information tells the adversary that his target
has a certain rare attribute, this helps de-anonymization
much more than the knowledge of a common attribute
(e.g., it is more useful to know that the target has pur-
chased “The Dedalus Book of French Horror” than the
fact that she purchased a Harry Potter book).

Second, to improve robustness, the matching crite-
rion requires that the top score be significantly above the
second-best score. This measures how much the identi-
fied record “stands out” from other candidate records.

• Score(aux, r′)=
∑

i∈supp(aux) wt(i)Sim(auxi, r′i)
where wt(i) = 1

log |supp(i)| .
3

• If a “best guess” is required, compute max =
max(S),max2 = max2(S) and σ = σ(S) where
S = {Score(aux, r′) : r′ ∈ D̂}, i.e., the highest
and second-highest scores and the standard devia-
tion of the scores. If max−max2

σ < φ, where φ is a
fixed parameter called the eccentricity, then there
is no match; otherwise, the matching set consists of
the record with the highest score.4

• If entropic de-anonymization is required, output

distribution Π(r′) = c · e Score(aux,r′)
σ for each r′,

where c is a constant that makes the distribution
sum up to 1. This weighs each matching record in
inverse proportion to the likelihood that the match
in question is a statistical fluke.

Note that there are two ways in which this algorithm
can fail to find the correct record. First, an incorrect
record may be assigned the highest score. Second, the
correct record may not have a score which is signifi-
cantly higher than the second-highest score.

4.1 Analysis: general case

We now quantify the amount of auxiliary informa-
tion needed to de-anonymize an arbitrary dataset using
Algorithm Scoreboard. The smaller the required in-
formation (i.e., the fewer attribute values the adversary
needs to know about his target), the easier the attack.

We start with the worst-case analysis and calculate
how much auxiliary information is needed without any

3Without loss of generality, we assume ∀i |supp(i)| > 0.
4Increasing φ increases the false negative rate, i.e., the chance of

erroneously dismissing a correct match, and decreases the false posi-
tive rate; φ may be chosen so that the two rates are equal.

assumptions about the distribution from which the data
are drawn. In section 4.2, we will show that much less
auxiliary information is needed to de-anonymize records
drawn from sparse distributions (real-world transaction
and recommendation datasets are all sparse).

Let aux be the auxiliary information about some
record r; aux consists of m (non-null) attribute values,
which are close to the corresponding values of attributes
in r, that is, |aux| = m and Sim(auxi, ri) ≥ 1− ε ∀i ∈
supp(aux), where auxi (respectively, ri) is the ith at-
tribute of aux (respectively, r).

Theorem 1 Let 0 < ε, δ < 1 and let D be the
database. Let Aux be such that aux = Aux(r) con-
sists of at least m ≥ logN−log ε

− log(1−δ) randomly selected
attribute values of the target record r, where ∀i ∈
supp(aux), Sim(auxi, ri) ≥ 1− ε. Then D can be
(1− ε− δ, 1− ε)-deanonymized w.r.t. Aux.

Proof. Use Algorithm Scoreboard with α = 1 − ε
to compute the set of all records in D̂ that match aux,
then output a record r′ at random from the matching set.
It is sufficient to prove that this randomly chosen r′ must
be very similar to the target record r. (This satisfies our
definition of a privacy breach because it gives the adver-
sary almost everything he may want to learn about r.)

Record r′ is a false match if Sim(r, r′) ≤ 1−ε−δ (i.e.,
the likelihood that r′ is similar to the target r is below
the threshold). We first show that, with high probability,
there are no false matches in the matching set.

Lemma 1 If r′ is a false match, then
Pri∈supp(r)[Sim(ri, r

′
i) ≥ 1− ε] < 1− δ

Lemma 1 holds, because the contrary implies
Sim(r, r′) ≥ (1 − ε)(1 − δ) ≥ (1 − ε − δ), contra-
dicting the assumption that r′ is a false match. There-
fore, the probability that the false match r′ belongs to
the matching set is at most (1− δ)m. By a union bound,
the probability that the matching set contains even a sin-

gle false match is at most N(1 − δ)m. If m =
log N

ε

log 1
1−δ

,

then the probability that the matching set contains any
false matches is no more than ε.

Therefore, with probability 1 − ε, there are no false
matches. Thus for every record r′ in the matching set,
Sim(r, r′) ≥ 1− ε− δ, i.e., any r′ must be similar to the
true record r. To complete the proof, observe that the
matching set contains at least one record, r itself.

When δ is small, m = logN−log ε
δ . This depends log-

arithmically on ε and linearly on δ: the chance that the
algorithm fails completely is very small even if attribute-
wise accuracy is not very high. Also note that the match-
ing set need not be small. Even if the algorithm returns
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many records, with high probability they are all similar
to the target record r, and thus any one of them can be
used to learn the unknown attributes of r.

4.2 Analysis: sparse datasets

Most real-world datasets containing individual trans-
actions, preferences, and so on are sparse. Sparsity in-
creases the probability that de-anonymization succeeds,
decreases the amount of auxiliary information needed,
and improves robustness to both perturbation in the data
and mistakes in the auxiliary information.

Our assumptions about data sparsity are very mild.
We only assume (1− ε− δ, . . .) sparsity, i.e., we assume
that the average record does not have extremely similar
peers in the dataset (real-world records tend not to have
even approximately similar peers—see fig. 1).

Theorem 2 Let ε, δ, and aux be as in Theorem 1. If
the database D is (1 − ε − δ, ε)-sparse, then D can be
(1, 1− ε)-deanonymized. �

The proof is essentially the same as for Theorem 1,
but in this case any r′ �= r from the matching set must
be a false match. Because with probability 1−ε, Score-
board outputs no false matches, the matching set con-
sists of exactly one record: the true target record r.

De-anonymization in the sense of Definition 4 re-
quires even less auxiliary information. Recall that in
this kind of privacy breach, the adversary outputs a
“lineup” of k suspect records, one of which is the true
record. This k-deanonymization is equivalent to (1, 1

k )-
deanonymization in our framework.

Theorem 3 Let D be (1 − ε − δ, ε)-sparse and aux be

as in Theorem 1 with m =
log N

k−1

log 1
1−δ

. Then

• D can be (1, 1
k )-deanonymized.

• D can be (1, log k)-deanonymized (entropically).

By the same argument as in the proof of Theorem 1,

if the adversary knows m =
log N

k−1

log 1
1−δ

attributes, then the

expected number of false matches in the matching set is
at most k−1. Let X be the random variable representing
this number. A random record from the matching set is
a false match with probability of at least 1

X . Since 1
x is a

convex function, apply Jensen’s inequality [18] to obtain
E[ 1X ] ≥ 1

E(X) ≥ 1
k .

Similarly, if the adversary outputs the uniform dis-
tribution over the matching set, its entropy is logX .
Since log x is a concave function, by Jensen’s inequality
E[logX ] ≤ logE(X) ≤ log k.

Neither claim follows directly from the other. �

4.3 De-anonymization from a sample

We now consider the scenario in which the released
database D̂ � D is a sample of the original database
D, i.e., only some of the anonymized records are avail-
able to the adversary. This is the case, for example, for
the Netflix Prize dataset (the subject of our case study
in section 5), where the publicly available anonymized
sample contains less than 1

10 of the original data.
In this scenario, even though the original database D

contains the adversary’s target record r, this record may
not appear in D̂ even in anonymized form. The adver-
sary can still apply Scoreboard, but the matching set
may be empty, in which case the adversary outputs ⊥
(indicating that de-anonymization fails). If the matching
set is not empty, he proceeds as before: picks a random
record r′ and learn the attributes of r on the basis of
r′. We now demonstrate the equivalent of Theorem 1:
de-anonymization succeeds as long as r is in the public
sample; otherwise, the adversary can detect, with high
probability, that r is not in the public sample.

Theorem 4 Let ε, δ, D, and aux be as in Theorem 1,
and D̂ ⊂ D. Then D̂ can be (1 − ε − δ, 1 − ε)-
deanonymized w.r.t. aux. �

The bound on the probability of a false match given in
the proof of Theorem 1 still holds, and the adversary is
guaranteed at least one match as long as his target record
r is in D̂. Therefore, if r /∈ D̂, the adversary outputs ⊥
with probability at least 1 − ε. If r ∈ D̂, then again the
adversary succeeds with probability at least 1− ε.

Theorems 2 and 3 do not translate directly. For each
record in the public sample D̂, there could be any num-
ber of similar records in D \ D̂, the part of the database
that is not available to the adversary.

Fortunately, if D is sparse, then theorems 2 and 3
still hold, and de-anonymization succeeds with a very
small amount of auxiliary information. We now show
that if the random sample D̂ is sparse, then the entire
database D must also be sparse. Therefore, the adver-
sary can simply apply the de-anonymization algorithm
to the sample. If he finds the target record r, then with
high probability this is not a false positive.

Theorem 5 If database D is not (ε, δ)-sparse, then a
random 1

λ -subset D̂ is not (ε, δγ
λ )-sparse with probabil-

ity at least 1− γ. �

For each r ∈ D̂, the “nearest neighbor” r′ of r in
D has a probability 1

λ of being included in D̂. There-
fore, the expected probability that the similarity with the
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nearest neighbor is at least 1 − ε is at least δ
λ . (Here the

expectation is over the set of all possible samples and the
probability is over the choice of the record in D̂.) Ap-
plying Markov’s inequality, the probability, taken over
the choice D̂, that D̂ is sparse, i.e., that the similarity
with the nearest neighbor is δγ

λ , is no more than γ. �
The above bound is quite pessimistic. Intuitively, for

any “reasonable” dataset, the sparsity of a random sam-
ple will be about the same as that of the original dataset.

Theorem 5 can be interpreted as follows. Consider
the adversary who has access to a sparse sample D̂, but
not the entire database D. Theorem 5 says that either
a very-low-probability event has occurred, or D itself is
sparse. Note that it is meaningless to try to bound the
probability that D is sparse because we do not have a
probability distribution on how D itself is created.

Intuitively, this says that unless the sample is spe-
cially tailored, sparsity of the sample implies sparsity of
the entire database. The alternative is that the similarity
between a random record in the sample and its nearest
neighbor is very different from the corresponding distri-
bution in the full database. In practice, most, if not all
anonymized datasets are published to support research
on data mining and collaborative filtering. Tailoring the
published sample in such a way that its nearest-neighbor
similarity is radically different from that of the origi-
nal data would completely destroy utility of the sam-
ple for learning new collaborative filters, which are often
based on the set of nearest neighbors. Therefore, in real-
world anonymous data publishing scenarios—including,
for example, the Netflix Prize dataset—sparsity of the
sample should imply sparsity of the original dataset.

5 Case study: Netflix Prize dataset

On October 2, 2006, Netflix, the world’s largest on-
line DVD rental service, announced the $1-million Net-
flix Prize for improving their movie recommendation
service [15]. To aid contestants, Netflix publicly re-
leased a dataset containing 100, 480, 507 movie ratings,
created by 480, 189Netflix subscribers between Decem-
ber 1999 and December 2005.

Among the Frequently Asked Questions about the
Netflix Prize [23], there is the following question: “Is
there any customer information in the dataset that should
be kept private?” The answer is as follows:

“No, all customer identifying information has
been removed; all that remains are ratings and
dates. This follows our privacy policy [. . . ]
Even if, for example, you knew all your own

ratings and their dates you probably couldn’t
identify them reliably in the data because only
a small sample was included (less than one-
tenth of our complete dataset) and that data
was subject to perturbation. Of course, since
you know all your own ratings that really isn’t
a privacy problem is it?”

Removing identifying information is not sufficient
for anonymity. An adversary may have auxiliary infor-
mation about a subscriber’s movie preferences: the ti-
tles of a few of the movies that this subscriber watched,
whether she liked them or not, maybe even approximate
dates when she watched them. We emphasize that even
if it is hard to collect such information for a large num-
ber of subscribers, targeted de-anonymization—for ex-
ample, a boss using the Netflix Prize dataset to find an
employee’s entire movie viewing history after a casual
conversation—still presents a serious threat to privacy.

We investigate the following question: How much
does the adversary need to know about a Netflix sub-
scriber in order to identify her record if it is present in
the dataset, and thus learn her complete movie viewing
history? Formally, we study the relationship between
the size of aux and (1, ω)- and (1, H)-deanonymization.

Does privacy of Netflix ratings matter? The issue is
not “Does the average Netflix subscriber care about the
privacy of his movie viewing history?,” but “Are there
any Netflix subscribers whose privacy can be compro-
mised by analyzing the Netflix Prize dataset?” As shown
by our experiments below, it is possible to learn sensi-
tive non-public information about a person from his or
her movie viewing history. We assert that even if the
vast majority of Netflix subscribers did not care about
the privacy of their movie ratings (which is not obvious
by any means), our analysis would still indicate serious
privacy issues with the Netflix Prize dataset.

Moreover, the linkage between an individual and her
movie viewing history has implications for her future
privacy. In network security, “forward secrecy” is im-
portant: even if the attacker manages to compromise a
session key, this should not help him much in compro-
mising the keys of future sessions. Similarly, one may
state the “forward privacy” property: if someone’s pri-
vacy is breached (e.g., her anonymous online records
have been linked to her real identity), future privacy
breaches should not become easier. Consider a Net-
flix subscriber Alice whose entire movie viewing his-
tory has been revealed. Even if in the future Alice cre-
ates a brand-new virtual identity (call her Ecila), Ecila
will never be able to disclose any non-trivial informa-
tion about the movies that she had rated within Netflix
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because any such information can be traced back to her
real identity via the Netflix Prize dataset. In general,
once any piece of data has been linked to a person’s real
identity, any association between this data and a virtual
identity breaks anonymity of the latter.

Finally, the Video Privacy Protection Act of
1988 [13] lays down strong provisions against disclo-
sure of personally identifiable rental records of “prere-
corded video cassette tapes or similar audio visual ma-
terial.” While the Netflix Prize dataset does not explic-
itly include personally identifiable information, the issue
of whether the implicit disclosure demonstrated by our
analysis runs afoul of the law or not is a legal question
to be considered.

How did Netflix release and sanitize the data? Figs. 2
and 3 plot the number of ratings X against the num-
ber of subscribers in the released dataset who have at
least X ratings. The tail is surprisingly thick: thousands
of subscribers have rated more than a thousand movies.
Netflix claims that the subscribers in the released dataset
have been “randomly chosen.” Whatever the selection
algorithm was, it was not uniformly random. Common
sense suggests that with uniform subscriber selection,
the curve would be monotonically decreasing (as most
people rate very few movies or none at all), and that
there would be no sharp discontinuities.

We conjecture that some fraction of subscribers with
more than 20 ratings were sampled, and the points on
the graph to the left of X = 20 are the result of some
movies being deleted after sampling.

We requested the rating history as presented on the
Netflix website from some of our acquaintances, and
based on this data (which is effectively drawn from Net-
flix’s original, non-anonymous dataset, since we know
the names associated with these records), located two of
them in the Netflix Prize dataset. Netflix’s claim that
the data were perturbed does not appear to be borne out.
One of the subscribers had 1 of 306 ratings altered, and
the other had 5 of 229 altered. (These are upper bounds,
because the subscribers may have changed their ratings
after Netflix took the 2005 snapshot that was released.)
In any case, the level of noise is far too small to affect
our de-anonymization algorithm, which has been specif-
ically designed to withstand this kind of imprecision.
We have no way of determining how many dates were
altered and how many ratings were deleted, but we con-
jecture that very little perturbation has been applied.

It is important that the Netflix Prize dataset has been
released to support development of better recommenda-
tion algorithms. A significant perturbation of individ-
ual attributes would have affected cross-attribute corre-

lations and significantly decreased the dataset’s utility
for creating new recommendation algorithms, defeating
the entire purpose of the Netflix Prize competition.

Note that the Netflix Prize dataset clearly has not
been k-anonymized for any value of k > 1.

Figure 2. For each X ≤ 100, the number of
subscribers with X ratings in the released
dataset.

De-anonymizing the Netflix Prize dataset. We apply
Algorithm Scoreboard-RH from section 4. The simi-
larity measure Sim on attributes is a threshold function:
Sim returns 1 if and only if the two attribute values are
within a certain threshold of each other. For movie rat-
ings, which in the case of Netflix are on the 1-5 scale,
we consider the thresholds of 0 (corresponding to exact
match) and 1, and for the rating dates, 3 days, 14 days,
or∞. The latter means that the adversary has no infor-
mation about the date when the movie was rated.

Some of the attribute values known to the attacker
may be completely wrong. We say that aux of a record

Figure 3. For each X ≤ 1000, the number of
subscribers with X ratings in the released
dataset.
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Figure 4. Adversary knows exact ratings
and approximate dates.

r consists of m movies out of m′ if |aux| = m′, ri
is non-null for each auxi, and

∑
i Sim(auxi, ri) ≥ m.

We instantiate the scoring function as follows:

Score(aux, r′) =
∑

i∈supp(aux)

wt(i)(e
ρi−ρ′i

ρ0 + e
di−d′i

d0 )

where wt(i) = 1
log |supp(i)| (|supp(i)| is the number of

subscribers who have rated movie i), ρi and di are the
rating and date, respectively, of movie i in the auxil-
iary information, and ρ′i and d′i are the rating and date
in the candidate record r′.5 As explained in section 4,
this scoring function was chosen to favor statistically un-
likely matches and thus minimize accidental false posi-
tives. The parameters ρ0 and d0 are 1.5 and 30 days, re-
spectively. These were chosen heuristically, as they gave
the best results in our experiments,6 and used through-
out, regardless of the amount of noise in Aux. The ec-
centricity parameter was set to φ = 1.5, i.e., the algo-
rithm declares there is no match if and only if the differ-
ence between the highest and the second highest scores
is no more than 1.5 times the standard deviation. (A con-
stant value of φ does not always give the equal error rate,
but it is a close enough approximation.)

5wt(i) is undefined when |supp(i)| = 0, but this is not a concern
since every movie is rated by at least 4 subscribers.

6It may seem that tuning the parameters to the specific dataset may
have unfairly improved our results, but an actual adversary would have
performed the same tuning. We do not claim that these numerical
parameters should be used for other instances of our algorithm; they
must be derived by trial and error for each target dataset.

Figure 5. Same parameters as Fig. 4, but
the adversary must also detect when the
target record is not in the sample.

Didn’t Netflix publish only a sample of the data? Be-
cause Netflix published less than 1

10 of its 2005 database,
we need to be concerned about the possibility that when
our algorithm finds a record matching aux in the pub-
lished sample, this may be a false match and the real
record has not been released at all.

Algorithm Scoreboard-RH is specifically designed
to detect when the record corresponding to aux is not
in the sample. We ran the following experiment. First,
we gave aux from a random record to the algorithm and
ran it on the dataset. Then we removed this record from
the dataset and re-ran the algorithm. In the former case,
the algorithm should find the record; in the latter, de-
clare that it is not in the dataset. As shown in Fig. 5, the
algorithm succeeds with high probability in both cases.

It is possible, although extremely unlikely, that the
original Netflix dataset is not as sparse as the published
sample, i.e., it contains clusters of records which are
close to each other, but only one representative of each
cluster has been released in the Prize dataset. A dataset
with such a structure would be exceptionally unusual
and theoretically problematic (see Theorem 4).

If the adversary has less auxiliary information than
shown in Fig. 5, false positives cannot be ruled out a pri-
ori, but there is a lot of extra information in the dataset
that can be used to eliminate them. For example, if the
start date and total number of movies in a record are part
of the auxiliary information (e.g., the adversary knows
approximately when his target first joined Netflix), they
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Figure 6. Entropic de-anonymization:
same parameters as in Fig. 4.

can be used to eliminate candidate records.

Results of de-anonymization. We carried out the ex-
periments summarized in the following table:

Fig Ratings Dates Type Aux selection
4 Exact ±3/±14 Best-guess Uniform
5 Exact ±3/±14 Best-guess Uniform
6 Exact ±3/±14 Entropic Uniform
8 Exact No info. Best-guess Not 100/500
9 ±1 ±14 Best-guess Uniform

10 ±1 ±14 Best-guess Uniform
11 Exact No info. Entropic Not 100/500
12 ±1 ±14 Best-guess Uniform

Our conclusion is that very little auxiliary informa-
tion is needed for de-anonymize an average subscriber
record from the Netflix Prize dataset. With 8 movie rat-
ings (of which 2 may be completely wrong) and dates
that may have a 14-day error, 99% of records can be
uniquely identified in the dataset. For 68%, two ratings
and dates (with a 3-day error) are sufficient (Fig. 4).
Even for the other 32%, the number of possible can-
didates is brought down dramatically. In terms of en-
tropy, the additional information required for complete
de-anonymization is around 3 bits in the latter case (with
no auxiliary information, this number is 19 bits). When
the adversary knows 6 movies correctly and 2 incor-
rectly, the extra information he needs for complete de-
anonymization is a fraction of a bit (Fig. 6).

Even without any dates, a substantial privacy breach
occurs, especially when the auxiliary information con-
sists of movies that are not blockbusters. In Fig. 7, we
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Figure 7. Entropy of movie by rank

demonstrate how much information the adversary gains
about his target just from the knowledge that the tar-
get watched a particular movie as a function of the rank
of the movie.7 Because there are correlations between
the lists of subscribers who watched various movies, we
cannot simply multiply the information gain per movie
by the number of movies. Therefore, Fig. 7 cannot be
used to infer how many movies the adversary needs to
know for successful de-anonymization.

As shown in Fig. 8, two movies are no longer suf-
ficient for de-anonymization, but 84% of subscribers
present in the dataset can be uniquely identified if the
adversary knows 6 out of 8 moves outside the top 500.
To show that this is not a significant limitation, consider
that most subscribers rate fairly rare movies:

Not in X most rated % of subscribers who rated . . .
≥ 1 movie ≥ 5 ≥ 10

X = 100 100% 97% 93%
X = 500 99% 90% 80%

X = 1000 97% 83% 70%

Fig. 9 shows that the effect of relative popularity of
movies known to the adversary is not dramatic.

In Fig. 10, we add even more noise to the auxiliary

7We measure the rank of a movie by the number of subscribers who
have rated it.
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Figure 8. Adversary knows exact ratings
but does not know dates at all.

information, allowing mistakes about which movies the
target watched, and not just their ratings and dates.

Fig. 11 shows that even when the adversary’s proba-
bility to correctly learn the attributes of the target record
is low, he gains a lot of information about the target
record. Even in the worst scenario, the additional in-
formation needed to to complete the de-anonymization
has been reduced to less than half of its original value.

Fig. 12 shows why even partial de-anonymization can
be very dangerous. There are many things the adver-
sary might know about his target that are not captured
by our formal model, such as the approximate number of
movies rated, the date when they joined Netflix and so
on. Once a candidate set of records is available, further
automated analysis or human inspection might be suffi-
cient to complete the de-anonymization. Fig. 12 shows
that in some cases, knowing the number of movies the
target has rated (even with a 50% error!) can more than
double the probability of complete de-anonymization.

Obtaining the auxiliary information. Given how lit-
tle auxiliary information is needed to de-anonymize the
average subscriber record from the Netflix Prize dataset,
a determined adversary who targets a specific individual
may not find it difficult to obtain such information, es-
pecially since it need not be precise. We emphasize that
massive collection of data on thousands of subscribers
is not the only or even the most important threat. A
water-cooler conversation with an office colleague about
her cinematographic likes and dislikes may yield enough
information, especially if at least a few of the movies

Figure 9. Effect of knowing less popular
movies rated by victim. Adversary knows
approximate ratings (±1) and dates (14-
day error).

mentioned are outside the top 100 most rated Netflix
movies. This information can also be gleaned from per-
sonal blogs, Google searches, and so on.

One possible source of a large number of per-
sonal movie ratings is the Internet Movie Database
(IMDb) [17]. We expect that for Netflix subscribers who
use IMDb, there is a strong correlation between their pri-
vate Netflix ratings and their public IMDb ratings.8 Our
attack does not require that all movies rated by the sub-
scriber in the Netflix system be also rated in IMDb, or
vice versa. In many cases, even a handful of movies
that are rated by a subscriber in both services would
be sufficient to identify his or her record in the Net-
flix Prize dataset (if present among the released records)
with enough statistical confidence to rule out the possi-
bility of a false match except for a negligible probability.

Due to the restrictions on crawling IMDb imposed by
IMDb’s terms of service (of course, a real adversary may
not comply with these restrictions), we worked with a
very small sample of around 50 IMDb users. Our results
should thus be viewed as a proof of concept. They do
not imply anything about the percentage of IMDb users
who can be identified in the Netflix Prize dataset.

The auxiliary information obtained from IMDb is
quite noisy. First, a significant fraction of the movies
rated on IMDb are not in Netflix, and vice versa, e.g.,

8We are not claiming that a large fraction of Netflix subscribers use
IMDb, or that many IMDb users use Netflix.
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Figure 10. Effect of increasing error in
Aux.

movies that have not been released in the US. Second,
some of the ratings on IMDb are missing (i.e., the user
entered only a comment, not a numerical rating). Such
data are still useful for de-anonymization because an av-
erage user has rated only a tiny fraction of all movies, so
the mere fact that a person has watched a given movie
tremendously reduces the number of anonymous Netflix
records that could possibly belong to that user. Finally,
IMDb users among Netflix subscribers fall into a con-
tinuum of categories with respect to rating dates, sepa-
rated by two extremes: some meticulously rate movies
on both IMDb and Netflix at the same time, and others
rate them whenever they have free time (which means
the dates may not be correlated at all). Somewhat off-
setting these disadvantages is the fact that we can use all
of the user’s ratings publicly available on IMDb.

Because we have no “oracle” to tell us whether the
record our algorithm has found in the Netflix Prize
dataset based on the ratings of some IMDb user indeed
belongs to that user, we need to guarantee a very low
false positive rate. Given our small sample of IMDb
users, our algorithm identified the records of two users
in the Netflix Prize dataset with eccentricities of around
28 and 15, respectively. These are exceptionally strong
matches, which are highly unlikely to be false posi-
tives: the records in questions are 28 standard devia-
tions (respectively, 15 standard deviations) away from
the second-best candidate. Interestingly, the first user
was de-anonymized mainly from the ratings and the sec-
ond mainly from the dates. For nearly all the other IMDb

Figure 11. Entropic de-anonymization:
same parameters as in Fig. 6.

users we tested, the eccentricity was no more than 2.
Let us summarize what our algorithm achieves.

Given a user’s public IMDb ratings, which the user
posted voluntarily to reveal some of his (or her; but we’ll
use the male pronoun without loss of generality) movie
likes and dislikes, we discover all ratings that he entered
privately into the Netflix system. Why would someone
who rates movies on IMDb—often under his or her real
name—care about privacy of his Netflix ratings? Con-
sider the information that we have been able to deduce
by locating one of these users’ entire movie viewing his-
tory in the Netflix Prize dataset and that cannot be de-
duced from his public IMDb ratings.

First, his political orientation may be revealed by his
strong opinions about “Power and Terror: Noam Chom-
sky in Our Times” and “Fahrenheit 9/11,” and his reli-
gious views by his ratings on “Jesus of Nazareth” and
“The Gospel of John.” Even though one should not
make inferences solely from someone’s movie prefer-
ences, in many workplaces and social settings opinions
about movies with predominantly gay themes such as
“Bent” and “Queer as folk” (both present and rated in
this person’s Netflix record) would be considered sensi-
tive. In any case, it should be for the individual and not
for Netflix to decide whether to reveal them publicly.

6 Conclusions

We have presented a de-anonymization methodol-
ogy for sparse micro-data, and demonstrated its prac-
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Figure 12. Effect of knowing approxi-
mate number of movies rated by victim
(±50%). Adversary knows approximate
ratings (±1) and dates (14-day error).

tical applicability by showing how to de-anonymize
movie viewing records released in the Netflix Prize
dataset. Our de-anonymization algorithm Scoreboard-
RH works under very general assumptions about the
distribution from which the data are drawn, and is ro-
bust to data perturbation and mistakes in the adversary’s
knowledge. Therefore, we expect that it can be success-
fully used against any dataset containing anonymous
multi-dimensional records such as individual transac-
tions, preferences, and so on.

We conjecture that the amount of perturbation that
must be applied to the data to defeat our algorithm will
completely destroy their utility for collaborative filter-
ing. Sanitization techniques from the k-anonymity liter-
ature such as generalization and suppression [27, 9, 20]
do not provide meaningful privacy guarantees, and in
any case fail on high-dimensional data. Furthermore, for
most records simply knowing which columns are non-
null reveals as much information as knowing the specific
values of these columns. Therefore, any technique such
as generalization and suppression which leaves sensitive
attributes untouched does not help.

Other possible countermeasures include interactive
mechanisms for privacy-protecting data mining such
as [5, 12], as well as more recent non-interactive tech-
niques [6]. Both support only limited classes of com-
putations such as statistical queries and learning halfs-
paces. By contrast, in scenarios such as the Netflix Prize,

the purpose of the data release is precisely to foster com-
putations on the data that have not even been foreseen at
the time of release 9, and are vastly more sophisticated
than the computations that we know how to perform in
a privacy-preserving manner.

An intriguing possibility was suggested by Matthew
Wright via personal communication: to release the
records without the column identifiers (i.e., movie
names in the case of the Netflix Prize dataset). It is
not clear how much worse the current data mining al-
gorithms would perform under this restriction. Further-
more, this does not appear to make de-anonymization
impossible, but merely harder. Nevertheless, it is an in-
teresting countermeasure to investigate.
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A Glossary of terms

Symbol Meaning
D Database
D̂ Released sample
N Number of rows
M Number of columns
m Size of aux
X Domain of attributes
⊥ Null attribute
supp(.) Set of non-null attributes in a row/column
Sim Similarity measure
Aux Auxiliary information sampler
aux Auxiliary information
Score Scoring function
ε Sparsity threshold
δ Sparsity probability
θ Closeness of de-anonymized record
ω Probability that de-anonymization succeeds
r, r′ Record
Π P.d.f over records
HS Shannon entropy
H De-anonymization entropy
φ Eccentricity
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1
The Promise of Di�erential Privacy

“Di�erential privacy” describes a promise, made by a data holder, or
curator, to a data subject: “You will not be a�ected, adversely or oth-
erwise, by allowing your data to be used in any study or analysis,
no matter what other studies, data sets, or information sources, are
available.” At their best, di�erentially private database mechanisms
can make confidential data widely available for accurate data analysis,
without resorting to data clean rooms, data usage agreements, data pro-
tection plans, or restricted views. Nonetheless, data utility will eventu-
ally be consumed: the Fundamental Law of Information Recovery states
that overly accurate answers to too many questions will destroy privacy
in a spectacular way.1 The goal of algorithmic research on di�erential
privacy is to postpone this inevitability as long as possible.

Di�erential privacy addresses the paradox of learning nothing about
an individual while learning useful information about a population. A
medical database may teach us that smoking causes cancer, a�ecting
an insurance company’s view of a smoker’s long-term medical costs.
Has the smoker been harmed by the analysis? Perhaps — his insurance

1This result, proved in Section 8.1, applies to all techniques for privacy-preserving
data analysis, and not just to di�erential privacy.
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6 The Promise of Di�erential Privacy

premiums may rise, if the insurer knows he smokes. He may also be
helped — learning of his health risks, he enters a smoking cessation
program. Has the smoker’s privacy been compromised? It is certainly
the case that more is known about him after the study than was known
before, but was his information “leaked”? Di�erential privacy will take
the view that it was not, with the rationale that the impact on the
smoker is the same independent of whether or not he was in the study.
It is the conclusions reached in the study that a�ect the smoker, not
his presence or absence in the data set.

Di�erential privacy ensures that the same conclusions, for example,
smoking causes cancer, will be reached, independent of whether any
individual opts into or opts out of the data set. Specifically, it ensures
that any sequence of outputs (responses to queries) is “essentially”
equally likely to occur, independent of the presence or absence of any
individual. Here, the probabilities are taken over random choices made
by the privacy mechanism (something controlled by the data curator),
and the term “essentially” is captured by a parameter, Á. A smaller Á

will yield better privacy (and less accurate responses).
Di�erential privacy is a definition, not an algorithm. For a given

computational task T and a given value of Á there will be many di�er-
entially private algorithms for achieving T in an Á-di�erentially private
manner. Some will have better accuracy than others. When Á is small,
finding a highly accurate Á-di�erentially private algorithm for T can be
di�cult, much as finding a numerically stable algorithm for a specific
computational task can require e�ort.

1.1 Privacy-preserving data analysis

Di�erential privacy is a definition of privacy tailored to the problem
of privacy-preserving data analysis. We briefly address some concerns
with other approaches to this problem.

Data Cannot be Fully Anonymized and Remain Useful. Generally
speaking, the richer the data, the more interesting and useful it is.
This has led to notions of “anonymization” and “removal of person-
ally identifiable information,” where the hope is that portions of the
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data records can be suppressed and the remainder published and used
for analysis. However, the richness of the data enables “naming” an
individual by a sometimes surprising collection of fields, or attributes,
such as the combination of zip code, date of birth, and sex, or even the
names of three movies and the approximate dates on which an indi-
vidual watched these movies. This “naming” capability can be used in
a linkage attack to match “anonymized” records with non-anonymized
records in a di�erent dataset. Thus, the medical records of the gover-
nor of Massachussetts were identified by matching anonymized medical
encounter data with (publicly available) voter registration records, and
Netflix subscribers whose viewing histories were contained in a collec-
tion of anonymized movie records published by Netflix as training data
for a competition on recommendation were identified by linkage with
the Internet Movie Database (IMDb).

Di�erential privacy neutralizes linkage attacks: since being di�er-
entially private is a property of the data access mechanism, and is
unrelated to the presence or absence of auxiliary information available
to the adversary, access to the IMDb would no more permit a linkage
attack to someone whose history is in the Netflix training set than to
someone not in the training set.

Re-Identification of “Anonymized” Records is Not the Only Risk. Re-
identification of “anonymized” data records is clearly undesirable, not
only because of the re-identification per se, which certainly reveals
membership in the data set, but also because the record may contain
compromising information that, were it tied to an individual, could
cause harm. A collection of medical encounter records from a specific
urgent care center on a given date may list only a small number of
distinct complaints or diagnoses. The additional information that a
neighbor visited the facility on the date in question gives a fairly nar-
row range of possible diagnoses for the neighbor’s condition. The fact
that it may not be possible to match a specific record to the neighbor
provides minimal privacy protection to the neighbor.

Queries Over Large Sets are Not Protective. Questions about specific
individuals cannot be safely answered with accuracy, and indeed one
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might wish to reject them out of hand (were it computationally fea-
sible to recognize them). Forcing queries to be over large sets is not
a panacea, as shown by the following di�erencing attack. Suppose it
is known that Mr. X is in a certain medical database. Taken together,
the answers to the two large queries “How many people in the database
have the sickle cell trait?” and “How many people, not named X, in the
database have the sickle cell trait?” yield the sickle cell status of Mr. X.

Query Auditing Is Problematic. One might be tempted to audit the
sequence of queries and responses, with the goal of interdicting any
response if, in light of the history, answering the current query would
compromise privacy. For example, the auditor may be on the lookout
for pairs of queries that would constitute a di�erencing attack. There
are two di�culties with this approach. First, it is possible that refusing
to answer a query is itself disclosive. Second, query auditing can be
computationally infeasible; indeed if the query language is su�ciently
rich there may not even exist an algorithmic procedure for deciding if
a pair of queries constitutes a di�erencing attack.

Summary Statistics are Not “Safe.” In some sense, the failure of
summary statistics as a privacy solution concept is immediate from
the di�erencing attack just described. Other problems with summary
statistics include a variety of reconstruction attacks against a database
in which each individual has a “secret bit” to be protected. The utility
goal may be to permit, for example, questions of the form “How many
people satisfying property P have secret bit value 1?” The goal of the
adversary, on the other hand, is to significantly increase his chance
of guessing the secret bits of individuals. The reconstruction attacks
described in Section 8.1 show the di�culty of protecting against even
a linear number of queries of this type: unless su�cient inaccuracy is
introduced almost all the secret bits can be reconstructed.

A striking illustration of the risks of releasing summary statistics
is in an application of a statistical technique, originally intended for
confirming or refuting the presence of an individual’s DNA in a foren-
sic mix, to ruling an individual in or out of a genome-wide association
study. According to a Web site of the Human Genome Project, “Single
nucleotide polymorphisms, or SNPs (pronounced “snips”), are DNA
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sequence variations that occur when a single nucleotide (A,T,C, or G)
in the genome sequence is altered. For example a SNP might change
the DNA sequence AAGGCTAA to ATGGCTAA.” In this case we say
there are two alleles: A and T. For such a SNP we can ask, given a
particular reference population, what are the frequencies of each of the
two possible alleles? Given the allele frequencies for SNPs in the ref-
erence population, we can examine how these frequencies may di�er
for a subpopulation that has a particular disease (the “case” group),
looking for alleles that are associated with the disease. For this reason,
genome-wide association studies may contain the allele frequencies of
the case group for large numbers of SNPs. By definition, these allele
frequencies are only aggregated statistics, and the (erroneous) assump-
tion has been that, by virtue of this aggregation, they preserve privacy.
However, given the genomic data of an individual, it is theoretically
possible to determine if the individual is in the case group (and, there-
fore, has the disease). In response, the National Institutes of Health
and Wellcome Trust terminated public access to aggregate frequency
data from the studies they fund.

This is a challenging problem even for di�erential privacy, due to
the large number — hundreds of thousands or even one million — of
measurements involved and the relatively small number of individuals
in any case group.

“Ordinary” Facts are Not “OK.” Revealing “ordinary” facts, such as
purchasing bread, may be problematic if a data subject is followed over
time. For example, consider Mr. T, who regularly buys bread, year after
year, until suddenly switching to rarely buying bread. An analyst might
conclude Mr. T most likely has been diagnosed with Type 2 diabetes.
The analyst might be correct, or might be incorrect; either way Mr. T
is harmed.

“Just a Few.” In some cases a particular technique may in fact provide
privacy protection for “typical” members of a data set, or more gen-
erally, “most” members. In such cases one often hears the argument
that the technique is adequate, as it compromises the privacy of “just
a few” participants. Setting aside the concern that outliers may be pre-
cisely those people for whom privacy is most important, the “just a few”
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philosophy is not intrinsically without merit: there is a social judgment,
a weighing of costs and benefits, to be made. A well-articulated defini-
tion of privacy consistent with the “just a few” philosophy has yet to
be developed; however, for a single data set, “just a few” privacy can be
achieved by randomly selecting a subset of rows and releasing them in
their entirety (Lemma 4.3, Section 4). Sampling bounds describing the
quality of statistical analysis that can be carried out on random sub-
samples govern the number of rows to be released. Di�erential privacy
provides an alternative when the “just a few” philosophy is rejected.

1.2 Bibliographic notes

Sweeney [81] linked voter registration records to “anonymized” medical
encounter data; Narayanan and Shmatikov carried out a linkage attack
against anonymized ranking data published by Netflix [65]. The work
on presence in a forensic mix is due to Homer et al. [46]. The first
reconstruction attacks were due to Dinur and Nissim [18].
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This long history is a testament to 
the importance of the problem. Sta-
tistical databases can be of enormous 
social value; they are used for appor-
tioning resources, evaluating medical 
therapies, understanding the spread 
of disease, improving economic util-
ity, and informing us about ourselves 
as a species.

The data may be obtained in diverse 
ways. Some data, such as census, 
tax, and other sorts of official data, 
is compelled; other data is collected 
opportunistically, for example, from 
traffic on the Internet, transactions 
on Amazon, and search engine query 
logs; other data is provided altruisti-
cally, by respondents who hope that 
sharing their information will help 
others to avoid a specific  misfortune, 
or more generally, to increase the 
public good. Altruistic data donors 
are typically promised their individ-
ual data will be kept confidential—in 
short, they are promised “privacy.” 
Similarly, medical data and legally 
compelled data, such as census data 
and tax return data, have legal privacy 

IN the INfoRmatIoN realm, loss of  privacy is usually 
associated with failure to  control access to 
information, to control the flow of information, or 
to control the purposes for which  information is 
employed. Differential privacy arose in a context 
in which ensuring privacy is a challenge even if all 
these control problems are solved: privacy-preserving 
statistical analysis of data.

The problem of statistical disclosure control—
revealing accurate statistics about a set of respondents 
while preserving the privacy of individuals—has 
a venerable history, with an extensive literature 
spanning statistics, theoretical computer science, 
security, databases, and cryptography (see, 
for example, the excellent survey of Adam and 
Wortmann,1 the discussion of related work in Blum et 
al.,2 and the Journal of Official Statistics dedicated to 
confi den tiality and disclosure control).

	 key	insights

    in analyzing private data, only 
by focusing on rigorous privacy 
guarantees can we convert the cycle  
of “propose-break-propose again”  
into a path of progress.

    a natural approach to defining privacy is 
to require that accessing the database 
teaches the analyst nothing about any 
individual. But this is problematic: the 
whole point of a statistical database is to 
teach general truths, for example, that 
smoking causes cancer. Learning this 
fact teaches the data analyst something 
about the likelihood with which 
certain individuals, not necessarily 
in the database, will develop cancer. 
We therefore need a definition that 
separates the utility of the database 
(learning that smoking causes cancer) 
from the increased risk of harm due to 
joining the database. this is the intuition 
behind differential privacy.

    this can be achieved, often with low 
distortion. the key idea is to randomize 
responses so as to effectively hide the 
presence or absence of the data of any 
individual over the course of the lifetime 
of the database.

a firm 
foundation  
for Private 
Data analysis
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What does it mean to preserve privacy?
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mandates. In my view, ethics demand 
that opportunistically obtained data 
should be treated no differently, espe-
cially when there is no reasonable 
alternative to engaging in the actions 
that generate the data in question.

The problems remain: even if data 
encryption, key management, access 
control, and the motives of the data 
curator are all unimpeachable, what 
does it mean to preserve privacy, and 
how can it be accomplished?

“how” is hard
Let us consider a few common sugges-
tions and some of the difficulties they 
can encounter.

Large Query Sets. One frequent sug-
gestion is to disallow queries about a 
specific individual or small set of indi-
viduals. A well-known differencing ar-
gument demonstrates the inadequacy 

of the suggestion. Suppose it is known 
that Mr. X is in a certain medical da-
tabase. Taken together, the answers 
to the two large queries “How many 
people in the database have the sickle 
cell trait?” and “How many people, not 
named X, in the database have the sick-
le cell trait?” yield the sickle cell status 
of Mr. X. The example also shows that 
encrypting the data, another frequent 
suggestion (oddly), would be of no help 
at all. The privacy compromise arises 
from correct operation of the database.

In query auditing, each query to the 
database is evaluated in the context 
of the query history to determine if a 
response would be disclosive; if so, 
then the query is refused. For example, 
query auditing might be used to inter-
dict the pair of queries about sickle 
cell trait just described. This approach 
is problematic for several reasons, 

among them that query monitoring is 
computationally infeasible16 and that 
the refusal to respond to a query may 
itself be disclosive.15

We think of a database as a  collection 
of rows, with each row containing the 
data of a different respondent. In sub-
sampling a subset of the rows is chosen 
at random and released. Statistics can 
then be computed on the subsample 
and, if the subsample is sufficiently 
large, these may be representative of 
the dataset as a whole. If the size of the 
subsample is very small compared to 
the size of the dataset, this approach 
has the property that every respondent 
is unlikely to appear in the subsample. 
However, this is clearly insufficient: 
Suppose appearing in a subsample 
has terrible consequences. Then every 
time subsampling occurs some individ-
ual suffers horribly.
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In input perturbation, either the data 
or the queries are modified before a 
response is generated. This broad cat-
egory encompasses a generalization of 
subsampling, in which the curator first 
chooses, based on a secret, random, 
function of the query, a subsample 
from the database, and then returns the 
result obtained by applying the query to 
the subsample.4 A nice feature of this 
approach is that repeating the same 
query yields the same answer, while 
semantically equivalent but syntactially 
different queries are made on essen-
tially unrelated subsamples. However, 
an outlier may only be protected by the 
unlikelihood of being in the subsample.

In what is traditionally called ran-
domized response, the data itself is 
randomized once and for all and sta-
tistics are computed from the noisy 
responses, taking into account the 
distribution on the  perturbation.23 The 
term “randomized response” comes 
from the practice of having the respon-
dents to a survey flip a coin and, based 
on the outcome, answering an inva-
sive yes/no question or answering a 
more emotionally neutral one. In the 
 computer science literature the choice 
governed by the coin flip is usually 
between honestly reporting one’s value 
and responding randomly, typically by 
flipping a  second coin and reporting 
the outcome. Randomized response 
was devised for the setting in which 
the individuals do not trust the cura-
tor, so we can think of the randomized 
responses as simply being published. 
Privacy comes from the uncertainty 
of how to interpret a reported value. 
The approach becomes untenable for 
 complex data.

Adding random noise to the output 
has promise, and we will return to it 
later; here we point out that if done 
naïvely this approach will fail. To see 
this, suppose the noise has mean zero 
and that fresh randomness is used in 
generating every response. In this case, 
if the same query is asked repeatedly, 
then the responses can be averaged, 
and the true answer will eventually 
emerge. This is disastrous: an adver-
sarial analyst could exploit this to carry 
out the difference attack described 
above. The approach cannot be “fixed” 
by recording each query and providing 
the same response each time a query 
is re-issued. There are several reasons 

for this. For example, syntactically dif-
ferent queries may be semantically 
equivalent, and if the query language is 
sufficiently rich, then the equivalence 
problem itself is undecidable, so the 
curator cannot even test for this.

Problems with noise addition arise 
even when successive queries are com-
pletely unrelated to previous queries.5 
Let us assume for simplicity that the  
database consists of a single—but 
very sensitive—bit per person, so we 
can think of the database as an n-bit 
Boolean  vector d = (d1, . . . , dn). This is 
an abstraction of a setting in which the 
database rows are quite complex, for 
example, they may be medical records, 
but the attacker is interested in one 
specific field, such as HIV status. The 
abstracted attack consists of issuing 
a string of queries, each described 
by a subset S of the database rows. 
The query is asking how many 1’s are 
in the selected rows. Representing 
the query as the n-bit characteris-
tic vector S of the set S, with 1’s in all 
the positions corresponding to rows 
in S and 0’s everywhere else; the true 
answer to the query is the in ner prod-
uct . Suppose the privacy 
mechanism responds with A(S) + ran-
dom noise. How much noise is needed 
in order to preserve privacy?

Since we have not yet defined 
 privacy, let us consider the easier 
problem of avoiding blatant “non-pri-
vacy,” defined as follows: the system 
is  blatantly non-private if an adversary 
can construct a candidate database 
that agrees with the real database D 
in, say, 99% of the entries. An easy con-
sequence of the  following theorem 
is that a privacy mechanism adding 
noise with magnitude always bounded 
by, say, n/401 is blatantly non-private 
against an adversary that can ask all 2n 
possible queries.5 There is nothing spe-
cial about 401; any number exceeding 
400 would work.

Theorem 1. Let M be a mechanism 
that adds noise bounded by E. Then there 
exists an adversary that can reconstruct 
the database to within 4E positions.5

Blatant non-privacy with E = n/401 fol-
lows immediately from the theorem, 
as the reconstruction will be accurate 
in all but at most   
positions.

Proof. Let d be the true database. The 
adversary can attack in two phases:

1.   estimate the number of 1’s in all 
possible sets: Query M on all 
subsets S Í [n].

2.  Rule out “distant” databases:  
For every candidate database  
c Î   {0, 1}n, if, for any S Í [n],

 then rule 
out c. If c is not ruled out, then 
output c and halt.

Since M (S) never errs by more than E, 
the real database will not be ruled out, so  
this simple (but inefficient!) algorithm  
will output some database; let us call 
it c. We will argue that the number of 
positions in which c and d differ is at 
most 4 × E.

Let I0 be the indices in which di = 0, 
that is, I0 = {i | di = 0}. Similarly, define 
I1 = {i | di = 1}. Since c was not ruled 
out,  However, by
assumption  .  It fol-
lows from the triangle inequality that 
c and d differ in at most 2E positions 
in I0; the same argument shows that 
they differ in at most 2E positions in I1. 
Thus, c and d agree on all but at most 
4E positions. 

What if we consider more realistic 
bounds on the number of queries? We 
think of  as an interesting threshold 
on noise, for the following reason: If the 
database contains n  people drawn uni-
formly at random from a population of 
size N  n, and the fraction of the pop-
ulation satisfying a given condition is 
p, then we expect the number of rows in 
the database satisfying p to be roughly 

 by the  properties of the 
hypergeometric distribution. That 
is, the sampling error is on the order 
of  . We would like that the noise 
introduced for privacy is smaller than 
the sampling error, ideally . 
Unfortunately, noise of magnitude 

 is blatantly non-private against 
a series of n log2 n randomly generated 
queries,5 no matter the distribution on 
the noise. Several strengthenings of 
this pioneering result are now known. 
For example, if the entries in S are 
chosen independently according to 
a standard normal distribution, then 
blatant non-privacy continues to hold 
even against an adversary asking only 
Q(n) questions, and even if more than 
a fifth of the responses have arbitrarily 
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wild noise magnitudes, provided the 
other responses have noise magnitude 

.8

These are not just interesting math-
ematical exercises. We have been 
focusing on interactive privacy mecha-
nisms, distinguished by the involve-
ment of the curator in answering each 
query. In the noninteractive setting the 
curator publishes some information 
of arbitrary form, and the data is not 
used further. Research statisticians 
like to “look at the data,” and we have 
frequently been asked for a method 
of generating a “noisy table” that will 
permit highly accurate answers to 
be derived for computations that are 
not specified at the outset. The noise 
bounds say this is impossible: No such 
table can safely provide very accurate 
answers to too many weighted subset 
sum questions; otherwise the table 
could be used in a simulation of the 
interactive mechanism, and an attack 
could be mounted against the table. 
Thus, even if the analyst only requires 
the responses to a small number of 
unspecified queries, the fact that the 
table can be exploited to gain answers 
to other queries is problematic.

In the case of “Internet scale” data-
sets, obtaining responses to, say, 
n ≥ 108 queries is infeasible. What 
happens if the curator permits only 
a sublinear number of questions? 
This inquiry led to the first algorith-
mic results in  differential  privacy, in 
which it was shown how to maintain 
privacy against a sublinear number of 
counting queries, that is, queries of the 
form “How many rows in the database 
satisfy property P?” by adding noise of 
order —less than the sampling 
error —to each answer.12 The cumber-
some privacy guarantee, which focused 
on the question of what an adversary 
can learn about a row in the database, 
is now known to imply a natural and 
still very powerful relaxation of differ-
ential  privacy, defined here.

“What” is hard
Newspaper horror stories about 
“anonymized” and “de-identified” 
data typically refer to noninteractive 
approaches in which certain kinds 
of information in each data record 
have been suppressed or altered. A 
famous example is AOL’s release of 
a set of “anonymized” search query 

logs. People search for many “obvi-
ously” disclosive things, such as their 
full names (vanity searches), their own 
social security numbers (to see if their 
numbers are publicly available on the 
Web, possibly with a goal of assessing 
the threat of identity theft), and even 
the combination of mother’s maiden 
name and social security number. AOL 
carefully redacted such obviously dis-
closive “personally identifiable infor-
mation,” and each user id was replaced 
by a random string. However, search 
histories can be very idiosyncratic, and 
a New York Times reporter correctly 
traced such an “anonymized” search 
history to a specific resident of Georgia.

In a linkage attack, released data 
are linked to other databases or other 
sources of information. We use the 
term auxiliary information to capture 
information about the respondents 
other than that which is obtained 
through the (interactive or noninter-
active) statistical database. Any priors, 
beliefs, or information from newspa-
pers, labor statistics, and so on, all fall 
into this category.

In a notable demonstration of 
the power of auxiliary information, 
medical records of the governor of 
Massachusetts were identified by 
linking voter registration records to 
“anonymized” Massachusetts Group 
Insurance Commission (GIC) medi-
cal encounter data, which retained 
the birthdate, sex, and zip code of the 
patient.22

Despite this exemplary work, it has 
taken several years to fully appreci-
ate the importance of taking auxiliary 
information into account in privacy-
preserving data release. Sources and 
uses of auxiliary information are end-
lessly varied. As a final example, it has 
been proposed to modify search query 
logs by mapping all terms, not just the 
user ids, to random strings. In token-
based hashing each query is tokenized, 
and then an uninvertible hash function 
is applied to each token. The intuition 
is that the hashes completely obscure 
the terms in the query. However, using 
a statistical analysis of the hashed 
log and any (unhashed) query log, for 
example, the released AOL log dis-
cussed above, the anonymization can 
be severely compromised, showing 
that token-based hashing is unsuitable 
for anonymization.17

it has taken  
several years  
to fully appreciate 
the importance  
of taking auxiliary 
information into 
account in  
privacy-preserving 
data release. 



90    communications of the acm    |   january 2011  |   vol.  54  |   no.  1

review articles

As we will see next, there are deep 
reasons for the fact that auxiliary infor-
mation plays such a prominent role in 
these examples.

Dalenius’s Desideratum
In 1977 the statistician Tore Dalenius 
articulated an “ad omnia” (as opposed 
to ad hoc) privacy goal for statistical 
databases: Anything that can be learned 
about a respondent from the statistical 
database should be learnable without 
access to the database. Although infor-
mal, this feels like the “right” direc-
tion. The breadth of the goal captures 
all the common intuitions for privacy. 
In addition, the definition only holds 
the database accountable for whatever 
“extra” is learned about an individual, 
beyond that which can be learned from 
other sources. In particular, an extro-
vert who posts personal information 
on the Web may destroy his or her own 
privacy, and the database should not 
be held accountable.

Formalized, Dalenius’ goal is strik-
ingly similar to the gold standard for 
security of a cryptosystem against a 
 passive eavesdropper, defined five 
years later. Semantic security captures 
the intuition that the encryption of 
a message reveals no information 
about the message. This is formalized 
by comparing the ability of a compu-
tationally efficient adversary, having 
access to both the ciphertext and any 
auxiliary information, to output (any-
thing about) the plaintext, to the abil-
ity of a computationally efficient party 
having access only to the auxiliary 
information (and not the ciphertext), 
to achieve the same goal.13 Abilities are 
measured by probabilities of success, 
where the probability space is over the 
random choices made in choosing the 
encryption keys, the ciphertexts, and 
by the adversaries. Clearly, if this dif-
ference is very, very tiny, then in a rigor-
ous sense the ciphertext leaks (almost) 
no information about the plaintext.

The formal definition of semantic 
security is a pillar of modern crypto-
graphy. It is therefore natural to ask 
whether a similar property, such as 
Dalenius’ goal, can be achieved for sta-
tistical databases. But there is an essen-
tial difference in the two problems. 
Unlike the eavesdropper on a conversa-
tion, the statistical database attacker 
is also a user, that is, a legitimate 

consumer of the information provided 
by the statistical database (not to men-
tion the fact that he or she may also be 
a respondent in the database).

Many papers in the literature 
attempt to formalize Dalenius’ goal (in 
some cases unknowingly) by requiring 
that the adversary’s prior and poste-
rior beliefs about an individual (that 
is, before and after having access to 
the statistical database) should not be 
“too different,” or that access to the 
statistical database should not change 
the adversary’s views about any indi-
vidual “too much.” The difficulty with 
this approach is that if the statistical 
database teaches us anything at all, 
then it should change our beliefs about 
individuals. For example, suppose the 
adversary’s (incorrect) prior view is 
that everyone has two left feet. Access 
to the statistical database teaches that 
almost everyone has one left foot and 
one right foot. The adversary now has 
a very different view of whether or not 
any given respondent has two left feet. 
But has privacy been compromised?

The last hopes for Dalenius’ goal 
evaporate in light of the following par-
able, which again involves auxiliary 
information. Suppose we have a sta-
tistical database that teaches average 
heights of population subgroups, and 
suppose further that it is infeasible 
to learn this information (perhaps 
for financial reasons) in any other 
way (say, by conducting a new study). 
Finally, suppose that one’s true height 
is considered sensitive. Given the auxil-
iary information “Turing is two inches 
taller than the average Lithuanian 
woman,” access to the statistical data-
base teaches Turing’s height. In con-
trast, anyone without access to the 
database, knowing only the auxiliary 
information, learns much less about 
Turing’s height.

A rigorous impossibility result gen-
eralizes this argument, extending to 
essentially any notion of privacy com-
promise, assuming the statistical data-
base is useful. The heart of the attack 
uses extracted randomness from the 
statistical database as a one-time pad 
for conveying the privacy compromise 
to the adversary/user.6, 9

Turing did not have to be a member 
of the database for the attack described 
earlier to be prosecuted against 
him. More generally, the things that 
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statistical databases are designed to 
teach can, sometimes indirectly, cause 
damage to an individual, even if this 
individual is not in the database.

In practice, statistical databases 
are (typically) created to provide some 
anticipated social gain; they teach us 
something we could not (easily) learn 
without the database. Together with 
the attack against Turing, and the 
fact that he did not have to be a mem-
ber of the database for the attack to 
work, this suggests a new privacy goal: 
Minimize the increased risk to an indi-
vidual incurred by joining (or leaving) 
the database. That is, we move from 
comparing an adversary’s prior and 
posterior views of an individual to com-
paring the risk to an individual when 
included in, versus when not included 
in, the database. This makes sense. 
A privacy guarantee that limits risk 
incurred by joining encourages partici-
pation in the dataset, increasing social 
utility. This is the starting point on our 
path to differential privacy.

Differential Privacy
Differential privacy will ensure that 
the ability of an adversary to inflict 
harm (or good, for that matter)—of 
any sort, to any set of people—should 
be essentially the same, independent 
of whether any individual opts in to, or 
opts out of, the dataset. We will do this 
indirectly, simultaneously addressing 
all possible forms of harm and good, 
by focusing on the probability of any 
given output of a privacy mechanism 
and how this probability can change 
with the addition or deletion of any 
row. Thus, we will  concentrate on pairs 
of databases (D,  D¢) differing only in 
one row, meaning one is a subset of 
the other and the larger database con-
tains just one additional row. Finally, 
to handle worst-case pairs of data-
bases, our probabilities will be over the 
random choices made by the privacy 
mechanism.

Definition 1. A randomized function K 
gives e-differential privacy if for all data-
sets D and D¢ differing on at most one row, 
and all S ⊆ Range(K),

       
(1)

where the probability space in each case 
is over the coin flips of K.

The multiplicative nature of the guar-
antee implies that an output whose 
probability is zero on a given database 
must also have probability zero on any 
neighboring database, and hence, by 
repeated application of the defini-
tion, on any other database. Thus, 
Definition 1 trivially rules out the 
subsample-and-release paradigm dis-
cussed: For an individual x not in the 
dataset, the probability that x’s data 
is sampled and released is  obviously 
zero; the multiplicative nature of the 
guarantee ensures that the same is 
true for an individual whose data is in 
the dataset.

Any mechanism satisfying this defi-
nition addresses all concerns that any 
participant might have about the leak-
age of his or her personal information, 
regardless of any auxiliary information 
known to an adversary: Even if the par-
ticipant removed his or her data from 
the dataset, no outputs (and thus con-
sequences of outputs) would become 
significantly more or less likely. For 
example, if the database were to be con-
sulted by an insurance provider before 
deciding whether or not to insure a 
given individual, then the presence or 
absence of any individual’s data in the 
database will not significantly affect 
his or her chance of receiving coverage.

Definition 1 extends naturally to 
group privacy. Repeated application 
of the definition bounds the ratios of 
probabilities of outputs when a collec-
tion C of participants opts in or opts 
out, by a factor of e|C|e. Of course, the 
point of the statistical database is to 
disclose aggregate information about 
large groups (while simultaneously 
protecting individuals), so we should 
expect privacy bounds to disintegrate 
with increasing group size.

The parameter e is public, and its 
selection is a social question. We tend 
to think of e as, say, 0.01, 0.1, or in 
some cases, ln 2 or ln 3.

Sometimes, for example, in the cen-
sus, an individual’s participation is 
known, so hiding presence or absence 
makes no sense; instead we wish to 
hide the values in an individual’s row. 
Thus, we can (and sometimes do) 
extend “differing in at most one row” 
to mean having symmetric difference 
at most 1 to capture both possibilities. 
However, we will continue to use the 
original definition.

Returning to randomized response, 
we see that it yields e-differential pri-
vacy for a value of e that depends on 
the universe from which the rows are 
chosen and the probability with which 
a random, rather than non-random, 
value is contributed by the respon-
dent. As an example, suppose each 
row consists of a single bit, and that 
the respondent’s instructions are to 
first flip an unbiased coin to determine 
whether he or she will answer ran-
domly or truthfully. If heads (respond 
randomly), then the respondent is to 
flip a second unbiased coin and report 
the outcome; if tails, the respondent 
answers truthfully. Fix b Î {0, 1}. If the 
true value of the input is b, then b is out-
put with probability 3/4. On the other 
hand, if the true value of the input is 
1 − b, then b is output with probability 
1/4. The ratio is 3, yielding (ln 3)-differ-
ential privacy.

Suppose n respondents each employ 
randomized response independently, 
but using coins of known, fixed, bias. 
Then, given the randomized data, by 
the properties of the binomial distri-
bution the analyst can approximate 
the true answer to the question “How 
many respondents have value b?” to 
within an expected error on the order 
of  . As we will see, it is possible 
to do much better—obtaining constant 
expected error, independent of n.

Generalizing in a different direc-
tion, suppose each row now has two 
bits, each one randomized indepen-
dently, as described earlier. While each 
bit remains (ln 3)-differentially private,  
their logical-AND enjoys less privacy.  
That is, consider a privacy mechanism 
in which each bit is protected by this 
exact method of randomized response, 
and consider the query: “What is the 
logical-AND of the bits in the row of 
respondent i (after randomization)?” 
If we consider the two extremes, one 
in which respondent i has data 11 
and the other in which respondent 
i has data 00, we see that in the first 
case the probability of output 1 is 9/16, 
while in the second case the probabil-
ity is 1/16. Thus, this mechanism is at 
best (ln 9)-differentially private, not 
ln 3. Again, it is possible to do much 
 better, even while releasing the entire 
4-element histogram, also known as a 
contingency table, with only constant 
expected error in each cell.
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achieving Differential Privacy
Achieving differential privacy revolves 
around hiding the presence or absence 
of a single individual. Consider the 
query “How many rows in the database 
satisfy property P?” The presence or 
absence of a single row can affect the 
answer by at most 1. Thus, a differen-
tially private mechanism for a query of 
this type can be designed by first com-
puting the true answer and then adding 
random noise according to a distribu-
tion with the following property:

     (2)

To see why this is desirable, consider 
any feasible response r. For any m, if 
m is the true answer and the response 
is r then the random noise must have 
value r − m; similarly, if m − 1 is the true 
answer and the response is r, then the 
random noise must have value r − m + 
1. In order for the response r to be gen-
erated in a differentially private fash-
ion, it suffices for

In general we are interested in 
 vector-valued queries; for example, the 
data may be points in Rd and we wish 
to carry out an analysis that clusters the 
points and reports the location of the 
largest cluster.

Definition 2. For f : D ® Rd, the L1 sen-
sitivity of f is7

 
(3)

 
 
 

 
for all D, D¢ differing in at most one row.

In particular, when d = 1 the sensitivity 
of f is the maximum difference in the 
values that the function f may take on a 
pair of databases that differ in only one 
row. This is the difference our noise 
must be designed to hide. For now, let 
us focus on the case d = 1.

The Laplace distribution with 
parameter b, denoted Lap(b), has den-
sity function 
; its variance is 2b2. Taking b = 1/e  we 
have that the density at z is propor-
tional to e−e|z|. This distribution has 
highest density at 0 (good for accu-
racy), and for any z, z¢ such that 

|z − z¢| £ 1 the density at z is at most 
ee times the density at z¢, satisfying 
the condition in Equation 2. It is also 
symmetric about 0, and this is impor-
tant. We cannot, for example, have 
a distribution that only yields non-
negative noise. Otherwise the only 
databases on which a counting query 
could return a response of 0 would be 
databases in which no row satisfies 
the query. Letting D be such a data-
base, and letting D¢ = D È {r} for some 
row r satisfying the query, the pair D, 
D¢ would violate e-differential privacy. 
Finally, the distribution gets flatter as 
e decreases. This is correct: smaller e 
means better privacy, so the noise den-
sity should be less “peaked” at 0 and 
change more gradually as the magni-
tude of the noise increases.

There is nothing special about the 
cases d = 1, Df = 1:

Theorem 2. For f : D ® Rd, the 
 mechanism K that adds independently 
generated noise with distribution Lap 
(Df/e) to each of the d output terms enjoys 
e-differential privacy.7

Before proving the theorem, we 
illustrate the situation for the case of a 
counting query (Df = 1) when e = ln2 and 
the true answer to the query is 100. The 
distribution on the outputs (in gray) is 
centered at 100. The distribution on 
outputs when the true answer is 101 is 
shown in orange.

100 101 102 103 …999897…

Proof. (Theorem 2) The proof is a sim-
ple generalization of the reasoning we 
used to illustrate the case of a single 
counting query.

Consider any subset S ⊆ Range(K), 
and let D, D¢ be any pair of databases 
differing in at most one row. When the 
database is D, the probability density at 
any r  S is proportional to exp(−||  f  (D) 
− r||1(e/D f  )). Similarly, when the data-
base is D¢, the probability density at 
any r  Range(K) is proportional to 
exp(−||  f  (D¢) − r ||1(e/Df) ).

We have

where the inequality follows from 
the triangle inequality. By defini-
tion of sensitivity, ||  f (D¢) − f (D)||1 £ Df, 
and so the ratio is bounded by exp(e). 
Integrating over S yields e-differential 
privacy.    

Given any query sequence f1, . . . , fm, 
e-differential privacy can be achieved 
by running K with noise distribution 

 on each query, even if 
the queries are chosen adaptively, with 
each successive query depending on 
the answers to the previous queries. 
In other words, by allowing the quality 
of each answer to deteriorate in a con-
trolled way with the sum of the sensi-
tivities of the queries, we can maintain 
e-differential privacy.

With this in mind, let us return to 
some of the suggestions we consid-
ered earlier. Recall that using the spe-
cific randomized response strategy 
described above, for a single Boolean 
attribute, yielded error  on 
databases of size n and (ln 3)-dif-
ferential privacy. In contrast, using 
Theorem 2 with the same value of e, 
noting that Df  = 1 yields a variance 
of 2(1/ln 3)2, or an expected error of 

. More generally, to obtain e-
differential privacy we get an expected 
error of . Thus, our expected error 
magnitude is constant, independent 
of n.

What about two queries? The sen-
sitivity of a sequence of two counting 
queries is 2. Applying the theorem 
with Df/e = 2/e, adding independently 
generated noise distributed as 
Lap(2/e) to each true answer yields 
e-differential privacy. The variance is 
2(2/e)2, or standard deviation . 
Thus, for any desired e we can achieve 
e-differential privacy by increasing 
the expected magnitude of the errors 
as a function of the total sensitivity of 
the two-query sequence. This holds 
equally for:

• Two instances of the same query, 
addressing the repeated query 
problem

• One count for each of two differ-
ent bit positions, for example, 
when each row consists of two bits

• A pair of queries of the form: “How 
many rows satisfy property P?” 
and “How many rows satisfy prop-
erty Q?” (where possibly P = Q)

• An arbitrary pair of queries
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However, the theorem also shows we 
can sometimes do better. The logical-
AND count we discussed earlier, even 
though it involves two different bits 
in each row, still only has sensitivity 1: 
The number of 2-bit rows whose entries 
are both 1 can change by at most 1 with 
the addition or deletion of a single row. 
Thus, this more complicated query can 
be answered in an e-differentially pri-
vate fashion using noise distributed as 
Lap(1/e); we do not need to use the dis-
tribution Lap(2/e).

Histogram Queries. The power of 
Theorem 2 really becomes clear when 
considering histogram queries, defined 
as follows. If we think of the rows of 
the database as elements in a universe 
X, then a histogram query is a parti-
tioning of X into an arbitrary number 
of disjoint regions X1, X2, . . . , Xd. The 
implicit question posed by the query is: 
“For i = 1, 2, . . . , d, how many points 
in the database are contained in Xi?” 
For example, the database may contain 
the annual income for each respon-
dent, and the query is a partitioning of 
incomes into ranges: {[0, 50K), [50K, 
100K), . . . , ³ 500K}. In this case d = 11, 
and the question is asking, for each of 
the d ranges, how many respondents 
in the database have annual income 
in the given range. This looks like d 
separate counting queries, but the 
entire query actually has sensitivity Df 
= 1. To see this, note that if we remove 
one row from the database, then only 
one cell in the histogram changes, and 
that cell only changes by 1; similarly for 
adding a single row. So Theorem 2 says 
that e-differential privacy can be main-
tained by perturbing each cell with 
an independent random draw from 
Lap(1/e). Returning to our example of 
2-bit rows, we can pose the 4-ary histo-
gram query requesting, for each pair of 
literals v1v2, the number of rows with 
value v1v2, adding noise of order 1/e to 
each of the four cells.

When Noise Makes No Sense. There 
are times when the addition of noise 
for achieving privacy makes no sense. 
For example, the function f might 
map databases to strings, strategies, 
or trees, or it might be choosing the 
“best” among some specific, not nec-
essarily continuous, set of real-valued 
objects. The problem of optimizing the 

output of such a function while pre-
serving e-differential privacy requires 
additional technology.

Assume the curator holds a data-
base D and the goal is to produce an 
object y. The exponential mechanism19 
works as follows. We assume the exis-
tence of a utility function u(D, y) that 
measures the quality of an output y, 
given that the database is D. For exam-
ple, the data may be a set of labeled 
points in Rd and the output y might 
be a d-ary vector describing a (d − 1)-
dimensional hyperplane that attempts 
to classify the points, so that those 
labeled with +1 have non- negative 
inner product with y and those labeled 
with −1 have negative inner product. In 
this case the utility would be the num-
ber of points correctly classified, so that 
higher utility corresponds to a better 
classifier. The exponential mechanism 
outputs y with probability proportional 
to exp(u(D,y)e/Du) and ensures e-differ-
ential privacy. Here Du is the sensitivity 
of the utility function bounding, for all 
databases (D, D¢) differing in only one 
row and potential outputs y, the differ-
ence |u(D, y) − u(D¢,y)|. In our example, 
Du = 1. The mechanism assigns most 
mass to the best classifier, and the 
mass assigned to any other drops off 
exponentially in the decline in its util-
ity for the current dataset—hence the 
name “exponential mechanism.”

When Sensitivity Is Hard to Analyze. 
The Laplace and exponential mecha-
nisms provide a differentially private 
interface through which the analyst 
can access the data. Such an interface 
can be useful even when it is difficult to 
determine the sensitivity of the desired 
function or query sequence; it can also 
be used to run an iterative algorithm, 
composed of easily analyzed steps, for 
as many iterations as a given privacy 
budget permits. This is a powerful 
observation; for example, using only 
noisy sum queries, it is possible to 
carry out many standard data mining 
tasks, such as singular value decom-
positions, finding an ID3 decision 
tree, clustering, learning association 
rules, and learning anything learn-
able in the statistical queries learning 
model, frequently with good accuracy, 
in a privacy-preserving fashion.2 This 
approach has been generalized to 
yield a publicly available codebase for 

there are times 
when the addition  
of noise for 
achieving privacy 
makes no sense. 
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writing programs that ensure differen-
tial privacy.18

k-Means Clustering. As an example 
of “private pro gramming,”2 consider 
k-means clustering, described first in its 
usual, non-private form. The input con-
sists of points p1, . . . , pn in the d-dimen-
sional unit cube [0, 1]d. Initial candidate 
means m1, . . . , mk are chosen randomly 
from the cube and updated as follows:

1.  Partition the samples {pi} into k 
sets S1, . . . , Sk, associating each pi  
with the nearest mj.

2. For 1 £ j £ k, set , 
the mean of the samples  
associated with mj.

This update rule is typically iterated 
until some convergence criterion has 
been reached, or a fixed number of 
iterations have been applied.

Although computing the nearest 
mean of any one sample (Step 1) would 
breach privacy, we observe that to com-
pute an average among an unknown set 
of points it is enough to compute their 
sum and divide by their number. Thus, 
the computation only needs to expose 
the approximate cardinalities of the Sj, 
not the sets themselves. Happily, the 
k candidate means implicitly define 
a histogram query, since they parti-
tion the space [0, 1]d according to their 
Voronoi cells, and so the vector (|S1|, 
. . . , |Sk|) can be released with very low 
noise in each coordinate. This gives us 
a differentially private approximation 
to the denominators in Step 2. As for 
the numerators, the sum of a subset of 
the pi has sensitivity at most d, since 
the points come from the bounded 
region [0,1]d. Even better, the sensitiv-
ity of the d-ary function that returns, 
for each of the k Voronoi cells, the d-ary 
sum of the points in the cell is at most 
d: Adding or deleting a single d-ary 
point can affect at most one sum, and 
that sum can change by at most 1 in 
each of the d dimensions. Thus, using 
a query sequence with total sensitivity 
at most d + 1, the analyst can compute 
a new set of candidate means by divid-
ing, for each mj, the approximate sum 
of the points in Sj by the approxima-
tion to the cardinality |Sj|.

If we run the algorithm for a fixed 
number N of iterations we can use the 
noise distribution Lap( (d + 1)N/e) to 

obtain e-differential privacy. If we do 
not know the number of iterations 
in advance we can increase the noise 
parameter as the computation pro-
ceeds. There are many ways to do this. 
For example, we can answer in the first 
iteration with parameter (d + 1)(e/2), 
in the next with parameter (d + 1)(e/4), 
and so on, each time using up half of 
the remaining “privacy budget.”

Generating synthetic Data
The idea of creating a synthetic dataset 
whose statistics closely mirror those 
of the original dataset, but which pre-
serves privacy of individuals, was pro-
posed in the statistics community no 
later than 1993.21 The lower bounds on 
noise discussed at the end of Section 
on “How Is Hard” imply that no such 
dataset can safely provide very accurate 
answers to too many weighted subset 
sum questions, motivating the inter-
active approach to private data analy-
sis discussed herein. Intuitively, the 
advantage of the interactive approach 
is that only the questions actually 
asked receive responses.

Against this backdrop, the non-
interactive case was revisited from a 
learning theory perspective, challeng-
ing the interpretation of the noise 
lower bounds as a limit on the number 
of queries that can be answered pri-
vately.3 This work, described next, has 
excited interest in interactive and non-
interactive solutions yielding noise in 
the range  .

Let X be a universe of data items 
and let C be a concept class consisting 
of functions c : X ® {0,1}. We say x Î X 
satisfies a concept c Î C if and only if c(x) 
= 1. A concept class can be extremely 
general; for example, it might consist 
of all rectangles in the plane, or all 
Boolean circuits containing a given 
number of gates.

Given a sufficiently large database 
D Î Xn, it is possible to privately gen-
erate a synthetic database that main-
tains approximately correct fractional 
counts for all concepts in C (there may 
be infinitely many!). That is, letting 
S denote the synthetic database pro-
duced, with high probability over the 
choices made by the privacy mecha-
nism, for every concept c Î C, the frac-
tion of elements in S that satisfy c is 
approximately the same as the fraction 
of elements in D that satisfy c.

The minimal size of the input data-
base depends on the quality of the 
approximation, the logarithm of the 
cardinality of the universe X, the pri-
vacy parameter e, and the Vapnick–
Chervonenkis dimension of the concept 
class C (for finite |C| this is at most 
log2 |C|). The synthetic dataset, chosen 
by the exponential mechanism, will be 
a set of m = O(VCdim(C)/γ2), elements 
in X (γ governs the maximum permissi-
ble inaccuracy in the fractional count). 
Letting D denote the input dataset and 
D̂ a candidate synthetic dataset, the 
utility function for the exponential 
mechanism is given by

Pan-Privacy
Data collected by a curator for a given 
purpose may be subject to “mission 
creep” and legal compulsion, such 
as a subpoena. Of course, we could 
analyze data and then throw it away, 
but can we do something even stron-
ger, never storing the data in the first 
place? Can we strengthen our notion 
of privacy to capture the “never store” 
requirement?

These questions suggest an investi-
gation of differentially private stream-
ing algorithms with small state—much 
too small to store the data. However, 
nothing in the definition of a stream-
ing algorithm, even one with very 
small state, precludes storing a few 
individual data points. Indeed, popu-
lar techniques from the streaming 
literature, such as Count-Min Sketch 
and subsampling, do precisely this. 
In such a situation, a subpoena or 
other intrusion into the local state will 
breach privacy.

A pan-private algorithm is private 
“inside and out,” remaining differen-
tially private even if its internal state 
becomes visible to an adversary.10 To 
understand the pan-privacy guaran-
tee, consider click stream data. This 
data is generated by individuals, and 
an individual may appear many times 
in the stream. Pan-privacy requires 
that any two streams differing only 
in the information of a single indi-
vidual should produce very similar 
distributions on the internal states of 
the algorithm and on its outputs, even 
though the data of an individual are 
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interleaved arbitrarily with other data 
in the stream.

As an example, consider the prob-
lem of density estimation. Assuming, 
for simplicity, that the data stream is 
just a sequence of IP addresses in a 
certain range, we wish to know what 
fraction of the set of IP addresses in the 
range actually appears in the stream. 
A solution inspired by randomized 
response can be designed using the fol-
lowing technique.10

Define two probability distribu-
tions, D0 and D1, on the set {0, 1}. D0 
assigns equal mass to zero and to one. 
D1 has a slight bias toward 1; specifi-
cally, 1 has mass 1/2 + e/4, while 0 has 
mass 1/2 − e/4.

Let X denote the set of all possible IP 
addresses in the range of interest. The 
algorithm creates a table, with a 1-bit 
entry bx for each x Î X, initialized to an 
independent random draw from D0. So 
initially the table is roughly half zeroes 
and half ones.

In an atomic step, the algorithm 
receives an element from the stream, 
changes state, and discards the ele-
ment. When processing x Î X, the 
algorithm makes a fresh random 
draw from D1, and stores the result in 
bx. This is done no matter how many 
times x may have appeared in the 
past. Thus, for any x appearing at least 
once, bx will be distributed accord-
ing to D1. However, if x never appears, 
then the entry for x is the bit drawn 
according to D0 during the initializa-
tion of the table.

As with randomized response, 
the density in X of the items in the 
stream can be approximated from 
the number of 1’s in the table, taking 
into account the expected fraction of 
“false positives” from the initializa-
tion phase and the “false negatives” 
when sampling from D1. Letting q 
denote the fraction of entries in the 
table with value 1, the output is 4(q − 
1/2)/e + Lap(1/e|X|).

Intuitively, the internal state is 
 differentially private because, for 
e a c h  
privacy for the output is ensured by 
the addition of Laplacian noise. Over 
all, the algorithm is 2e-differentially 
pan-private.

conclusion
The differential privacy frontier is 

expanding rapidly, and there is insuf-
ficient space here to list all the inter-
esting directions currently under 
investigation by the community. We 
identify a few of these.

The Geometry of Differential Privacy. 
Sharper upper and lower bounds 
on noise required for achieving dif-
ferential privacy against a sequence 
of linear queries can be obtained 
by understanding the geometry of 
the query sequence.14 In some cases 
dependencies among the queries can 
be exploited by the curator to markedly 
improve the accuracy of the responses. 
Generalizing this investigation to the 
nonlinear and interactive cases would 
be of significant interest.

Algorithmic Complexity. We have 
so far ignored questions of compu-
tational complexity. Many, but not 
all, of the techniques described here 
have efficient implementations. For 
example, there are instances of the 
synthetic data generation problem 
that, under standard cryptographic 
assumptions, have no polynomial 
time implementation.11 It follows 
that there are cases in which the expo-
nential mechanism has no efficient 
implementation. When can this pow-
erful tool be implemented efficiently, 
and how?

An Alternative to Differential Privacy? 
Is there an alternative, “ad omnia,” 
guarantee that composes automati-
cally, and permits even better accuracy 
than differential privacy? Can crypto-
graphy be helpful in this regard?20

The work described herein has, 
for the first time, placed private data 
analysis on a strong mathematical 
foundation. The literature connects 
differential privacy to decision theory, 
economics, robust statistics, geom-
etry, additive combinatorics, cryp-
tography, complexity theory learning 
theory, and machine learning. 
Differential privacy thrives because 
it is natural, it is not domain-specific, 
and it enjoys fruitful interplay with 
other fields. This flexibility gives hope 
for a principled approach to privacy 
in cases, like private data analysis, 
where traditional notions of crypto-
graphic security are inappropriate or 
impracticable. 
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I
n 2020 the U.S. Census Bureau will conduct the 
Constitutionally mandated decennial Census of 
Population and Housing. Because a census involves 
collecting large amounts of private data under the 
promise of confidentiality, traditionally statistics are 

published only at high levels of aggregation. Published 
statistical tables are vulnerable to DRAs (database 
reconstruction attacks), in which the underlying microdata 
is recovered merely by finding a set of microdata that is 
consistent with the published statistical tabulations. A 
DRA can be performed by using the tables to create a set 
of mathematical constraints and then solving the resulting 
set of simultaneous equations. This article shows how 
such an attack can be addressed by adding noise to the 
published tabulations, so that the reconstruction no longer 
results in the original data. This has implications for the 
2020 Census.

The goal of the census is to count every person once, 
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and only once, and in the correct place. The results are 
used to fulfill the Constitutional requirement to apportion 
the seats in the U.S. House of Representatives among the 
states according to their respective numbers.

In addition to this primary purpose of the decennial 
census, the U.S. Congress has mandated many other 
uses for the data. For example, the U.S. Department of 
Justice uses block-by-block counts by race for enforcing 
the Voting Rights Act. More generally, the results of the 
decennial census, combined with other data, are used to 
help distribute more than $675 billion in federal funds to 
states and local organizations.

Beyond collecting and distributing data on the American 
people, the Census Bureau is also charged with protecting 
the privacy and confidentiality of survey responses. All 
census publications must uphold the confidentiality 
standard specified by Title 13, Section 9 of the U.S. 
Code, which states that Census Bureau publications 
are prohibited from identifying “the data furnished by 
any particular establishment or individual.” This section 
prohibits the Census Bureau from publishing respondents’ 
names, addresses, or any other information that might 
identify a specific person or establishment.

Upholding this confidentiality requirement frequently 
poses a challenge, because many statistics can 
inadvertently provide information in a way that can 
be attributed to a particular entity. For example, if a 
statistical agency accurately reports that there are 
two persons living on a block and that the average age 
of the block’s residents is 35, that would constitute an 
improper disclosure of personal information, because 
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one of the residents could look up the data, subtract their 
contribution, and infer the age of the other. 

Of course, this is an extremely simple example. 
Statistical agencies have understood the risk of such 
unintended disclosure for decades and have developed a 
variety of techniques to protect data confidentiality while 
still publishing useful statistics. These techniques include 
cell suppression, which prohibits publishing statistical 
summaries from small groups of respondents; top-coding, 
in which ages higher than a certain limit are coded as 
that limit before statistics are computed; noise-injection, 
in which random values are added to some attributes; 
and swapping, in which some of the attributes of records 
representing different individuals or families are swapped. 
Together, these techniques are called SDL (statistical 
disclosure limitation).

Computer scientists started exploring the issue 
of statistical privacy in the 1970s with the increased 
availability of interactive query systems. The goal was to 
build a system that would allow users to make queries 
that would produce summary statistics without revealing 
information about individual records. Three approaches 
emerged: auditing database queries, so that users would 
be prevented from issuing queries that zeroed in on data 
from specific individuals; adding noise to the data stored 
within the database; and adding noise to query results.1 
Of these three, the approach of adding noise proved to be 
the easiest, because the complexity of auditing queries 
increased exponentially over time—and, in fact, was 
eventually shown to be NP (nondeterministic polynomial)-
hard.8 Although these results were all couched in the 
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language of interactive query systems, they apply equally 
well to the activities of statistical agencies, with the 
database being the set of confidential survey responses, 
and the queries being the schedule of statistical tables 
that the agency intends to publish.

In 2003, Irit Dinur and Kobbi Nissim showed that it isn’t 
even necessary for an attacker to construct queries on 
a database carefully to reveal its underlying confidential 
data.4 Even a surprisingly small number of random queries 
can reveal confidential data, because the results of the 
queries can be combined and then used to “reconstruct” 
the underlying confidential data. Adding noise to either 
the database or to the results of the queries decreases 
the accuracy of the reconstruction, but it also decreases 
the accuracy of the queries. The challenge is to add 
sufficient noise in such a way that each individual’s privacy 
is protected, but not so much noise that the utility of the 
database is ruined.

Subsequent publications3,6 refined the idea of adding 
noise to published tables to protect the privacy of the 
individuals in the data set. Then in 2006, Cynthia Dwork, 
Frank McSherry, Kobbi Nissim, and Adam Smith proposed 
a formal framework for understanding these results. Their 
paper, “Calibrating Noise to Sensitivity in Private Data 
Analysis,”5 introduced the concept of differential privacy. 
They provided a mathematical definition of the privacy loss 
that persons suffer as a result of a data publication, and 
they proposed a mechanism for determining how much 
noise needs to be added for any given level of privacy 
protection. (The authors were awarded the Test of Time 
award at the Theory of Cryptography Conference in 2016 
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and the Godel Prize in 2017.)
The 2020 census is expected to count roughly 330 

million people living on roughly 8.5 million blocks, with 
some inhabited blocks having as few as a single person 
and other blocks having thousands. With this level of scale 
and diversity, it is difficult to visualize how such a data 
release might be susceptible to database reconstruction. 
We now know, however, that reconstruction would in fact 
pose a significant threat to the confidentiality of the 2020 
microdata that underlies unprotected statistical tables 
if privacy-protecting measures are not implemented. 
To help understand the importance of adopting formal 
privacy methods, this article presents a database 
reconstruction of a much smaller statistical publication: 
a hypothetical block containing seven people distributed 
over two households. (The 2010 U.S. Census contained 
1,539,183 census blocks in the 50 states and the District 
of Columbia with between one and seven residents. The 
data can be downloaded from https://www2.census.gov/
census_2010/01-Redistricting_File--PL_94-171/.)

Even a relatively small number of constraints 
results in an exact solution for the blocks’ inhabitants. 
Differential privacy can protect the published data by 
creating uncertainty. Although readers may think that 
the reconstruction of a block with just seven people is an 
insignificant risk for the country as a whole, this attack 
can be performed for virtually every block in the United 
States using the data provided in the 2010 census. The final 
section of this article discusses the implications of this for 
the 2020 decennial census.
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AN EXAMPLE DATABASE RECONSTRUCTION ATTACK
To present the attack, let’s consider the census of a 
fictional geographic frame (for example, a suburban block), 
conducted by a fictional statistical agency. For every block, 
the agency collects each resident’s age, sex, and race, and 
publishes a variety of statistics. To simplify the example, 
this fictional world has only two races—black or African 
American, and white—and two sexes—female and male. 

The statistical agency is prohibited from publishing the 
raw microdata and instead publishes a tabular report. 
Table 1 shows fictional statistical data for a fictional block 
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TABLE 1: Fictional statistical data for a fictional block 

age

statistic group count median mean

1A total population 7 30 38

2A female 4 30 33.5

2B male 3 30 44

2C black or African American 4 51 48.5

2D white 3 24 24

3A single adults (D) (D) (D)
3B married adults 4 51 54

4A black or African American female 3 36 36.7

4B black or African American male (D) (D) (D)
4C white male (D) (D) (D)
4D white female (D) (D) (D)
5A persons under 5 years (D) (D) (D)
5B persons under 18 years (D) (D) (D)
5C persons 64 years or over (D) (D) (D)

           Note: Married persons must be 15 or over 
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published by the fictional statistics agency. The “statistic” 
column is for identification purposes only.

Notice that a substantial amount of information in table 
1 has been suppressed—marked with a (D). In this case, the 
statistical agency’s disclosure-avoidance rules prohibit it 
from publishing statistics based on one or two people. This 
suppression rule is sometimes called “the rule of three,” 
because cells in the report sourced from fewer than 
three people are suppressed. In addition, complementary 
suppression has been applied to prevent subtraction 
attacks on the small cells.

Encoding the constraints
The database can be reconstructed by treating the 
attributes of the persons living on the block as a collection 
of variables. A set of constraints is then extracted from the 
published table. The database reconstruction finds a set of 
attributes that are consistent with the constraints. If the 
statistics are highly constraining, then there will be a single 
possible reconstruction, and the reconstructed microdata 
will necessarily be the same as the underlying microdata 
used to create the original statistical publication. Note 
that there must be at least one solution because the table 
is known to be tabulated from a real database.

For example, statistic 2B states that three males live 
in the geography. This fictional statistical agency has 
previously published technical specifications that its 
computers internally represent each person’s age as 
an integer. The oldest verified age of any human being 
was 122.14 If we allow for unreported supercentenarians 
and consider 125 to the oldest possible age of a human 
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being, there are only a finite number of possible age 
combinations, specifically:

Within the 317,750 possible age combinations, 
however, there are only 30 combinations that satisfy the 
constraints of having a median of 30 and a mean of 44 
(see Table 1). (Notice that the table does not depend on the 
oldest possible age, so long as it is 101 or over.) Applying 
the constraints imposed by the published statistical tables, 
the possible combinations of ages for the three males 
can be reduced from 317,750 to 30. Table 2 shows the 30 
possible ages for which the median is 30 and the mean is 
44

8 of 26

a         b           c a          b         c a        b         c

1       30     101 11       30     91 21    30     81

2      30    100 12      30    90 22    30   80

3      30       99 13      30     89 23    30    79

4      30       98 14      30     88 24    30    78

5      30        97 15      30     87 25    30     77

6      30       96 16      30     86 26    30     76

7       30       95 17      30     85 27    30     75

8      30       94 18     30     84 28    30     74

9      30       93 19     30     83 29    30     73

10     30       92 20    30     82 30   30     72

TABLE 2: Possible ages for a median of 30 and mean of 44  

(!"#! ) =
!"#  ×  !"#  ×  !"#  

!  ×  !  ×  !
= 317,750 
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To mount a full reconstruction attack, an attacker 
extracts all of these constraints and then creates a 
single mathematical model embodying all constraints. 
An automated solver can then find an assignment of the 
variables that satisfies these constraints.

To continue with the example, statistic 1A establishes 
the universe of the constraint system. Because the block 
contains seven people, and each has four attributes (age, 
sex, race, and marital status), that creates 28 variables, 
representing those four attributes for each person. These 
variables are A1… A7 (age), S1… S7 (sex), R1… R7 (race), and 
M1… M7 (marital status), as shown in table 3. The table 
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Person Age Sex Race Marital Status

1 A1 S1 R1 M1

2 A2 S2 R2 M2

3 A3 S3 R3 M3

4 A4 S4 R4 M4

5 A5 S5 R5 M5

6 A6 S6 R6 M6

7 A7 S7 R7 M7

Key

female 0

male  1

black or African American 0

white  1

single 0

married  1

TABLE 3: Variables associated with the reconstruction attack.   
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shows the variables associated with the DRA. The coding 
for the categorical attributes is presented in the key.

Because the mean age is 38, we know that:

A1 + A2 + A3 + A4 + A5 + A6 + A7 = 7 × 38

The language Sugar13 is used to encode the constraints 
in a form that can be processed by a SAT (satisfiability) 
solver. Sugar represents constraints as s-expressions.11 For 
example, the age combination equation can be represented 
as:

; First define the integer variables,
; with the range 0..125
(int A1 0 125)
(int A2 0 125)
(int A3 0 125)
(int A4 0 125)
(int A5 0 125)
(int A6 0 125)
(int A7 0 125)

; Statistic 1A: Mean age is 38
(= (+ A1 A2 A3 A4 A5 A6 A7)
    (* 7 38)
)

Once the constraints in the statistical table are turned 
into s-expressions, Sugar solves them with a brute-force 
algorithm. Essentially, Sugar explores every possible 
combination of the variables, until a combination is 
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found that satisfies the constraints. Using a variety of 
heuristics, SAT solvers are able to rapidly eliminate many 
combinations of variable assignments.

Despite their heuristic complexity, SAT solvers can 
process only those systems that have Boolean variables, 
so Sugar transforms the s-expressions into a much larger 
set of Boolean constraints. For example, each age variable 
is encoded using unary notation as 126 Boolean variables. 
Using this notation, the decimal value 0 is encoded as 126 
false Boolean variables, the decimal value 1 is encoded 
as 1 true and 125 false values, and so on. Although this 
conversion is not space efficient, it is fast, provided that 
the integers have a limited range.

To encode the median age constraint, the median 
of a group of numbers is precisely defined as the value 
of the middle number when the numbers are arranged 
in sorted order (for the case in which there is an odd 
number of numbers). Until now, persons 1 through 7 have 
not been distinguished in any way: the number labels 
are purely arbitrary. To make it easier to describe the 
median constraints, we can assert that the labels must 
be assigned in order of age. This is done by introducing 
five constraints, which has the side effect of eliminating 
duplicate answers that have simply swapped records, an 
approach called breaking symmetry:12

(<= A1 A2)
(<= A2 A3)
(<= A3 A4)
(<= A4 A5)
(<= A6 A7)
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Having asserted that the labels are in chronological 
order, we can constrain the age of the person in the middle 
to be the median:

(= A4 30)

This code fragment assures that the output is sorted 
by age. This technique also does a good job of eliminating 
duplicate answers that have swapped records. 

Sugar has an “if” function that allows encoding 
constraints for a subset of the population. Recall that 
statistic 2B contains three constraints: there are three 
males, their median age is 30, and their average age is 44. 
The value 0 represents a female, and 1 represents a male:

#define FEMALE 0
#define MALE 1

Using the variable Sn to represent the sex of person n, 
we then have the constraint:

S1 + S2 + S3 + S4 + S5 + S6 + S7 = 3

This can be represented as:

(= (+ S1 S2 S3 S4 S5 S6 S7) 3)

Now, using the if function, it is straightforward to 
create a constraint for the mean age 44 of male persons:
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(= (+ (if (= S1 MALE) A1 0) ; average male age
      (if (= S2 MALE) A2 0)
      (if (= S3 MALE) A3 0)
      (if (= S4 MALE) A4 0)
      (if (= S5 MALE) A5 0)
      (if (= S6 MALE) A6 0)
      (if (= S7 MALE) A7 0)
      )
   (* 3 44))

Table 1 translates into 164 individual s-expressions 
extending over 457 lines. Sugar then translates this into 
a single Boolean formula consisting of 6,755 variables 
arranged in 252,575 clauses. This format is called the 
CNF (conjunctive normal form) because it consists of 
many clauses that are combined using the Boolean AND 
operation.

Interestingly, we can even create constraints for the 
suppressed data. Statistic 3A is suppressed, so we know 
that there are 0, 1, or 2 single adults, assuming that 
no complementary suppression was required. Let Mn 
represent the marital status of person n:

#define SINGLE 0
#define MARRIED 1

(int SINGLE_ADULT_COUNT 0 2)
(= (+ (if (and (= M1 SINGLE) (> A1 17)) 1 0)
      (if (and (= M2 SINGLE) (> A2 17)) 1 0) 
      (if (and (= M3 SINGLE) (> A3 17)) 1 0) 
      (if (and (= M4 SINGLE) (> A4 17)) 1 0) 
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      (if (and (= M5 SINGLE) (> A5 17)) 1 0) 
      (if (and (= M6 SINGLE) (> A6 17)) 1 0) 
      (if (and (= M7 SINGLE) (> A7 17)) 1 0))
 SINGLE_ADULT_COUNT)

(>= SINGLE_ADULT_COUNT 0)
(<= SINGLE_ADULT_COUNT 2)

Translating the constraints into CNF allows them to 
be solved using any solver that can solve NP-complete 
program, such as a SAT solver, an SMT (satisfiability module 
theories) solver, or MIP (mixed integer programming) 
solver. There are many such solvers, and most take input in 
the so-called DIMACS file format, which is a standardized 
form for representing CNF equations. The DIMACS format 
(named for the Center for Discrete Mathematics and 
Theoretical Computer Science) was popularized by a series 
of annual SAT solver competitions. One of the results of 
these competitions was a tremendous speed-up of SAT 
solvers over the past two decades. Many solvers can now 
solve CNF systems with millions of variables and clauses 
in just a few minutes, although some problems do take 
much longer. Marijn Heule and Oliver Kullmann discussed 
the rapid advancement and use of SAT solvers in their 2017 
article, “The Science of Brute Force.”7

The open-source PicoSAT2 solver is able to find a 
solution to the CNF problem detailed here in roughly two 
seconds on a 2013 MacBook Pro with a 2.8-GHz Intel i7 
processor and 16 GB of RAM (although the program is not 
limited by RAM), while the open-source Glucose SAT solver 
can solve the problem in under 0.1 seconds on the same 
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computer. The stark difference between the two solvers 
shows the speed-up possible with an improved solving 
algorithm.

Exploring the solution universe
PicoSAT creates a satisfying assignment for the 6,755 
Boolean variables. After the solver runs, Sugar can 
translate these assignments back into integer values 
of the constructed variables. (SMT and MIP solvers can 
represent the constraints at a higher level of abstraction, 
but for our purposes a SAT solver is sufficient.)

There exists a solution universe of all the possible 
solutions to this set of constraints. If the solution universe 
contains a single possible solution, then the published 
statistics completely reveal the underlying confidential 
data—provided that noise was not added to either the 
microdata or the tabulations as a disclosure-avoidance 
mechanism. If there are multiple satisfying solutions, 
then any element (person) in common among all of the 
solutions is revealed. If the equations have no solution, 
either the set of published statistics is inconsistent with 
the fictional statistical agency’s claim that it is tabulated 
from a real confidential database or an error was made 
in that tabulation. This doesn’t mean that a high-quality 
reconstruction is not possible. Instead of using the 
published statistics as a set of constraints, they can be 
used as inputs to a multidimensional objective function: 
the system can then be solved using another kind of solver 
called an optimizer.

Normally SAT, SMT, and MIP solvers will stop when they 
find a single satisfying solution. One of the advantages 
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of PicoSAT is that it can produce the solution universe of 
all possible solutions to the CNF problem. In this case, 
however, there is a single satisfying assignment that 
produces the statistics in table 1. That assignment is seen 
in Table 4.

Table 1 provides some redundant constraints on the 
solution universe: some of the constraints can be dropped 
while preserving a unique solution. For example, dropping 
statistic 2A, 2B, 2C, or 2D still yields a single solution, but 
dropping 2A and 2B increases the solution universe to 
eight satisfying solutions. All of these solutions contain the 
reconstructed microdata records 8FBS, 36FBM, 66FBM, 
and 84MBM. This means that even if statistics 2A and 2B 
are suppressed, we can still infer that these four microdata 
records must be present.

Statistical agencies have long used suppression in an 
attempt to provide privacy to those whose attributes are 
present in the microdata, although the statistics that they 
typically drop are those that are based on a small number 

Age Sex Race Marital Status

8 F B S

18 M W S

24 F W S

30 M W M

36 F B M

66 F B M

84 M B M

Solution #1

8FBS

18MWS

24FWS

30MWM

36FBM

66FBM

84MBM

=

TABLE 4: A single satisfying assignment   
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of persons. How effective is this approach?
In table 1, statistic 4A is an obvious candidate for 

suppression—especially given that statistics 4B, 4C, and 4D 
have already been suppressed to avoid an inappropriate 
statistical disclosure.

Removing the constraints for statistic 4A increases the 
number of solutions from one to two, shown in table 5.
 
DEFENDING AGAINST A DRA
There are three approaches for defending against a 
database reconstruction attack. The first is to publish 
less statistical data—this is the approach taken by legacy 
disclosure-avoidance techniques (cell suppression, 
top-coding, and generalization). The second and third 
approaches involve adding noise, or randomness. Noise can 
be added to the statistical data being tabulated or to the 
results after tabulation. Each approach is considered here.

Option 1: Publish less data
Although it might seem that publishing less statistical 
data is a reasonable defense against the DRA, this choice 

TABLE 5: Solutions without statistic 4A 

Solution #1 Solution #2

8FBS 2FBS

18MWS 12MWS

24FWS 24FWM

30MWM 30MBM

36FBM 36FWS

66FBM 72FBM

84MBM 90MBM
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may severely limit the number of tabulations that can 
be published. A related problem is that, with even a 
moderately small population, it may be computationally 
infeasible to determine when the published statistics still 
identify a sizable fraction of individuals in the population.

Option 2: Apply noise before tabulation
This approach is called input noise injection. For example, 
each respondent’s age might be randomly altered by a 
small amount. Input noise injection doesn’t prevent finding 
a set of microdata that is consistent with the published 
statistics, what we call database reconstruction, but it 
limits the value of the reconstructed microdata, since 
what is reconstructed is the microdata after the noise has 
been added.

Swapping, the disclosure-avoidance approach used 
in the 2010 census, is a kind of input noise injection. In 
swapping, some of the attributes are exchanged, or 
swapped, between records. The advantage of swapping is 
that it has no impact on some kinds of statistics: if people 
are swapped only within a county, then any tabulation 
at the county level will be unaffected by swapping. The 
disadvantage of swapping is that it can have significant 
impact on statistics at lower levels of geography, and 
values that are not swapped are unprotected.

Option 3: Apply noise to the published statistics
This approach is called output noise injection. Whereas 
input noise injection applies noise to the microdata directly, 
output noise injection applies output to the statistical 
publications. Output noise injection complicates database 
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reconstruction by eliminating naïve approaches based 
on the straightforward application of SAT solvers. Also, 
even if a set of microdata is constructed that is mostly 
consistent with the published statistics, this microdata 
will be somewhat different from the original microdata 
that was collected. The more noise that was added to the 
tabulation, the more the microdata will be different.

When noise is added to either the input data (option 
2) or the tabulation results (option 3), with all records 
having equal probability of being altered, it is possible to 
mathematically describe the resulting privacy protection. 
This is the basis of differential privacy.

Implications for the 2020 Census
The Census Bureau has announced that it is adopting a 
noise-injection mechanism based on differential privacy to 
provide privacy protection for the underlying microdata 
collected as part of the 2020 census. Following is the 
motivation for that decision.

The protection mechanism developed for the 2010 
census was based on a swapping.15 The swapping technique 
was not designed to protect the underlying data against a 
DRA. Indeed, it is the Census Bureau’s policy that both the 
swapped and the unswapped microdata are considered 
confidential.

The 2010 census found a total population of 
308,745,538. These people occupied 10,620,683 habitable 
blocks. Each person was located in a residential housing 
unit or institutional housing arrangement (what the Census 
Bureau calls “group quarters”). For each person, the 
Census Bureau tabulated the person’s location, as well as 
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sex, age, race, and ethnicity, and the person’s relationship 
to the head of the household—that is, six attributes 
per person, for a total of approximately 1.5 billion 
attributes. Using this data, the Census Bureau published 
approximately 7.7 billion linearly independent statistics, 
including 2.7 billion in the PL94-171 redistricting file, 2.8 
billion in the balance of summary file 1, 2 billion in summary 
file 2, and 31 million records in a public-use microdata 
sample. This results in approximately 25 statistics per 
person. Given these numbers and the example in this 
article, it is clear that there is a theoretical possibility that 
the national-level census could be reconstructed, although 
tools such as Sugar and PicoSAT are probably not powerful 
enough to do so.

To protect the privacy of census respondents, the 
Census Bureau is developing a privacy-protection system 
based on differential privacy. This system will ensure that 
every statistic and the corresponding microdata receive 
some amount of privacy protection, while providing that 
the resulting statistics are sufficiently accurate for their 
intended purpose.

This article has explained the motivation for the decision 
to use differential privacy. Without a privacy-protection 
system based on noise injection, it would be possible to 
reconstruct accurate microdata using only the published 
statistics. By using differential privacy, we can add the 
minimum amount of noise necessary to achieve the Census 
Bureau’s privacy requirements. A future article will explain 
how that system works.
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RELATED WORK
In 2003 Irit Dinur and Kobbi Nissim4 showed that the 
amount of noise that needs to be added to a database 
to prevent a reconstruction of the underlying data is on 
the order of 𝛺 (√n) where n is the number of bits in the 

database. In practice, 
many statistical agencies 
do not add this much 
noise when they release 
statistical tables. (In our 
example, each record 
contains 11 bits of data, so 
the confidential database 
has 77 bits of information. 
Each statistic in Table 3 
can be modeled as a four-
bit of count, a seven-bit of 
median, and a seven-bit of 
mean, for a total of 18 bits; 
Table 3 releases 126 bits 
of information.) Dinur and 
Nissim’s primary finding 
is that many statistical 
agencies leave themselves 
open to the risk of 
database reconstruction. 
This article demonstrates 
one way to conduct that 
attack.

Statistical tables 
create the possibility of 

SAT and SAT Solvers 
 The Boolean SAT problem was the 
 first to be proven NP-complete.9 
This problem asks, for a given Boolean formula, 
whether replacing each variable with either 
true or false can make the formula evaluate 
to true. Modern SAT solvers work well and 
reasonably quickly in a variety of SAT problem 
instances and up to reasonably large instance 
sizes.

Many modern SAT solvers use a heuristic 
technique called CDCL (conflict-driven clause 
learning).10 Briefly, a CDCL algorithm:

1. Assigns a value to a variable arbitrarily.
2. Uses this assignment to determine values 

for the other variables in the formula (a process 
known as unit propagation).

3. If a conflict is found, backtracks to the 
clause that made the conflict occur and undoes 
variable assignments made after that point.

4. Adds the negation of the conflict-causing 
clause as a new clause to the master formula 
and resumes from step 1.

This process is fast at solving SAT problems 
because adding conflicts as new clauses has 

3
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database reconstruction 
because they form a set 
of constraints for which 
there is ultimately only 
one exact solution when 
the published table is 
correctly tabulated 
from a real confidential 
database. Restricting the 
number or specific types 
of queries—for example, 
by suppressing results 
from a small number of 
respondents—is often 
insufficient to prevent 
access to indirectly 

identifying information, because the system’s refusal to 
answer a “dangerous” query itself provides the attacker 
with information.

CONCLUSION
With the dramatic improvement in both computer speeds 
and the efficiency of SAT and other NP-hard solvers in 
the last decade, DRAs on statistical databases are no 
longer just a theoretical danger. The vast quantity of data 
products published by statistical agencies each year may 
give a determined attacker more than enough information 
to reconstruct some or all of a target database and breach 
the privacy of millions of people. Traditional disclosure-
avoidance techniques are not designed to protect against 
this kind of attack.

3

the potential to avoid wasteful “repeated 
backtracks.” Additionally, CDCL and its 
predecessor algorithm, DPLL (Davis–Putnam–
Logemann–Loveland), are both provably 
complete algorithms: they will always return 
either a solution or “Unsatisfiable” if given 
enough time and memory. Another advantage 
is that CDCL solvers reuse past work when 
producing the universe of all possible solutions.

A wide variety of SAT solvers are available 
to the public for minimal or no cost. Although 
a SAT solver requires the user to translate the 
problem into Boolean formulae before use, 
programs such as Naoyuki Tamura’s Sugar 
facilitate this process by translating user-input 
mathematical and English constraints into 
Boolean formulae automatically.
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Faced with the threat of 
database reconstruction, 
statistical agencies have 
two choices: they can 
either publish dramatically 
less information or 
use some kind of noise 
injection. Agencies can 
use differential privacy to 
determine the minimum 
amount of noise necessary 
to add, and the most 
efficient way to add that 

noise, in order to achieve their privacy protection goals.
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Can a set of equations keep U.S. census data private?
By Jeffrey Mervis Jan. 4, 2019 , 2:50 PM

The U.S. Census Bureau is making waves among social scientists with what it calls a “sea

change” in how it plans to safeguard the conNdentiality of data it releases from the decennial

census.

The agency announced in September 2018 that it will apply a mathematical concept called

differential privacy to its release of 2020 census data after conducting experiments that suggest

current approaches can’t assure conNdentiality. But critics of the new policy believe the Census

Bureau is moving too quickly to Nx a system that isn’t broken. They also fear the changes will

degrade the quality of the information used by thousands of researchers, businesses, and

government agencies.

The move has implications that extend far beyond the research community. Proponents of

differential privacy say a Nerce, ongoing legal battle over plans to add a citizenship question to

the 2020 census has only underscored the need to assure people that the government will

protect their privacy.

A noisy con0ict
The Census Bureau’s job is to collect, analyze, and disseminate useful information about the

U.S. population. And there’s a lot of it: The agency generated some 7.8 billion statistics about

the 308 million people counted in the 2010 census, for example.

At the same time, the bureau is prohibited by law from releasing any information for which “the

data furnished by any particular establishment or individual … can be identiNed.”

Once upon a time, meeting that requirement meant simply removing the names and addresses

of respondents. Over the past several decades, however, census o_cials have developed a bag

of statistical tricks aimed at providing additional protection without undermining the quality of

the data.
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Such perturbations, also known as injecting noise, are meant to foil attempts to reidentify

individuals by combining census data with other publicly available information, such as credit

reports, voter registration rolls, and property records. But preventing reidentiNcation has grown

more challenging with the advent of ever-more-powerful computational tools capable of

stripping away privacy.

Census o_cials now believe those ad hoc methods are no longer good enough to satisfy the

law. “The problem is real, and it has moved from a concern to an issue,” says John Thompson,

who stepped down as census director in June 2017, and who recently retired as head of the

Council of Professional Associations on Federal Statistics in Arlington, Virginia. “In Census

Bureau lingo, that means it’s no longer simply a risk, but rather something you have to deal with.”

The agency’s decision to adopt differential privacy was spurred, in part, by recent work on what

is known as the “database reconstruction theorem.” The theorem shows that, given access to a

su_ciently large amount of information, someone can reconstruct underlying databases and, in

theory, identify individuals.

“Database reconstruction theorem is the death knell for traditional [data] publication systems

from conNdential sources,” says John Abowd, chief scientist and associate director for research

at the Census Bureau, located in Suitland, Maryland. “It exposes a vulnerability that we were not

designing our systems to address,” says Abowd, who has spearheaded the agency’s efforts to

adopt differential privacy.

But some users of census data strongly disagree. Steven Ruggles, a population historian at the

University of Minnesota in Minneapolis, is leading the charge against the new policy.

Ruggles says traditional methods have successfully prevented any identity disclosures and,

thus, there’s no urgency to do more. If the Census Bureau is hell-bent on imposing differential

privacy, he adds, o_cials should work with the community to iron out the kinks before applying

it to the 2020 census and its smaller cousin, the American Community Survey.

“Differential privacy goes above and beyond what is necessary to keep data safe under census

law and precedent,” says Ruggles, who also manages a university-based social research

institute that disseminates census data. “This is not the time to impose arbitrary and

burdensome new rules that will sharply restrict or eliminate access to the nation’s core data

sources.”

“My central concern about differential privacy is that it’s a blunt instrument,” he adds. “If you

want to provide the same level of protection against reidentiNcation that current methods do,

you’re going to have to do a lot more damage to the data than is done now.”

Ways to protect conTdentiality
Protecting conNdentiality has been a priority for the Census Bureau for most—but not all—of its

existence. After the Nrst U.S. census was conducted in 1790, o_cials posted the results so that

residents could correct errors. But in 1850, the interior secretary decreed that the returns would

be kept conNdential. They were “not to be used in any way to the gratiNcation of curiosity and

census o_cials,” or “the exposure of any man’s business or pursuits,” notes an o_cial history of

the census published in 1900. In 1954 the agency’s conNdentiality mandate was codiNed in Title

13 of the U.S. Code.

Publicly available census data come in two javors. One type, called small-area data, provides

the basic characteristics of residents—age, sex, and race/ethnicity—down to the census block

level. A census block, often the size of a city block, is the smallest geographic area for which

data are reported. There were some 11 million blocks in 2010, of which 6.3 million were

inhabited.

The second is called microdata, which are the full records collected by the Census Bureau on

individuals—including, for example, the size of the household and the relationships between the

residents. When microdata are reported, they are lumped together by areas containing at least
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100,000 people.

Together, these census products provide fodder for thousands of researchers. Census data are

also the basis for surveys by other government agencies and the private sector that shape

decisions ranging from locating new factories or shopping malls to building new roads and

schools.

The Census Bureau has used a variety of methods to preserve the conNdentiality of these data

as it moved from print to magnetic tape to digital distribution. O_cials can, for instance, mask

the responses of outliers—such as the income of a billionaire. They can also be less precise, for

example, by reporting ages within 5-year ranges rather than a single year. Another technique

involves swapping information with a respondent possessing many similar characteristics who

lives in a different block.

How much noise to inject depends on many factors. However, census o_cials have never

disclosed details of their formula or said how often a particular method is used. They fear that

such information could help someone to reverse engineer the process.

A mathematical approach
Differential privacy, Nrst described in 2006, isn’t a substitute for swapping and other ways to

perturb the data. Rather, it allows someone—in this case, the Census Bureau—to measure the

likelihood that enough information will “leak” from a public data set to open the door to

reconstruction.

“Any time you release a statistic, you’re leaking something,” explains Jerry Reiter, a professor of

statistics at Duke University in Durham, North Carolina, who has worked on differential privacy

as a consultant with the Census Bureau. “The only way to absolutely ensure conNdentiality is to

release no data. So the question is, how much risk is OK? Differential privacy allows you to put a

boundary” on that risk.

A database can be considered differentially protected if the information it yields about someone

doesn’t depend on whether that person is part of the database. Differential privacy was

originally designed to apply to situations in which outsiders make a series of queries to extract

information from a database. In that scenario, each query consumes a little bit of what the

experts call a “privacy budget.” After that budget is exhausted, queries are halted in order to

prevent database reconstruction.

In the case of census data, however, the agency has already decided what information it will

release, and the number of queries is unlimited. So its challenge is to calculate how much the

data must be perturbed to prevent reconstruction.

Abowd says the privacy budget “can be set at wherever the agency thinks is appropriate.” A low

budget increases privacy with a corresponding loss of accuracy, whereas a high budget reveals

more information with less protection. The mathematical parameter is called epsilon; Reiter

likens setting epsilon to “turning a knob.” And epsilon can be Nne-tuned: Data deemed especially

sensitive can receive more protection.

The epsilon can be made public, along with the supporting equations on how it was calculated.

In contrast, Abowd says, traditional approaches to limiting disclosure are “fundamentally

dishonest” from a scientiNc perspective because of their underlying uncertainty. “At the

moment,” he says, the public doesn’t “know the global disclosure risk. … That’s because the

agency doesn’t tell you everything it did to the data before releasing it.”

A simulated attack
A professor of labor economics at Cornell University, Abowd Nrst learned that traditional

procedures to limit disclosure were vulnerable—and that algorithms existed to quantify the risk—

at a 2005 conference on privacy attended mainly by cryptographers and computer scientists.

“We were speaking different languages, and there was no Rosetta Stone,” he says.
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He took on the challenge of Nnding common ground. In 2008, building on a long relationship

with the Census Bureau, he and a team at Cornell created the Nrst application of differential

privacy to a census product. It is a web-based tool, called OnTheMap, that shows where people

work and live.

Abowd took leave from Cornell to join the Census Bureau in June 2016, and one of his Nrst

moves was to test the vulnerability of the 2010 census data to an outside attack. The goal was

to see how well a census team could reconstruct individual records from the thousands of

tables the agency had published—and then try to identify those individuals.

The three-step process required substantial computing power. First, the researchers

reconstructed records for individuals—say, a 55-year-old Hispanic woman—by mining the

aggregated census tables. Then, they tried to match the reconstructed individuals to even more

detailed census block records (that still lacked names or addresses); they found “putative

matches” about half the time.

Finally, they compared the putative matches to commercially available credit databases in

hopes of attaching a name to a particular record. Even if they could, however, the team didn’t

know whether they had actually found the right person.

Abowd won’t say what proportion of the putative matches appeared to be correct. (He says a

forthcoming paper will contain the ratio, which he calls “the amount of uncertainty an attacker

would have once they claim to have reidentiNed a person from the public data.”) Although one of

Abowd’s recent papers notes that “the risk of re-identiNcation is small,” he believes the

experiment proved reidentiNcation “can be done.” And that, he says, “is a strong motivation for

moving to differential privacy.”

Too far, too fast?
Such arguments haven’t convinced Ruggles and other social scientists opposed to applying

differential privacy on the 2020 census. They are circulating manuscripts that question the

signiNcance of the census reconstruction exercise and that call on the agency to delay and

change its plan.

Last month they had their Nrst public opportunity to express their opposition during a meeting at

census headquarters of the Federal Economic Statistics Advisory Committee (FESAC), which

advises the Census Bureau and two other major federal statistical agencies. Abowd and

Ruggles went toe to toe during a panel discussion on differential privacy, and council members

had a chance to quiz them.

One point of disagreement is the interpretation of federal law. Title 13 requires the agency to

mask only the identity of individuals, critics argue, not their characteristics. If identifying

characteristics is illegal, Ruggles writes in a recent paper, then “virtually all Census Bureau

microdata and small-area products currently fail to meet that standard.”

Abowd reads the law differently. “Steve has gotten it wrong,” he says jatly. “The statute says

that what is prohibited is releasing the data in an identiNable way.”

At the meeting, several members of the advisory committee peppered Abowd with questions

about the signiNcance of being able to reconstruct 50% of microdata Nles. That percentage is

rather low, they argue. In any event, they say, reconstruction is a far cry from reidentiNcation,

which is what the law prohibits. They also wondered why anyone would go to the trouble of

messing with census data when there are other, better ways to obtain scads of personal

information that can be used to identify individuals.

“I’m not surprised that someone has reconstructed the fact that there are 45-year-old white men

living in a particular block,” said Colm O’Muircheartaigh, a professor of public policy at the

University of Chicago in Illinois and a member of FESAC. “But that kind of information is neither

very interesting or useful.”

Identifying individuals based on household data might be more valuable, he said. “But I imagine
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it would be much harder to reconstruct a household,” O’Muircheartaigh said. “And even if we

could, reconstructing a typical American household—say, two adults and two children—would

hardly be a killer identiNcation.”

Census data also don’t age well because of high mobility rates, he added. “These are static

data,” he said. “Even if you knew that such and such a person lived somewhere in 2010, how

valuable would that be in 2014 or 2018?”

Some meeting attendees also accused Abowd of failing to address the practical effects of

applying differential privacy. One skeptic was Kirk Wolter, chief statistician for NORC at the

University of Chicago, a research institution that does survey work for many federal agencies.

He argued that noisier census data would have a major ripple effect, degrading the quality of

many other surveys that rely on census data to select their samples. “These surveys provide the

information infrastructure for the country,” he noted. “And all of them would suffer.”

Correcting for those problems will cost money, he predicted, with organizations like NORC

having to adjust samples and redesign surveys. And given the tight budgets of most survey

research organizations, those could translate into fewer studies—and less information about the

country’s residents.

Thompson agrees. “Kirk is exactly right,” he says. Applying differential privacy means “those

surveys will take longer and cost more. And they may be less accurate. But you don’t have a

choice.”

The citizenship elephant
Proponents of adopting differential privacy say there is also another compelling reason to move

forward quickly: a controversial decision made last March by Commerce Secretary Wilbur Ross

to add a citizenship question to the 2020 census.

A slew of local and state o_cials have joined civil rights groups in suing the federal government

in a bid to block the question. They argue that adding the question will lead nonresidents and

other vulnerable populations to avoid Nlling out the census form, leading to a signi?cant
undercount. And they are worried about privacy, too. Knowing how someone answered the

citizenship question, critics say, would allow a government agency to take punitive action

against nonresidents.

“Maybe a researcher wouldn’t try to do that,” says Thompson, a witness for the plaintiffs in one

of the suits. “But there are a lot of people who might. And I think that [federal immigration

o_cials] would love to have that information.”

Abowd knows the extreme sensitivity of the citizenship question. His emails last year to Ross

expressing reservations about adding it to the 2020 census have been publicly revealed by the

litigation. And although he tiptoed around the topic during the recent FESAC discussion, it was

clear that he was worried about the damage it could wreak on the agency’s credibility.

“The entire history of traditional disclosure limitation was aimed at preventing attackers, armed

with external data, from using it in combination with the variables on the [census] microdata Nle

to attach a name and address,” Abowd said during the roundtable. “With regard to 2010, most of

those databases did not have race and ethnicity on them. And none have citizenship, to just

bring into the room the variable that we probably should be discussing more explicitly.”

Practical issues
Ruggles, meanwhile, has spent a lot of time thinking about the kinds of problems differential

privacy might create. His Minnesota institute, for instance, disseminates data from the Census

Bureau and 105 other national statistical agencies to 176,000 users. And he fears differential

privacy will put a serious crimp in that jow of information.

In the most extreme scenario, he says, the Census Bureau could decide to make 2020 census

data available only through its network of 29 secure Federal Statistical Research Data Centers.
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That would impose serious hardships on users, Ruggles says, because the centers require users

to obtain a security clearance, which often involves lengthy waiting periods. Such rules could

also prevent most international scholars from using the centers, he says, as well as graduate

students seeking a quick turnaround for a dissertation. In addition, researchers are only cleared

if their project is deemed to beneNt the agency’s mission.

There are also questions of capacity and accessibility. The centers require users to do all their

work onsite, so researchers would have to travel, and the centers offer fewer than 300

workstations in total.

Thompson says the Census Bureau needs to address those issues regardless of whether it

adopts differential privacy. He agrees with Ruggles that it takes too long to gain access to the

research centers, and he thinks the bureau needs to change its deNnition of what research

serves its mission. “I have argued that anyone advancing the science of using data” should be

eligible, he says. “We need a 21st-century Census Bureau, and that will take a lot of Nxing.”

(With regard to access, Abowd says the agency is considering setting up “virtual” centers that

would allow a much broader audience to work with the data. But Ruggles is skeptical that such

a system would satisfy the bureau’s own deNnition of conNdentiality.)

A need to communicate
Abowd has said, “The deployment of differential privacy within the Census Bureau marks a sea

change for the way that o_cial statistics are produced and published.” And Ruggles agrees. But

he says the agency hasn’t done enough to equip researchers with the maps and tools needed to

navigate the uncharted waters.

 “It’s pretty clear we are going to have a new methodology,” Ruggles concedes. “But I think it

could be implemented in a better or worse way. I would like them to consider the trade-offs, and

not take such an absolutist stand on the risks.”

Meanwhile, NORC’s Wolter says regardless of whether his concerns are addressed, the bureau

must do more outreach—and not just in peer-reviewed journals. “Census badly needs a

communications strategy, by real communications specialists,” he said. “There are thousands of

users [of census data] who won’t understand any of this stuff. And they need to know what is

going to happen.”

Clari,cation,Clari,cation, 17 January 2019, 5:00 p.m.: The ,rst quote from John Abowd in the story has been
revised to make it clear that the Census Bureau is now addressing the vulnerability of census data
to reidenti,cation.
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ABSTRACT
To facilitate collaboration over sensitive data, we present DataSyn-
thesizer, a tool that takes a sensitive dataset as input and generates
a structurally and statistically similar synthetic dataset with strong
privacy guarantees. The data owners need not release their data,
while potential collaborators can begin developing models and
methods with some con�dence that their results will work similarly
on the real dataset. The distinguishing feature of DataSynthesizer is
its usability — the data owner does not have to specify any parame-
ters to start generating and sharing data safely and e�ectively.

DataSynthesizer consists of three high-level modules — DataDe-
scriber, DataGenerator and ModelInspector. The �rst, DataDescriber,
investigates the data types, correlations and distributions of the at-
tributes in the private dataset, and produces a data summary, adding
noise to the distributions to preserve privacy. DataGenerator sam-
ples from the summary computed by DataDescriber and outputs
synthetic data. ModelInspector shows an intuitive description of the
data summary that was computed by DataDescriber, allowing the
data owner to evaluate the accuracy of the summarization process
and adjust any parameters, if desired.

We describe DataSynthesizer and illustrate its use in an urban
science context, where sharing sensitive, legally encumbered data
between agencies and with outside collaborators is reported as the
primary obstacle to data-driven governance.

The code implementing all parts of this work is publicly available
at https://github.com/DataResponsibly/DataSynthesizer.
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1 INTRODUCTION
Collaborative projects in the social and health sciences increasingly
require sharing sensitive, privacy-encumbered data. Social scien-
tists, government agencies, health workers, and non-pro�ts are
eager to collaborate with data scientists, but formal data sharing
agreements are too slow and expensive to create in ad hoc situa-
tions — our colleagues report that 18 months is a typical timeframe
to establish such agreements! As a result, many promising collab-
orations can fail before they even begin. Data scientists require
access to the data before they can understand the problem or even
determine whether they can help. But data owners cannot share
data without signi�cant legal protections in place. Beyond legal
concerns, there is a general reluctance to share sensitive data with
non-experts before they have “proven themselves,” since they do
not understand the context in which the data was collected and
may be distracted by spurious results.

To bootstrap these collaborations without incurring the cost
of formal data sharing agreements, we saw a need to generate
datasets that are structurally and statistically similar to the real data
but that are 1) obviously synthetic to put the data owners at ease,
and 2) o�er strong privacy guarantees to prevent adversaries from
extracting any sensitive information. These two requirements are
not redundant: strong privacy guarantees are not always su�cient
to convince data owners to release data, and even seemingly random
datasets may not prevent subtle privacy attacks. With this approach,
data scientists can begin to develop models and methods with
synthetic data, but maintain some degree of con�dence that their
work will remain relevant when applied to the real data once proper
data sharing agreements are in place.

We propose a tool named DataSynthesizer to address this prob-
lem. Assume that the private dataset contains one table with m
attributes and n tuples, and that the values in each attribute are
homogeneous, that is, they are all of the same data type. We are
interested in producing a synthetic dataset such that summary sta-
tistics of all numerical, categorical, string, and datetime attributes
are similar to the private dataset. What statistics we preserve de-
pends on the data type, as we will discuss in Section 3.

DataSynthesizer infers the domain of each attribute and derives
a description of the distribution of attribute values in the private
dataset. This information is saved in a dataset description �le, to
which we refer as data summary. Then DataSynthesizer is able to
generate synthetic datasets of arbitrary size by sampling from the
probabilistic model in the dataset description �le.
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DataSynthesizer can operate in one of three modes: In correlated
attribute mode, we learn a di�erentially private Bayesian network
capturing the correlation structure between attributes, then draw
samples from this model to construct the result dataset. In cases
where the correlated attribute mode is too computationally expen-
sive or when there is insu�cient data to derive a reasonable model,
one can use independent attribute mode. In this mode, a histogram
is derived for each attribute, noise is added to the histogram to
achieve di�erential privacy, and then samples are drawn for each
attribute. Finally, for cases of extremely sensitive data, one can use
random mode that simply generates type-consistent random values
for each attribute.

DataSynthesizer uses principled methods to infer attribute data
types, learn statistical properties of the attributes, and protect pri-
vacy. While the speci�c techniques we employ are standard and
have been used elsewhere (see Section 4 for a description of relevant
work), the primary contribution of our system is in its usability. The
system supports three intuitive modes of operation, and requires
minimal input from the user.

2 DEMONSTRATION SCENARIO
We now brie�y describe the main components of the DataSynthe-
sizer system, and then explain the demonstration scenarios. The
high-level architecture of the system is presented in Figure 1. The
system has three modules — DataDescriber, DataGenerator and
ModelInspector. Each component of the system will be explained
in detail in Section 3. A data owner interacts with DataSynthe-
sizer through a Web-based UI that serves as a wrapper for 1) in-
voking the DataDescriber library to compute a data summary, 2)
generating a synthetic dataset from the summary using DataGener-
ator, and 3) inspecting and comparing datasets and data summaries
with ModelInspector.

DataDescriber can be invoked on any CSV �le. In particular,
we can invoke it on both the input �le and the output �le, and
compare the resulting summaries. Based on this comparison, we
will convey an important point to the demonstration attendees:
While the input and output datasets themselves are clearly very
di�erent, the statistical descriptions of the datasets are very similar.
What sort of a comparison is drawn between the input and the
output depends on the mode of operation of DataSynthesizer. When
the tool in invoked in correlated attribute mode, a comparison
of the learned Bayesian networks and of the pair-wise attribute
correlations is shown to the user. In independent attribute mode,
per-attribute histograms are presented, along with the ranges of
attribute values.

During the demonstration, we will showcase the functionality
of DataSynthesizer on a variety of datasets. We will prepare several
interesting datasets for the interactive session, including an urban
homelessness dataset from the University of Washington Data Sci-
ence Institute (where the relevant tasks include making targeted
service recommendations), the criminal sentencing dataset from
a ProPublica investigation [1] (where the relevant tasks include
analyzing the bias of recidivism models), and several datasets from
the UCI Machine Learning Repository [6]. During the demonstra-
tion we will encourage users to download additional datasets from
portals such as data.seattle.gov and data.ny.gov and to run the tool.
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Figure 1: The DataSynthesizer system architecture.

Attendees will play the role of a data owner who is preparing
a synthetic dataset for release to a set of new collaborators. After
reviewing the raw dataset, they will generate a summary model
and inspect the results, verifying that the results are sensible. Then,
the attendees will generate a synthetic dataset from this model
and inspect individual records, observing that the records are visi-
bly “scrambled”. Finally, they will generate a new model from the
synthetic dataset and observe that the statistical properties are
intact. At this point, we will explain the privacy guarantees that
are enforced, and will illustrate them using the before-and-after
visualizations.

3 SYSTEM OVERVIEW
DataSynthesizer is an end-to-end system that takes a private dataset
as input and generates synthetic datasets. The system is imple-
mented in Python 3. It assumes that the private dataset is presented
in CSV format.

The input dataset is �rst processed by the DataDescriber module.
The domains and the estimates of distributions of the attributes
are inferred and saved in a dataset description �le. For each at-
tribute identi�ed as categorical, DataDescriber computes the fre-
quency distribution of values, represented as a bar chart. Data-
Generator then samples from this distribution when deriving the
synthetic dataset. For non-categorical numerical and datetime at-
tributes, DataDescriber derives an equi-width histogram to rep-
resent the distribution. DataGenerator draws samples from this
histogram during data generation using uniform sampling. For non-
categorical string attributes, their minimum and maximum lengths
are recorded. DataDescriber generates random strings within the
length range during data generation stage.

We now describe each of the modules of DataSynthesizer in turn.

3.1 DataDescriber
3.1.1 Inferring data types and domains. The domain of an at-

tribute is the set of its legal values. The data type is an important
ingredient of the attribute domain. DataSynthesizer supports four
data types. The system allows users to explicitly specify attribute
data types. If an attribute data type is not speci�ed by the user,
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Table 1: Data types supported by DataSynthesizer

Data Type Example
integer id, age, ...
�oat score, rating, ...
string name, gender, ...
datetime birthday, event time, ...

it is inferred by the DataDescriber. For each attribute, DataDe-
scriber �rst detects whether it is numerical, and if so — whether it
is an integer or a �oat. If the attribute is non-numerical, DataDe-
scriber attempts to parse it as datetime. Any attribute that is neither
numerical nor datetime is considered a string.

The data type of an attribute restricts its domain, which may be
limited further if the attribute is categorical, where only speci�c
values are legal. For example, in a dataset of students, the attribute
degree may only take on values BS, BA, MS, or PhD. The domain
of degree is {BS, BA, MS, PhD}. Note that integer, �oat and datetime
attributes can also be categorical. In general, an attribute is con-
sidered to be categorical if a limited number of distinct values for
that attribute is observed in the input dataset. DataDescriber has a
parameter categorical threshold that defaults to 10 and represents
the maximum number of distinct values for a categorical attribute.

The categorical threshold, like any threshold, may be challenging,
or even impossible, to set in a way that re�ects user preferences for
all attributes in the input. Some attributes may appear categorical,
but the user may prefer to treat them as numerical instead. For
example, age of elementary school children may take on only a
handful of distinct values but the user may nonetheless wish to
generate data for this attribute from a continuous range. The op-
posite situation may also arise — an attribute may take on 200 or
so distinct values, as is the case with country names, and so would
not be considered categorical under any reasonable threshold. Still,
the user may prefer to treat this attribute as categorical, so that a
valid country name, rather than a random string, is generated for
this attribute in the synthesized dataset. For this reason, DataSyn-
thesizer allows users to specify a data type, and state whether an
attribute is categorical, over-riding defaults on a per-attribute basis.

Note that the actual datatype of a categorical attribute is immate-
rial in terms of the statistical properties and the privacy guarantees
in synthetic data generation. For example, an attribute such as sex
may be encoded as M/F, as 0/1 or using a Boolean �ag (e.g., True for
male and False for female). In all cases, the tool will compute the fre-
quencies of each attribute value in the input, and will subsequently
sample values from the resulting data summary.

There might be missing values in the input dataset, and these
are important to represent in the summary. DataDescriber calcu-
lates the missing rate for each attribute — the number of observed
missing values divided by n, the size of the dataset.

3.1.2 Di�erential privacy. Di�erential privacy is a family of tech-
niques that guarantee that the output of an algorithm is statistically
indistinguishable on a pair of neighboring databases; that is, a pair
of databases that di�er by only one tuple. This concept is formalized
with the following de�nition.

Algorithm 1 GreedyBayes(D, A, k)
Require: Dataset D, set of attributes A, maximum number of par-

ents k
1: Initialize N = ∅ and V = ∅.
2: Randomly select an attribute X1 from A.
3: Add (X1, ∅) to N; add X1 to V .
4: for i = 2, .., |A| do
5: Initialize Ω = ∅
6: p =min(k, |V |)
7: for each X ∈ A\V and each Π ∈ (V

p
)
do

8: Add (X ,Π) to Ω
9: end for

10: Compute mutual information based on D for all pairs in Ω.
11: Select (Xi ,Πi ) from Ω with maximal mutual information.
12: Add (Xi ,Πi ) to N.
13: end for
14: return N

(ϵ-Di�erential Privacy [3]) Let ϵ be a positive number. Let A
be a randomized algorithm taking a dataset as input. Let D be a
dataset. For any D ′ that di�ers from D on at most one tuple, for
any legal output O of A, Pr (A(D) = O) ≤ eϵ × Pr (A(D ′) = O).

When ϵ approaches 0, Pr (A(D) = O) = Pr (A(D ′) = O). That is,
the presence or absence of a single individual in the input to the
algorithm will be undetectable when one looks at the output.

3.1.3 Independent a�ribute mode. When invoked in indepen-
dent attribute mode, DataDescriber performs frequency-based es-
timation of the unconditioned probability distributions of the at-
tributes. The distribution is captured by bar charts for categorical
attributes, and by histograms for numerical attributes. Precision of
the histograms can be re�ned by a parameter named histogram size,
which represents the number of bins and is set to 20 by default.

DataDescriber implements a di�erentially private mechanism,
adding controlled noise into the learned distributions. The noise is
from a Laplace distribution with location 0 and scale 1

nϵ , where n
is the size of the input, denoted Lap( 1nϵ ), setting ϵ = 0.1 by default.
DataDescriber also adds Laplace noise to the missing rate. When
Laplace noise is added to histogram frequencies, the value may
become negative. In that case the value is reset to 0 [8].

3.1.4 Correlated a�ribute mode. Attribute values are often cor-
related, e.g., age and income of a person. When invoked in correlated
attribute mode, DataDescriber uses the GreedyBayes algorithm to
construct Bayesian networks (BN) to model correlated attributes [8].

Algorithm 1 constructs a BN N from input dataset D, attributes
A, and the maximum number of BN node parents k , which defaults
to 4. In this algorithm, V is the set of visited attributes, and Π
is a subset of V that will become parents of node X if added to
N. Which attributes Π are selected as parents of X is determined
greedily, by maximizing mutual information (X ,Π). Algorithm 1
learns the structure of the BN with privacy guarantees when the
mutual information computation is di�erentially private [8].

The Bayesian networks constructed in Algorithm 1 gives the
sampling order for generating attribute values. The distribution
from which a dependent attribute is sampled is called a conditioned
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Figure 4: Pair-wise correlations: Adult Income [6].
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Figure 5: Pair-wise correlations: synthetic.

Figure 6: Bayesian network: Adult Income [6]. Figure 7: Bayesian network: synthetic.

distribution. When constructing noisy conditioned distributions,
Lap( 4(d−k )n ·ϵ ) is injected to preserve privacy. Here, d is the number
of attributes, k is the maximum number of parents of a BN node,
and n is the number of tuples in the input dataset. We construct
conditional distributions according to Algorithm 1 of [8].

The parents of a dependent attribute can be categorical or numer-
ical, whose distributions are modeled by bar charts and histograms,
respectively. The conditions for this dependent attribute are the

legal values of the categorical parents and the intervals of the nu-
merical parents. Here, the intervals are formed in the same way as
the unconditioned distributions of the parent attributes. For exam-
ple, the age attribute has intervals {[10, 20),[20, 30),[30, 40)} in its
unconditioned distribution. Assume education only depends on age.
Its conditioned distributions will be under the same intervals, i.e.,
age ∈ [10, 20), age ∈ [20, 30) and age ∈ [30, 40) respectively.
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Algorithm 2 DataGenerator(n,M,S,AU , s)
Require: number of tuples n to generate, mode M, dataset de-

scription S, uniform attributes AU , seed s
1: Set seed = s for pseudo-random number generator.
2: ifM is independent attribute mode then
3: Read all attributes A from S.
4: for X ∈ A do
5: if X ∈ AU then
6: Read the domain of X from S.
7: Sample n values uniformly from its domain.
8: else
9: Read the distribution of X from S.

10: Sample n values from its distribution.
11: end if
12: end for
13: else ifM is correlated attribute mode then
14: Read Bayesian network N from S.
15: Sample root attribute from an unconditional distribution.
16: Sample remaining attributes from conditional distributions.
17: end if
18: return Sampled dataset

3.2 DataGenerator
Given a dataset description �le generated by DataDescriber, Data-
Generator samples synthetic data from the distributions in this �le.
The size of the output dataset is speci�ed by the user, and defaults
to n, the size of the input dataset.

Algorithm 2 describes the data generation process. When in-
voked in random mode, DataGenerator generates type-consistent
random values for each attribute. When invoked in independent
attribute mode, DataGenerator draws samples from bar charts or
histograms using uniform sampling. Finally, when invoked in cor-
related attribute mode, DataDescriber samples attribute values in
appropriate order from the Bayesian network.

An important property of di�erential privacy is that its perfor-
mance degrades with repeated queries. To prevent leaking private
information through adversaries repeatedly sending data genera-
tion requests, the system administrator can assign a unique random
seed for each person who requires a synthetic dataset. To support
this, DataGenerator provides per-user seed functionality.

3.3 Model Inspector
ModelInspector provides several built-in functions to inspect the
similarity between the private input dataset and the output syn-
thetic dataset. The data owner can quickly test whether the tuples
in the synthetic dataset are detectable by inspecting and comparing
the �rst 5 and last 5 tuples in both datasets.

The synthetic dataset should have similar distributions of at-
tribute values as the input dataset. In independent attribute mode,
ModelInspector allows users to visually compare attribute distri-
butions in the form of bar charts or histograms. Figures 2 and 3
present such summaries for the attribute age from the Adult Income
dataset [6]. The system also computes the correlation coe�cient

of an appropriate kind, depending on attribute type, and the KL-
divergence value, which measure how much the “after” probabil-
ity distribution diverges from the “before” probability distribution
for a given attribute. In correlated attribute mode, ModelInspec-
tor presents “before” and “after” pairwise mutual information ma-
trices (Figures 4 and 5) and describes Bayesian networks (such as
those shown graphically in Figures 6 and 7), enabling an at-a-glance
comparison of the statistical properties of the datasets.

4 RELATEDWORK
In our work on DataSynthesizer we leverage recent advances in
practical di�erential privacy [4] and privacy-preserving generation
of synthetic datasets [7, 8]. In particular, we make use of the privacy-
preserving learning of the structure and conditional probabilities
of a Bayesian network in PrivBayes [8], and are inspired in our
implementation by the work on DPBench [4].

Data sharing systems, including SQLShare [5] and DataHub [2],
aim to facilitate collaborative data analysis, but do not incorpo-
rate privacy preserving features or purport to manage sensitive
data. We see these systems e�orts as a potential delivery vector for
DataSynthesizer capabilities.

5 TAKE-AWAY MESSAGES
We have presented a demonstration of DataSynthesizer, a privacy-
preserving synthetic data generator designed to facilitate collab-
orations between domain-expert data owners and external data
scientists. The cost of establishing formal data sharing agreements
limits the impact of these ad hoc collaborations in government,
social sciences, health, or other areas where data is heavily encum-
bered by privacy rules. Given a dataset, DataSynthesizer can derive
a structurally and statistically similar dataset, at a con�gurable
level of statistical �delity, while ensuring strong privacy guaran-
tees. DataSynthesizer is designed with usability in mind. The system
supports three intuitive modes of operation, and requires minimal
input from the user.

We see DataSynthesizer being used in a variety of application
contexts, both as a stand-alone library and as a component of
more comprehensive data sharing platforms. As part of ongoing
work, we are studying how best to deliver these features to data
owners, and determining how additional requirements can be met.
DataSynthesizer is open source, and is available for download at
https://github.com/DataResponsibly/DataSynthesizer.
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Abstract. We propose a general approach for differentially private synthetic data gener-
ation, that consists of three steps: (1) select a collection of low-dimensional marginals,
(2) measure those marginals with a noise addition mechanism, and (3) generate syn-
thetic data that preserves the measured marginals well. Central to this approach is
Private-PGM [42], a post-processing method that is used to estimate a high-dimensional
data distribution from noisy measurements of its marginals. We present two mechanisms,
NIST-MST and MST, that are instances of this general approach. NIST-MST was the winning
mechanism in the 2018 NIST differential privacy synthetic data competition, and MST is a
new mechanism that can work in more general settings, while still performing comparably
to NIST-MST. We believe our general approach should be of broad interest, and can be
adopted in future mechanisms for synthetic data generation.

1. Introduction

Data sharing within the modern enterprise is extremely constrained by privacy concerns.
Privacy-preserving synthetic data is an appealing solution: it allows existing analytics work-
flows and machine learning methods to be used while the original data remains protected. But
recent research has shown that unless a formal privacy standard is adopted, synthetic data
can violate privacy in subtle ways [18,25]. Differential privacy offers such a formalism, and the
problem of differentially private synthetic data generation has therefore received considerable
research attention in recent years [3, 6, 9, 13,14,26,31,32,39,40,52–55,59,60,66,68,70,71].

In 2018, the National Institute of Standards and Technology (NIST) highlighted the
importance of this problem by organizing the Differential Privacy Synthetic Data Competition
[56]. This competition was the first of its kind for the privacy research community, and it
encouraged privacy researchers and practitioners to develop novel practical mechanisms for
this task. The competition consisted of three rounds of increasing complexity. In this paper
we describe NIST-MST, the winning entry in the third and final round of the competition.
Our algorithm is an instance of a general template for differentially private synthetic data
generation that we believe will simplify design of future mechanisms for synthetic data.

Our approach to differentially private synthetic data generation consists of three high-
level steps, as show in Figure 1: (1) query selection, (2) query measurement and (3) synthetic

Key words and phrases: differential privacy, synthetic data, graphical models.
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Generate

Noisy Marginals Synthetic Data

Measure

Sensitive Data

Queries 
(Marginals)

Select

General template (Section 4)

Gaussian 
Mechanism Private-PGM

Figure 1. A general template for differentially private synthetic data generation. First,
a collection of marginal queries is selected, either manually (e.g., by a domain expert)
or automatically by an algorithm. Second, the Gaussian mechanism is used to measure
those marginals while preserving differential privacy. Finally, Private-PGM is used to
post-process the noisy marginals and generate a synthetic dataset that respects them.

data generation. For step (1), there are various ways to approach query selection; a domain
expert familiar with the data and its use cases can specify the set of queries, or they can
be automatically determined by an algorithm. The selected queries are important because
they will ultimately determine the statistics for which the synthetic data preserves accuracy.
For step (2), after the queries are fixed, they are measured privately with a noise-addition
mechanism, in our case, with the Gaussian mechanism. In step (3), the noisy measurements
are processed through Private-PGM [42], a post-processing method that can estimate a
high-dimensional data distribution from noisy measurements and generate synthetic data.

This approach is similar in spirit to the widely studied select-measure-reconstruct
paradigm for linear query answering under differential privacy [4, 16, 17, 29, 35–38, 38, 41,
46–48,57,58,61–65,67,69]. However, the output is now synthetic data, rather than query
answers. In addition, most existing methods from this paradigm suffer from the curse of
dimensionality, and have trouble scaling to high-dimensional domains. Our approach is simple
and modular but there are three main technical challenges to using it in practice. These
are (1) identifying what statistics to measure about the dataset, (2) generating synthetic
data that effectively preserves the measured statistics, and (3) overcoming the challenges
of high-dimensional domains. Fortunately, Private-PGM solves problem (2) and (3) above,
as long as the measured statistics only depend on the data through its low-dimensional
marginals. This allows the mechanism designer to focus on problem (1), and frees them
from the burden of figuring out how to generate synthetic data with differential privacy,
allowing them instead to focus on what statistics to measure, based on what they want the
synthetic data to preserve. Thus, we believe this approach to differentially privacy synthetic
data, using Private-PGM, will be broadly applicable.

In Figure 1, there is a dashed gray line connecting the select step with the sensitive data.
This indicates that query selection may or may not depend on the sensitive data, but if it
does, it must be via a differentially private mechanism. The rules of the NIST competition
permitted the use of a public provisional dataset which the NIST-MST algorithm uses for
query selection. The effectiveness of query selection relies on the similarity of the public
data to the private data being synthesized. Since high quality provisional data may not
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always be available, we propose a variant of the algorithm, called MST, that does not require
public data and instead uses a portion of the privacy budget to select measurements. The
novelty of this algorithm is that it uses the data (privately) to select marginals to measure
that support efficient synthesis in step (3). This extension leads to an algorithm that can be
applied in a wider variety of settings. We show experimentally that, without the advantage
of provisional data, it nevertheless performs comparably to NIST-MST.

This paper is organized as follows. In Section 2, we set up notation, state assumptions,
and summarize relevant background in differential privacy. In Section 3, we summarize the
important aspects of the competition. In Section 4, we describe the general template from
Figure 1 in greater detail. In Section 5, we present NIST-MST, the winning mechanism from
the competition, by building on the general template. In Section 6, we present MST, a novel
mechanism inspired by NIST-MST that does not rely on the existence of public provisional
data. We conclude with a simple experimental evaluation and discussion of results.

2. Background

The algorithms described in this paper take as input a dataset, assumed to be a single table,
and generate a synthetic dataset satisfying (ε, δ)-differential privacy. Below we provide the
relevant background and notation on datasets, marginals, and differential privacy.

2.1. Data. The input is a dataset D consisting of m records, each containing potentially
sensitive information about one individual. Each record has d attributes A = {A1, . . . , Ad},
and the domain of possible values for an attribute Ai is denoted by Ωi. We assume Ωi is
finite and has size |Ωi| = ni. The full domain of possible values is thus Ω = Ω1 × · · · × Ωd

which has size
∏
i ni = n. We use D to denote the set of all possible datasets, which is equal

to D = ∪∞m=0Ωm.

2.2. Marginals. A marginal is a key statistic that captures low-dimensional structure in
a high-dimensional data distribution. We will explain (in Section 3) that the evaluation
metrics of the contest can be defined in terms of marginals computed on the dataset. In
addition, our algorithms will privately measure selected marginals and use the resulting noisy
measurements to construct synthetic data. More precisely, a marginal, for a set of attributes
C, is a table that counts the number of occurrences of each combination of possible values
for attributes C.

Definition 1 (Marginal). Let C ⊆ A be a subset of attributes, ΩC =
∏
i∈C Ωi, and

nC = |ΩC |. The marginal on C is a vector µ ∈ RnC , indexed by domain elements t ∈ ΩC ,
such that each entry is a count, i.e., µt =

∑
x∈D 1[xC = t]. We let MC : D → RnC denote

the function that computes the marginal on C, i.e., µ = MC(D).
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2.3. Differential privacy. Differential privacy [20, 21] protects individuals by bounding
the impact any one individual can have on the output of an algorithm. This is formalized
using the notion of neighboring datasets. Two datasets D,D′ ∈ D are neighbors (denoted
D ∼ D′) if D′ can be obtained from D by adding or removing a single record.

Definition 2 (Differential Privacy [20]). A randomized mechanism M : D → R satisfies
(ε, δ)-differential privacy (DP) if for any neighboring datasets D ∼ D′ ∈ D, and any subset
of possible outputs S ⊆ R,

Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ.

This definition requires that, on any two neighboring input databases, the difference in
the output distributions of the randomized algorithmM is bounded by eε, except with a small
failure probability δ. This failure probability δ is usually assumed to be cryptographically
small; in the contest it was set to δ ≈ 2 · 10−12. The algorithms in this paper achieve
differential privacy by repeated application of the Gaussian mechanism and the Exponential
Mechanism, defined below:

Definition 3 (Gaussian Mechanism). Let f : D → Rp be a vector-valued function of the
input data. The Gaussian Mechanism adds i.i.d. Gaussian noise with scale σ to f(D):

M(D) = f(D) +N (0, σ2I).

Definition 4 (Exponential Mechanism). Let q : D ×R → R be quality score function and ε
be a parameter. Then the exponential mechanism outputs a candidate r ∈ R according to
the following distribution:

Pr[M(D) = r] ∝ exp
(
ε · q(D, r)

)

To accurately analyze the privacy of multiple invocations of the Gaussian/Exponential
mechanisms (i.e., to derive the (ε, δ) parameters) we use the tools of Rényi Differential
Privacy (RDP), a variant of differential privacy so named because it uses the Rényi divergence
in the bound on a mechanism’s output distributions for neighboring inputs.

Definition 5 (Rényi Differential Privacy [45]). A randomized mechanism M : D → R
satisfies (α, γ)-Rényi differential privacy (RDP) for α ≥ 1 and γ ≥ 0, if for any neighboring
datasets D ∼ D′ ∈ D, we have:

Dα(M(D) || M(D′)) ≤ γ,
where Dα(· || ·) is the Rényi divergence of order α between two probability distributions.

To analyze the privacy of the mechanisms above under Rényi-DP, we define the sensitivity
of a vector-valued query as follows:

Definition 6 (Sensitivity). Let f : D → Rp be a vector-valued function of the input data.
The L2 sensitivity of f is ∆f = maxD∼D′ ‖f(D)− f(D′)‖2.

It is easy to verify that the L2 sensitivity of any marginal function MC is 1, regardless
of the attributes in C. This is because one individual can only contribute a count of 1 to a
single cell of the output vector. A single invocation of the Gaussian Mechanism satisfies
Rényi-DP with parameters determined by the noise scale σ and the sensitivity ∆f of the
function. Similarly, a single invocation of the Exponential Mechanism also satisfies Rényi-DP
with parameters determined by ε and ∆q.
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Proposition 1 (Rényi-DP of the Gaussian Mechanism [22, 45]). The Gaussian Mechanism

applied to the function f : D → Rp satisfies
(
α, α

∆2
f

2σ2

)
-RDP for all α ≥ 1.

Proposition 2 (Rényi-DP of the Exponential Mechanism [12,44]). The Exponential Mech-
anism applied to the quality score function q : D × R → R satisfies (2ε∆, 0)-DP and

(α, α (2ε∆)2

8 )-RDP for all α ≥ 1, where ∆ = maxr∈R∆q(·,r) is the maximum sensitivity of q.

Note that any mechanism that is (α, αρ)-RDP for all α ≥ 1 is also ρ-zCDP [11] and vice-
versa. We rely on the following propositions to reason about multiple adaptive invocations
of RDP mechanisms, and the translation between Rényi-DP and (ε, δ)-DP.

Proposition 3 (Adaptive Composition of RDP Mechanisms [45]). Let M1 : D → R1

be (α, γ1)-RDP and M2 : D × R1 → R2 be (α, γ2)-RDP. Then the mechanism M =
M2(D,M1(D)) is (α, γ1 + γ2)-RDP.

Proposition 4 (RDP to DP [45]). If a mechanism M satisfies (α, γ)-Rényi differential

privacy, it also satisfies
(
γ + log (1/δ)

α−1 , δ
)

-differential privacy for all δ ∈ (0, 1].

3. Competition setup

In this section we will summarize the format of the competition and the different components
of the challenge problem. The competition consisted of three rounds of increasing complexity,
but our focus is on the third round, which built on the previous two rounds.

3.1. Competition Format. Competitors were given approximately one month to design
their differentially private synthetic data mechanism. The competition organizers provided
contestants with a precise problem specification along with a “competitor pack”, which
included a provisional dataset to test and develop mechanisms, a file that contained domain
information for each attribute in the dataset, a script to evaluate the quality of the synthetic
data according to their custom scoring criteria, and a baseline mechanism. Each of these
components will be described in detail in the subsequent sections. During the one-month
competition period, competitors could submit the synthetic data produced by their mecha-
nism to be scored and attain a spot on the provisional leaderboard. This was a good way to
gauge how well other competitors were doing, although it was not an authoritative source
as the submissions had not been vetted to ensure they satisfied differential privacy (e.g.,
someone could submit the true data and get a perfect score on the provisional leaderboard).

At the end of the competition period, competitors had to submit their source code
along with a document describing the solution and a proof of privacy. A team of experts
unknown to the competitors checked the final submitted algorithms to ensure that they
satisfied (ε, δ)-differential privacy. This was done by checking the written description of the
algorithm as well as the source code, to ensure there were no privacy violations or mistakes.
After the mechanism was verified to be differentially private, its utility was evaluated on the
final dataset (different from the provisional dataset) and performance results were added to
a final leaderboard that would determine the ranking of solutions.

In the subsequent subsections, we will specify the details of each component of the
problem — i.e., the dataset, the domain, and the evaluation criteria.
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3.2. Dataset. Algorithms were designed for and evaluated on data from the 1940 U.S.
decennial census. The provisional dataset contained data for one state (Colorado) and the
final holdout data was for a different state (unknown at the time of the competition). We
remark that the provisional dataset was treated as public information. Therefore, any analysis
and insights derived from it were not considered to violate privacy. However, solutions
that used information from the provisional dataset too aggressively risked over-fitting, and
scoring poorly on the final dataset. The provisional dataset contained 98 attributes and
about 661 thousand records. All attributes were discrete, taking on values from the domain
Ωi = {0, . . . , ni−1}. The value of ni for each attribute i was provided in a separate specs file.
The values of ni ranged from 2 (for binary attributes like SEX) to 10, 000, 000 (for numerical
attributes like INCWAGE). The total number of possible database rows (i.e., the full domain
size) was about |Ω| = 5× 10205. We provide a full breakdown of the domain in Table 4.

3.3. Evaluation metrics. The utility of the synthetic data was measured by how well
it preserved key statistics in the ground truth data with respect to three main criteria,
enumerated below. We state below the statistics that need to be preserved to score well,
but not the exact formula for calculating score. For the precise information, please refer
to the official challenge problem statement [56]. Note that the scores for each evaluation
metric were normalized to the same range, and averaged across the three metrics (with
equal weights). Algorithms were evaluated at three privacy levels, with ε = 0.3, 1.0, 8.0
and δ ≈ 2 · 10−12, and these scores were averaged to obtain the final score. Computational
efficiency was not taken into consideration; several of the solutions (including NIST-MST)
required up to 10 minutes or more to run.

(1) 3-way Marginals. The synthetic data was evaluated by comparing its marginals
with the marginals of the true data for 100 random triples of attributes, unknown to
competitors at submission time. Therefore, a synthetic dataset D̃ scores well on this
metric (in expectation) if MC(D) ≈ MC(D̃) for all triples C. There are a total of(

98
3

)
= 152096 possible triples, so this evaluation criteria requires the synthetic data to

preserve a large number of marginals to consistently score well.
(2) High-order conjunctions. The synthetic data was evaluated by looking at how well

it preserved high-order conjunctions. Probabilistically, a high-order conjunction for a
set of attributes C ⊆ A assumes the form Pr[

∧
i∈C [ti ∈ Si] | t ∼ D], where Si ⊆ Ωi

is a subset of the domain for attribute i. This quantity can be expressed in terms of
the marginal µ = MC(D) via

∑
t∈S µt, where S is the Cartesian product of Si’s, i.e.,

S =
∏
i∈C Si and t is a tuple restricted to the attributes in the set C. Synthetic data

was evaluated on 300 random high-order conjunctions, where C is generated with a
simple random sample of the attributes A with selection probability 0.1, and Si is a
random subset of Ωi. There are a total of 298 ≈ 1029 possible choices for C, and the
expected size of C is 0.1 · 98 ≈ 10. Even without accounting for the variability in Si, it
is clear that the number of statistics that need to be preserved is enormous.

(3) Income inequality and gender wage gap. The synthetic data was evaluated by how
well it preserved statistics relating to income inequality and gender wage gap, broken
down by city. While the precise details of this metric can be found in the official problem
statement, to score well, it suffices for the synthetic data to be accurate with respect to
the marginal on (SEX,CITY,INCWAGE). Unlike metrics (1) and (2), above, this metric is
relatively easy to score well on, because it just requires preserving one marginal well.
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1 from private_pgm import FactoredInference

2 from scipy.sparse import identity

3 from numpy.random import normal

4
5 data = load_NIST ()

6 queries = [("SEX","LABFORCE"), ("LABFORCE","SCHOOL")]

7 measurement_log = []

8 for c in queries:

9 M_c = data.project(c).datavector ()

10 y_c = M_c + normal(loc=0, scale=50 , size=M_c.size)

11 measurement_log.append( (identity(M_c.size), y_c , 50 , c) )

12 engine = FactoredInference(data.domain)

13 model = engine.estimate(measurements)

14 synth = model.synthetic_data ()

Figure 2. A demonstration of how to generate synthetic data with Private-PGM

using real Python code. In this case, the selected marginals are (SEX,LABFORCE) and
(LABFORCE,SCHOOL). In Lines 9-12, these marginals are measured with Gaussian noise
to protect privacy. In Lines 14-16, Private-PGM takes these noisy measurements as
input, estimates a model, and generates synthetic data. The Private-PGM library
provides a straightforward interface that allows users to quickly write end-to-end code
to generate synthetic data; different statistics can be preserved by changing Line 6.

4. Overview of Measurement and Inference with Private-PGM

In this section, we elaborate on the general template for a mechanism outlined in Figure 1.
Recall there are three high-level steps:

(1) Select. Select a collection of marginals to measure.
(2) Measure. Use the Gaussian mechanism to measure each marginal in the collection.
(3) Generate. Use Private-PGM to estimate a data distribution from the noisy measure-

ments and generate synthetic data that preserves the measured marginals well.

In this section, we describe the latter two steps, which form the core of the mechanism.
In the next section, we will describe the full mechanism NIST-MST in detail, including the
select step and many other details relating specifically to the NIST contest and dataset.
Figure 2 shows how simple and modular this framework for synthetic data generation is.
The open source Private-PGM library1 provides a simple interface to the key routines so
that an end-to-end synthetic data generation mechanism can be written with very little code,
allowing the modeler to focus on tailoring the procedure to the workload and domain. Under
the hood, Private-PGM has thousands of lines of code, but it exposes a simple interface that
is easy to use. In this example, there are only two selected marginal queries: (SEX,LABFORCE)
and (LABFORCE,SCHOOL), but the code can be readily modified (Line 6) to accommodate
other marginal queries. In the rest of the section, we describe this general approach in more
detail, and give some insight into the steps described in this code snippet.

4.1. Measuring Marginals with the Gaussian Mechanism. Algorithm 1 shows the
method for measuring marginals. Given a collection of attribute subsets C, it computes
the marginal for each C ∈ C and adds i.i.d. Gaussian noise to preserve privacy. It also
accepts a weight wC for each attribute subset, which represents the relative importance of

1https://github.com/ryan112358/private-pgm/
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Algorithm 1: Measure Marginals
Input: D (sensitive dataset), C (a collection of attribute subsets), wC (weights for each C ∈ C), σ
(noise scale)
Output: log (a list of noisy measurements together with metadata)

(1) Normalize weights, wC ← wC/
√∑

C w
2
C .

(2) For C ∈ C:
(3) Calculate noisy marginal, µ̃ = wCMC(D) +N (0, σ2I)

(4) Append 4-tuple (wCI, µ̃, σ, C) to measurement log

that marginal. It collects all of these noisy measurements into a measurement log, which
will be passed to Private-PGM for post-processing. The measurement log records, for each
marginal defined by a subset of attributes, the noisy marginal query answers together with
information about the weight assigned to the marginal and the magnitude of noise used
to measure it. It is easy to verify the privacy properties of Algorithm 1, as it is a direct
application of the Gaussian mechanism on a sensitivity-1 quantity.2

Theorem 1. Algorithm 1 satisfies (α, α
2σ2 )-RDP for all α ≥ 1.

4.2. Private-PGM: Inference and Synthetic Data Generation. Private-PGM is a general-
purpose post-processing tool to infer a data distribution given noisy measurements [42].
It is compatible with measurements from a wide variety of mechanisms for discrete data,
and can often improve utility at no cost to privacy. Because it infers a representation of
a full data distribution, it produces query answers that are consistent with one another,
even if the noisy measurements are inconsistent. It uses a compact representation of the
data distribution to avoid exponential complexity in many cases, though the size of the
representation will depend on the measurements, as we describe below.

The high-level idea of Private-PGM is to solve an optimization problem to find a data
distribution that would produce measurements close to the ones that were observed. It
applies to cases when private measurements depend on the data through marginals. For
example, suppose the measurements are of the form

yC = QCMC(D) + ξ

for all attributes sets C in some collection C, where QC ∈ RpC×nC is a linear transformation
applied to the marginal prior to release and ξ ∈ RpC is zero-centered noise (e.g., Laplace or
Gaussian) with known standard deviation. The measurements taken in Algorithm 1 represent
the common case where QC is just the identity matrix, so that we observe the noisy marginals
directly. However, the ability to measure arbitrary linear transformations of marginals is a
nice feature that is useful for some types of measurements that occur in practice.3 Examples of
this include hierarchical measurements for answering range queries [29,35,47], and optimized
measurements for answering general linear query workloads [36,41].

Given these measurements, Private-PGM infers a data distribution P that best explains
the measurements by solving the optimization problem

argmin
P

∑

C∈C
‖QCMC(P )− yC‖22 . (4.1)

2The weights are explicitly normalized so that the collection of marginals has sensitivity 1.
3In fact, QC can be replaced with an arbitrary non-linear differentiable transformation, and Private-PGM

will accept that as input as well.
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The objective of this optimization problem is the negative log-likelihood of the noisy
measurements under the Gaussian release mechanism, so Equation (4.1) can be seen as a
maximum likelihood estimator. We have abused notation by allowing MC to operate on
a data distribution rather than a dataset; the correct interpretation is to substitute the
probability vector P for the contingency table representation D of the dataset for computing
the marginal. An obvious issue with the optimization problem in Equation (4.1) is that the
dimension of the decision variable P is equal to the domain size n, which is exponential
in the number of attributes, so we cannot usually solve this problem directly. The key
observation of Private-PGM is

Fact 1. Equation (4.1) has an optimum of the form Pθ, where Pθ is a graphical model with
one factor for each set C ∈ C of attributes for which the mechanism measured a marginal.

This allows us to solve the much lower-dimensional optimization problem

argmin
θ

∑

C∈C
‖QCMC(Pθ)− yC‖22 , (4.2)

with no loss in solution quality. The decision variable θ is the parameter vector of the
graphical model, and has dimension equal to the total length of the set of measured marginals.
A simple proximal algorithm is given in [42] that solves this optimization problem using
only repeated calls to a routine to perform marginal inference in a discrete graphical model

— i.e., computing MC(Pθ) for all C ∈ C and various different θ. The procedure is efficient
whenever marginal inference in the graphical model is efficient. Belief propagation is the
standard way to perform marginal inference in practice, as it efficiently computes MC(Pθ)
directly in terms of θ without ever explicitly materializing the full joint distribution Pθ [33].

Remark 1 (Scalability of Private-PGM). Private-PGM is able to scale to very high-
dimensional domains. The main factors that influence it’s scalability are (1) the total
size of the parameter vector θ and (2) the structure of the set C. The size of θ is the same as
the size of all of the relevant marginals combined, and that must not be too large. The size
of each marginal depends directly on |Ωi|, the number of possible values for each attribute.
Furthermore, the set C is important because it corresponds to the structure of the graphical
model, and belief propagation is most efficient for tree-structured models. The scalability of
belief propagation and Private-PGM for non tree-structured models depends on a quantity
known as the tree width, which is a measure of how “tree-like” the model is [33].

Remark 2 (Lack of modeling assumptions). It is easy to misconstrue the meaning of
the graphical model representation. The inferred distribution Pθ will satisfy conditional
independence properties dictated by the structure of the model. However, no approximation
is made when solving the optimization problem in Equation (4.1), and the independence
properties do not arise from assumptions made by the modeler about the structure of the data
distribution. By Fact 1, there is an optimum to Equation (4.1) that is a graphical model, and
hence satisfies these conditional independence properties. Moreover, the graphical model
solution Pθ can be shown to have maximum entropy among all optima of Equation (4.1) [42].

Once Pθ is estimated, Private-PGM can be used for multiple purposes: reducing error
on measured marginals, estimating unmeasured marginals, and even generating synthetic
tabular data. These use cases are explained in greater detail below:
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Reducing error on measured marginals. First, Private-PGM improves utility by com-
bining all sources of measured information into a single cohesive estimate for the data
distribution. When the measurements are inconsistent with each other, Private-PGM re-
solves these inconsistencies in a principled manner, reducing variance and boosting utility.
One achieves this by using ȳC = QCMC(Pθ) in place of the noisy observation yC . The
estimated marginal ȳC will typically have smaller variance than yC and will often have lower
overall error as well, therefore offering immediate utility improvements at no cost to privacy.
Example 1 demonstrates this idea more concretely in a toy setting.

Example 1 (Boosting utility on measured marginals). We draw 1000 tuples from the actual
contest dataset and measure two of their marginals, (SEX,LABFORCE) and (LABFORCE,SCHOOL),
using the Gaussian mechanism with σ = 50. Tables (a–c) below show the true marginals, the
noisy marginals, and the marginals estimated by Private-PGM. One can easily verify that the
noisy marginals are not consistent: the (SEX,LABFORCE) marginal implies the total number
of people with LABFORCE=N is 124.549 + 318.029 = 442.578, while the (LABFORCE,SCHOOL)
marginal implies the same that number is 287.215 + 171.134 = 458.349. These are two
different estimates for the same quantity, which is a consistency problem. In contrast, the
Private-PGM estimated marginals are consistent: they both agree that the total number
is 436.873. Additionally, Private-PGM better estimates the true marginals than the noisy
marginals do: the L1 distances are about 213 and 272 for Private-PGM, while they are about
251 and 295 for the noisy marginals, which is a significant boost in utility.

SEX LABFORCE count
M — 156
M N 65
M Y 316
F — 158
F N 282
F Y 23

LABFORCE SCHOOL count
— N 159
— Y 155
N N 288
N Y 59
Y N 336
Y Y 3

(a) True marginals

SEX LABFORCE count
M — 132.428
M N 124.549
M Y 244.365
F — 173.633
F N 318.029
F Y −21.358

LABFORCE SCHOOL count
— N 116.021
— Y 186.826
N N 287.215
N Y 171.134
Y N 278.498
Y Y −46.497

(b) Noisy marginals

SEX LABFORCE count
M — 124.829
M N 121.696
M Y 254.636
F — 166.034
F N 315.177
F Y 0

LABFORCE SCHOOL count
— N 110.029
— Y 180.834
N N 276.477
N Y 160.396
Y N 254.636
Y Y 0

(c) Private-PGM marginals

Estimating unmeasured marginals. Second, Private-PGM can be used to answer new
queries that were never measured directly by using Pθ in place of the true data D. This
allows us to estimate new marginals without spending the privacy budget, saving a precious
resource. Example 2 demonstrates this idea in a toy setting.

Example 2 (Estimating new marginals). Building on Example 1, recall that we measured
the marginals on (SEX,LABFORCE) and (LABFORCE,SCHOOL). We can use Private-PGM to
estimate the marginal on (SEX,SCHOOL), even though we never measured it and it can not be
directly inferred from the other marginals that were measured. As shown below in Table (b),
the provided estimate is reasonable, given that we never measured it, and we added significant
noise to the marginals we did measure. We reiterate that we obtained this estimate “for
free”, without spending additional privacy budget. Additionally, Private-PGM can estimate
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the marginal on (SEX,LABFORCE,SCHOOL), which is shown in Table (d). This is pretty close
to the true 3-way marginal, shown in Table (c). In fact, the normalized L1 error is only
0.135. While there may be other equally good estimates for the 3-way marginal (according to
the loss function in Equation (4.1)), the estimate provided by Private-PGM has maximum
entropy among all of them. In this case, Private-PGM was fairly accurate because SEX and
SCHOOL are (approximately) conditionally independent given LABFORCE in the true data.

SEX SCHOOL count
M N 423
M Y 114
F N 360
F Y 103

(a) True 2-way marginal

SEX SCHOOL count
M N 378.873
M Y 122.289
F N 262.269
F Y 218.942

(b) Estimated 2-way marginal

SEX LABFORCE SCHOOL count
M — N 74
M — Y 82
M N N 36
M N Y 29
M Y N 313
M Y Y 3
F — N 85
F — Y 73
F N N 252
F N Y 30
F Y N 23
F Y Y 0

(c) True 3-way marginal

SEX LABFORCE SCHOOL count
M — N 47.221
M — Y 77.608
M N N 77.016
M N Y 44.68
M Y N 254.636
M Y Y 0.000
F — N 62.808
F — Y 103.226
F N N 199.461
F N Y 115.716
F Y N 0.000
F Y Y 0.000

(d) Estimated 3-way marginal

Generating synthetic data. Third, Private-PGM can be used to generate synthetic data
D̄ in tabular format. D̄ can be used in place of Pθ and will generally give similar results.
They will not give exactly the same results because D̄ has integer-valued marginals while
Pθ has real-valued marginals, so some additional rounding error is unavoidable. One can
obtain the synthetic data in multiple ways; a simple and natural approach would be to
sample records from Pθ to form a synthetic dataset. This naive approach would introduce
sampling error which is undesirable. Private-PGM uses an alternative approach to reduce
error from additional sources of randomness. The details of this procedure are available in
the open-source implementation of Private-PGM, and are summarized in the supplementary
material. In Example 3, we give an intuitive idea of how this procedure works, and illustrate
why it is preferable to the sampling approach.

Example 3 (Generating synthetic data). Building on Examples 1 and 2, we calculate the
LABFORCE marginal from the Private-PGM model in Table (a) below, which has fractional
counts. We also use Private-PGM to generate synthetic data and show the same marginal
in Table (b), which has integer counts. These two marginals almost exactly match, because
Private-PGM tries to preserve the model marginals as closely as possible when generating
synthetic data. However, synthetic data obtained by i.i.d sampling will not match the model
marginals as closely due to the randomness in sampling, as shown in Table (c).

LABFORCE count
— 290.863
N 436.873
Y 254.636

(a) Private-PGM

model marginal

LABFORCE count
— 291
N 437
Y 254

(b) Private-PGM

synthetic data marginal

LABFORCE count
— 262
N 468
Y 252

(c) Sampled
synthetic data marginal
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Algorithm 2: NIST-MST

(1) Calibrate Noise Derive noise scale σ from target privacy parameters (ε, δ) Equation (5.1)
(2) Encode Domain Use public information to encode attribute domains
(3) Transform Data Transform data using insights from provisional data Algorithm 3
(4) Compress Domain Use data to reduce domain:

Measure Measure all one-way marginals Algorithm 1
Compress Remove domain elements failing threshold test Algorithm 4

(5) Select Marginals Select a subset of 2- and 3-way marginals Algorithm 5
(6) Measure Marginals Measure selected marginals Algorithm 1
(7) Synthesize data Synthesize records using Private-PGM:

Estimate Estimate distribution from Step 4 and 6 measurements Equation (4.2)
Generate Generate synthetic records Algorithm 8

(8) Reverse Reverse the transformation made in Step 3 Algorithm 9

5. Algorithm Description

In this section we describe NIST-MST, which takes the basic mechanism template outlined in
the previous section, and applies it to the setting of the NIST competition. NIST-MST simply
invokes the Gaussian mechanism to measure a carefully chosen subset of 1, 2, and 3-way
marginals. Then the resulting noisy measurements are post-processed using Private-PGM to
obtain synthetic data that is most consistent with those marginals. NIST-MST does not follow
the template from the previous section exactly, as there are two rounds of measurements,
and an additional domain compression step developed specifically to deal with some of the
challenges around the dataset used in the competition. The high-level steps of NIST-MST

are stated in Algorithm 2, and a detailed description of each step will be provided in this
section, with motivations and intuitions for the various design choices.

Step 1: Calibrate Noise. In this step, σ is calibrated to ensure the whole algorithm
satisfies (ε, δ)-differential privacy. Note that only steps (4) and (6) in Algorithm 2 use
the sensitive data, and these are both invocations of Algorithm 1, which is (α, α

2σ2 )-RDP
(Theorem 1). The data transformations made in steps (3) and (4) do not affect the privacy
analysis of Algorithm 1 since one individual can still only affect each marginal by at most
one. Hence NIST-MST is (α, α

σ2 )-RDP by two-fold adaptive composition (Proposition 3).

Moreover, by Proposition 4, NIST-MST is
(
α
σ2 + log (1/δ)

α−1 , δ
)
-DP for all α ≥ 1.

For a fixed α, it is easy to determine σ by solving the equation α
σ2 + log (1/δ)

α−1 = ε for
σ. The best value of σ can be obtained by minimizing over all α. In the contest, this
computation was done by invoking the moments accountant [2], which minimizes over
α = 1, . . . , 512. However, this minimization can actually be done in closed form [72], leading
to the following equation for σ:

σ =

√
log (1/δ) +

√
log (1/δ) + ε

ε
(5.1)

Theorem 2 (Privacy of NIST-MST). Algorithm 2 is (ε, δ)-differentially private.

Proof. From the analysis above, we know that NIST-MST is
(
α
σ2 + log (1/δ)

α−1 , δ
)

-DP for all

α ≥ 1. By plugging in α = 1 + σ
√

log (1/δ) and σ =

√
log (1/δ)+

√
log (1/δ)+ε

ε and simplifying,

we see that α
σ2 + log (1/δ)

α−1 = ε, and hence NIST-MST is (ε, δ)-DP as desired. The algebraic
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1. SPLIT 2/2 21. NCHLT5 7/7 41. SIZEPL 31/19 61. SUPDIST 631/631 81. ENUMDIST 3021/3021
2. SLREC 3/2 22. RACE 7/7 42. EMPSTATD 35/15 62. METAREA 657/334 82. CITYPOP 3225/3225
3. SEX 3/2 23. WKSWORK2 7/7 43. WKSWORK1 53/53 63. PRESGL 816/816 83. URBPOP 3225/3225
4. SCHOOL 3/2 24. VET1940 9/4 44. SEA 54/54 64. BPL 901/163 84. METAREAD 6561/378
5. URBAN 3/3 25. UCLASSWK 9/8 45. OCCSCORE 81/81 65. MBPL 901/164 85. MTONGUED 9602/489
6. FARM 3/3 26. VETPER 9/8 46. AGEMARR 90/89 66. FBPL 901/165 86. MIGMET5 10000/379
7. OWNERSHP 3/3 27. HISPRULE 9/9 47. MIGRATE5D 91/15 67. IND1950 998/162 87. MIGCOUNTY 10000/385
8. RESPONDT 3/3 28. HRSWORK2 9/9 48. MTONGUE 97/92 68. MIGSEA5 998/510 88. ERSCOR50 10000/1002
9. SPANNAME 3/3 29. CLASSWKR 10/4 49. SEI 97/97 69. OCC 999/231 89. EDSCOR50 10000/1002
10. LABFORCE 3/3 30. INCNONWG 10/4 50. CLASSWKRD 99/18 70. EDUCD 1000/44 90. NPBOSS50 10000/1002
11. VETWWI 3/3 31. SAMEPLAC 10/4 51. HRSWORK1 99/99 71. HIGRADED 1000/69 91. CITY 10000/1164
12. SSENROLL 3/3 32. VETSTAT 10/4 52. VETSTATD 100/10 72. GQTYPED 1000/92 92. MIGCITY5 10000/1164
13. METRO 4/4 33. VETCHILD 10/5 53. GQFUNDS 100/13 73. IND 1000/136 93. RENT 10000/10000
14. EMPSTAT 4/4 34. MIGTYPE5 10/6 54. EDUC 100/13 74. UIND 1000/136 94. MBPLD 90021/537
15. HISPAN 5/5 35. SAMESEA5 10/6 55. AGEMONTH 100/15 75. MIGPLAC5 1000/199 95. FBPLD 90021/539
16. CITIZEN 5/5 36. MIGRATE5 10/7 56. HIGRADE 100/25 76. UOCC 1000/231 96. BPLD 90022/536
17. WARD 6/6 37. GQTYPE 10/10 57. CHBORN 100/62 77. UOCC95 1000/279 97. VALUEH 10000000/5003
18. NATIVITY 6/6 38. MARRNO 10/10 58. AGE 109/109 78. OCC1950 1000/283 98. INCWAGEA —/52
19. MARST 7/6 39. OWNERSHPD 21/8 59. HISPAND 481/55 79. DURUNEMP 1000/1000 99. INCWAGEB —/8
20. GQ 7/7 40. FAMSIZE 22/22 60. RACED 621/238 80. COUNTY 1251/385 INCWAGE 10000000/—

Table 4. Domain information for the census dataset used in the third round of the
competition. Table specifies attribute names, and number of possible values for that
attribute according to (1) the provided specs file and (2) the specs file combined with
IPUMS documentation.

manipulation is routine but messy; it can easily be verified with sympy (see Figure 4 in the
supplement).

Remark 3 (Noise Calibration). It is well known that calibrating σ via an RDP analysis
does not give the smallest possible value required to achieve (ε, δ)-DP, and an analytic
calibration gives strictly better results [7], at least for a single invocation of the Gaussian
mechanism. However, at the time of the competition, adaptive composition of two Gaussian
mechanisms was needed, and RDP was chosen because of its clean and well-understood
guarantees. If using the analytic Gaussian mechanism, advanced composition would be
necessary to reason about the privacy of two-fold adaptive composition [21]. Since these
are somewhat loose bounds, the benefit of the analytic calibration would be lost. However,
since the time of the competition, much progress has been made on understanding the
behavior of the Gaussian mechanism under composition and it is now known that the analytic
Gaussian mechanism can be used to calibrate noise for multiple (adaptive) invocations of
the Gaussian mechanism [19,51]. This would give a smaller value of σ than the one shown
in Equation (5.1), typically offering an improvement of 10 to 20 percent.

Step 2: Encode Domain. Before running NIST-MST, it is necessary to know the data
domain Ω. The supplied competitor pack came with a “SPECS” file that contained some
domain information. Specifically, it supplied a single positive integer ni for each attribute i,
and the domain for that attribute was assumed to be ΩSPECS

i = {0, . . . , ni − 1}. However,
because the data is derived from a census source, the domain is very thoroughly documented
on the Integrated Public Use Microdata Series (IPUMS) website [1]. IPUMS offers a much
finer grained view of the data domain, specifying the exact set of possible values for most
attributes. We use ΩIPUMS

i to denote the domain of possible values for attribute i according
to IPUMS. Example 4 demonstrates the benefit of using the finer grained IPUMS domain
information.
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Algorithm 3: Transform data
Input: D (sensitive dataset)
Output: D (transformed sensitive dataset)

(1) Replace VALUEH attribute in D using transformation:

(2) Split INCWAGE attribute in D into two attributes INCWAGEA and INCWAGEB using transformation:4

VALUEH =




b VALUEH
5
c VALUEH ≤ 25,000

5001 VALUEH = 9,999,998

5002 VALUEH = 9,999,999

5000 otherwise

INCWAGEA =




b INCWAGE
100

c INCWAGE ≤ 5000

50 INCWAGE < 9,999,998

51 INCWAGE = 9,999,998

INCWAGEB =




0 INCWAGE ≡ 0 mod 100

1 INCWAGE ≡ 0 mod 20

2 INCWAGE ≡ 0 mod 50

3 INCWAGE ≡ 0 mod 25

4 INCWAGE ≡ 0 mod 10

5 INCWAGE ≡ 0 mod 5

6 INCWAGE ≡ 0 mod 2

7 otherwise

Example 4 (SPECS vs. IPUMS). From the specs file and the IPUMS website, we see the
domain for the EDUC attribute is ΩSPECS

i = {0, 1, . . . , 99} and ΩIPUMS
i = {0, 1, . . . , 11, 99}.

Note that 99 is a special code that typically corresponds to missing data. While both sources
agree that 99 is the largest possible value, the IPUMS documentation suggests that values in
the range 12, . . . , 98 are not possible. Using the finer granularity domain from IPUMS reduces
the number of possible values for EDUC from 100 to 13. This has two important ramifications.
First, it will make Private-PGM more efficient in later steps, since the scalability of that tool
depends directly on the domain sizes of the attributes. Second, it will prevent NIST-MST from
inadvertently introducing out-of-domain tuples to the synthetic data which could otherwise
occur by adding positive noise to zero counts.

Often ΩIPUMS
i is a subset of ΩSPECS

i , although this is not always the case. In some cases,
IPUMS documents a certain value as being possible that never appeared in the provisional
dataset or the supplied specs file. To account for this NIST-MST uses the intersection of
the two domains, i.e., Ωi = ΩSPECS

i ∩ ΩIPUMS
i . Table 4 enumerates the attributes in the

dataset along with the domain size provided in the specs file, and the compressed domain
size derived by NIST-MST.

Step 3: Transform Data. In addition to the general domain encoding outlined above,
NIST-MST gave special attention to two of the attributes with the largest domain: INCWAGE
and VALUEH. Both of these attributes started out with 10 million possible values, and
the IPUMS documentation provided limited information on these attributes. Therefore,
NIST-MST leveraged the provisional dataset to try to identify a domain that captured all or
most of the observed values for these attributes. Algorithm 3 shows how these attributes are
transformed to reduce the domain size. The intuition behind this pre-processing procedure
is to compress the domain, while ensuring the compressed domain still covers all or most of
the values observed in the provisional dataset. For example, other than the special codes
of 9,999,998 and 9,999,999, 99.2% of records have VALUEH that is a multiple of 5 and less

4Each condition in the piecewise definition of INCWAGEA and INCWAGEB should be interpreted as an “else if”
statement rather than an “if” statement, as clearly multiple conditions can be true at the same time
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Algorithm 4: Domain compression
Input: log (list of noisy measurements), D (sensitive dataset), Ω (domain)
Output: D (transformed sensitive dataset), Ω (transformed domain)

(1) For each measurement ( , µ̃, σ, {i}) in log
(2) Replace values for attribute i in dataset D using transformation:

t←
{
t µ̃t ≥ 3σ

∅ otherwise

(3) Modify domain accordingly, Ωi ← {t | µ̃t ≥ 3σ} ∪ {∅}

than or equal to 25,000.5 This allows us to compress the domain of VALUEH to a much more
manageable size of 5003 while still covering about 99.7% of the observed values.

NIST-MST uses a similar approach to handle INCWAGE. Over 99.95% of records in the
provisional dataset had an INCWAGE value of either 9,999,998 or something in the range
[0, 5000]. For that reason, it is reasonably safe to truncate values above 5000 without
introducing too much bias. This transformation reduces the domain size of INCWAGE to 5002,
but NIST-MST takes things one step further. There are clear periodic patterns in the INCWAGE
marginal, as the most common values are all multiples of 100. Multiples of 20, 50, and 25 are
also common. To exploit this observation, NIST-MST splits up INCWAGE into two attributes:
INCWAGEA and INCWAGEB, and never measures INCWAGE directly, but only indirectly through
these two derived attributes. INCWAGEA is meant to capture the coarse-grained income by
discretizing it into width 100 bins, whereas INCWAGEB is meant to capture the periodicity
in the last two digits. These two derived attributes have smaller domains of size 52 and 8,
respectively. The exact formulas are given in Algorithm 3.

Step 4: Compress Domain. In step (1), NIST-MST was able to greatly reduce the domain
size by incorporating information from IPUMS. However, even after this domain encoding,
some of the attributes in the data remain fairly sparse. For example, only 17.4% percent of
counts in the VALUEH marginal exceed 100. In this step, we answer all 1-way marginals, i.e.,
we pass C = {{i} | i ∈ A} into Algorithm 1. Every marginal is assigned an equal weight of
1, with the exception of INCWAGEA, which is assigned a weight of 2.

After obtaining noisy 1-way marginals, Algorithm 4 is called, which searches for domain
elements for which the noisy count fell below the threshold of 3σ. These domain elements were
merged into a single “other” domain element, denoted ∅. Later steps of NIST-MST operate
over the resulting transformed dataset and domain. This step has two main benefits, similar
to the ones from the domain encoding step. First, it improves scalability of Private-PGM
in later steps by reducing the domain size of the attributes. Second, it ensures that the
tuples generated by NIST-MST (probably) have attribute values that actually occurred in
the dataset.

Step 5: Select Measurements. The next step of NIST-MST is to identify a collection of 2-
and 3-way marginals that will later be measured. This is one of the most crucial components
of NIST-MST, because the marginals selected in this step will ultimately determine the
marginals that will be preserved in the generated synthetic data. It is important to note
that this step selects measurements without using the sensitive dataset, although it does
rely heavily on the provisional dataset. This algorithm does take the privacy budget ε as

59,999,998 and 9,999,999 are special codes corresponding to missing values of N/A values.
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Algorithm 5: Marginal selection algorithm

Input: D̂ (the provisional dataset), ε (privacy budget)
Output: C (a collection of attribute subsets), w (weights for each C ∈ C)

(1) Construct a complete graph G where vertices are attributes in the dataset, and edge (i, j) is
weighted according to the mutual information between attribute i and attribute j in the dataset

D̂. Add 100 to the edge weights for (SEX,CITY), (SEX,INCWAGEA) and (CITY,INCWAGEA).
(2) Identify the maximum spanning tree (MST) of the graph, and for each edge in the tree, add the

attribute pair to C. Also add (SEX,CITY), (SEX,INCWAGEA), (CITY,INCWAGEA), and
(SEX,CITY,INCWAGEA) to C if they are not already included.

(3) For each pair of adjacent edges (i, j), (i, k) in the MST, compute the marginals Mij(D̂), Mik(D̂),

and Mijk(D̂). Use Private-PGM to estimate M̃ijk from Mij and Mik, and record the error in the

estimate Eijk =
∥∥∥Mijk − M̃ijk

∥∥∥
1
.

(4) For each attribute i, construct a complete graph consisting of nodes that are neighbors of i in the
MST, and each edge (j, k) in the new graph is assigned a weight of Eijk. Remove edges whose
weight is below a threshold of 0.1, and compute the maximum spanning tree of the resulting
graph. For each edge (j, k) in the new MST, add the (j, k) and (i, j, k) marginals to C.

(5) Remove attribute subsets whose marginal is too large, i.e., C ∈ C such that
∏
i∈C ni ≥ 106.

(6) Assign weights to selected attribute subsets using formula:

wC ∝





8 C = (SEX,CITY,INCWAGEA), ε ≤ 0.3

4 C = (SEX,CITY,INCWAGEA), ε ≥ 4.0

6 C = (SEX,CITY,INCWAGEA), 0.3 < ε < 4.0

2 C ∈ {(SEX,CITY), (SEX,INCWAGEA), (CITY,INCWAGEA)}
1 otherwise

input, but it does not “consume” it — it only uses it to determine weights to assign to each
selected marginal.

Algorithm 5 shows how NIST-MST selects 2- and 3-way marginals for measurement. This
algorithm is inspired by a similar approach used by two other mechanisms for differentially
private synthetic data [14,66]. It combines one principled step, which is to find the maximum
spanning tree (MST) on the graph where edge weights correspond to mutual information
between two attributes, with some additional heuristics to ensure that certain important
attribute pairs are selected, and more heuristics to select some triples while keeping the
graph tree-like. A reader familiar with graphical models with recognize the MST step as
the famous Chow-Liu algorithm for structure learning in a graphical model [15]. Intuitively,
highly correlated marginals should be measured because attributes that are independent
can trivially be preserved without direct measurement.

Figure 3 shows the marginals selected by this algorithm in graphical format. Each edge
in the graph represents a pair of attributes whose marginal will be measured by NIST-MST,
and each triangle in the graph represents a triple of attributes whose marginal will be
measured by NIST-MST. The structure of this measurement graph also corresponds to the
structure of the graphical model used by Private-PGM. The tree-like structure of the graph
will ultimately allow Private-PGM to run efficiently. The green subgraph corresponds to
the (SEX,CITY,INCWAGEA) clique, the black edges form a maximum spanning tree of the
underlying correlation graph, and the dotted red edges are additional edges that enhance
the expressive capacity of the model while retaining the tree-like structure.
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Figure 3. A graphical depiction of the 2- and 3-way marginals selected by NIST-MST.
Nodes correspond to attributes in the dataset, and edges correspond to marginals
selected by NIST-MST. Nodes are labeled by the 2-digit code for the attribute given in
Table 4. Black edges form a maximum spanning tree of the underlying correlation graph.
Green nodes and edges correspond to the special (SEX, CITY, INCWAGEA) attributes.
Dotted red edges identify the extra marginals chosen to improve expressive capacity of
the model while maintaining tractability of Private-PGM. All dotted red edges form a
triangle, and for each of those NIST-MST also included the 3-way marginal corresponding
to the three nodes that make up the triangle in the list of selected marginals.

Step 6: Measure Marginals. The next step of NIST-MST is to measure the marginals se-
lected in the previous step with Algorithm 1. The result is a collection of noisy measurements
contained within a measurement log, and suitable for post-processing with Private-PGM.

Step 7: Synthesize data. The next step of NIST-MST is to combine the measurement logs
from Steps 4 and 6 and pass them to Private-PGM, which returns a synthetic dataset whose
marginals approximately match those in the measurement log. Because the measurements
in Steps 4 and 6 were made on the uncompressed and compressed domains, respectively, the
measurements from Step 4 had to be re-expressed over the compressed domain.

Step 8: Reverse Transformation. The final step of NIST-MST is to reverse the transfor-
mations made in Steps 4 and 3, to bring the data back to the original domain. For Step
4, this requires evenly distributing any instances of ∅ among the original domain elements
mapped to it. For Step 3, this requires modifying VALUEH and combining INCWAGEA and
INCWAGEB back into a single attribute. The details are given in Algorithm 9 of the appendix.
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Algorithm 6: Differentially private measurement selection
Input: D (sensitive dataset), log (measurements of 1-way marginals), ρ (privacy parameter), C
(initial set of (i, j) pairs to measure; empty by default)
Output: C (final set of (i, j) pairs to measure)

(1) Use Private-PGM to estimate all 2-way marginals M̄ij from log

(2) Compute L1 error between estimated 2-way marginal and actual 2-way marginal for all i, j:

qij(D) =
∥∥Mij(D)− M̄ij

∥∥
1

(this is a sensitivity 1 quantity)

(3) Let G = (A, C) be the graph where attributes are vertices and edges are pairs of attributes

(4) Let r be the number of connected components in G 6

(5) Let ε =
√

8ρ
r−1

(6) Repeat r − 1 times
(7) Let S be the set of all attribute pairs (i, j), where i and j are in different connected

components of G
(8) Select attribute pair (i, j) by running the exponential mechanism with quality score function

qij on set S and privacy parameter ε.
(9) Add attribute pair (i, j) to C

6. Extensions

One limitation with NIST-MST is that it is highly tailored to the setting of the NIST
competition, and crucially relies on the existence of a public provisional dataset that can
be used to select marginals. In more general settings, we will not always have access to
a provisional dataset that follows a similar distribution as the sensitive data. For that
reason, we propose MST, a general purpose mechanism that is inspired by the NIST-MST

mechanism, but doesn’t rely on the existence of provisional data. The basic mechanism is
the same as NIST-MST outlined in Algorithm 2, with a couple minor exceptions. First, the
preprocessing transformations and corresponding reverse transformations are not done —
those were specific to the U.S. Census dataset used in the competition and not generally
applicable beyond that setting. Second, the measurement selection step, which previously
relied on a provisional dataset to select correlated marginals, is replaced by a differentially-
private version that uses the sensitive dataset. MST devotes 1

3 of the RDP budget towards

measurement selection, and uses the remaining 2
3 of the RDP budget for measuring the

marginals. Privacy of MST follows by adaptive composition Proposition 3. For completeness,
this calculation is given in the appendix.

The measurement selection algorithm is shown in Algorithm 6. Just like Algorithm 5,
this algorithm tries to find a collection of attribute pairs that form a maximum spanning tree
of an underlying correlation graph. However, as it uses the sensitive dataset, it must do this
in a differentially private way. To achieve this, we first use a low-sensitivity approximation
of the mutual information for assigning edge weights. We assume that we already measured
all 1-way marginals, so we can get reasonable estimates of 2-way marginals by invoking
Private-PGM.7 The edge weights are then computed as the L1 distance between the true
2-way marginal and the estimated one (a sensitivity 1 quantity). After computing the edge
weights, Algorithm 6 can be seen as a differentially private version of Kruskal’s algorithm [34]
for computing a maximum spanning tree. It consists of d− 1 steps (the number of edges in a

6If C is empty, this is just the number of attributes d.
7In this simple case, Private-PGM estimates 2-way marginals under an independence assumption, which

could alternatively be achieved by multiplying the (noisy) one-way marginals together.
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spanning tree), and in each step, it adds a highly weighted edge that connects two different
connected components. In Kruskal’s algorithm, the highest weighted edge is chosen, but
this would not be differentially private. We instead invoke the exponential mechanism

to select a highly weighted edge in a differentially private way. In principle, we could
apply any private selection algorithm here, including report-noisy-max [21] and the recently
developed permute-and-flip mechanism [43]. While permute-and-flip is known to dominate
the exponential mechanism under ε-DP [43], the exponential mechanism enjoys a tighter
privacy analysis under Rényi-DP [12].

The result of this algorithm is a collection of attribute pairs that will be measured by
MST. Algorithm 6 has an optional argument, C, which is an initial set of attribute pairs
to measure. If this is supplied, the algorithm will always include those in the result, and
then constructs a maximum spanning tree around them. This enables some extra flexibility
that may be beneficial in certain settings where some marginals are more important than
others, and need to be preserved even if they are not the most highly correlated. For many
applications, C can just be empty. In the context of the competition, this feature is useful
because the marginals relating SEX, CITY, and INCWAGEA are very important (since their
accuracy determines 1

3 of the final score).

Theorem 3 (Privacy of Algorithm 6). Algorithm 6 is (α, αρ)-RDP for all α ≥ 1.

Proof. Step 4a is (α, α1
8ε

2)-RDP by Proposition 2. Substituting ε =
√

8ρ
r−1 , we see that it is

equivalent to (α, α ρ
r−1)-RDP. It is called r−1 times, so the entire mechanism is (α, αρ)-RDP

by Proposition 3.

7. Experiments

In this section we discuss the experimental evaluation carried out by the contest organizers,
and how NIST-MST compared to the submissions from other teams. We offer our own insights
into the numbers and explanations for the differences between mechanisms.

Evaluations were carried out on U.S. Census data for two different states: Arizona
and Vermont. These datasets had 293,999 and 211,228 records, respectively. Scores were
calculated separately for each of the three evaluation metrics described in Section 3.3. The
final score was calculated by averaging the scores for each metric, each value of ε, and each of
the two datasets. In Table 5 we show the score breakdown by metric (averaged over Arizona
and Vermont) for the top five submitted algorithms. We also evaluated our new mechanism
(MST) and included it as an extra row (highlighted), even though it was not evaluated by
the contest organizers at the time of the competition. This was possible because the final
evaluation datasets were released after the competition, and the script used to evaluate the
synthetic data was provided as part of the competitor pack.

MST was described in Section 6. We instantiate it with C = {(SEX,CITY), (SEX,INCWAGEA),
(CITY,INCWAGEA)}, and add (SEX,CITY,INCWAGEA) to the returned result as well. These
marginals are weighted using the same formula as NIST-MST (see Algorithm 5).

Among the contest submissions, NIST-MST consistently performed the best, for most
metrics and values of ε. Compared to DPSyn, it did a much better job at answering 3-way
marginals and high order conjunctions, but performed slightly worse at handling the income
inequality metric. Compared to every other mechanism, NIST-MST did better on every
metric.
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ε Team 3-way High order Income Overall

marginals conjunctions inequality

0.3 RMcKenna (NIST-MST) 0.12 0.17 0.10 0.13

0.3 MST 0.11 0.16 0.10 0.12

0.3 DPSyn 0.15 0.31 0.07 0.18

0.3 PrivBayes 0.19 0.29 0.18 0.22

0.3 Gardn999 0.21 0.32 0.25 0.26

0.3 UCLANESL 0.57 0.72 0.22 0.50

1.0 RMcKenna (NIST-MST) 0.09 0.15 0.04 0.09

1.0 MST 0.09 0.15 0.05 0.10

1.0 DPSyn 0.11 0.23 0.05 0.13

1.0 PrivBayes 0.17 0.26 0.09 0.17

1.0 Gardn999 0.18 0.28 0.22 0.23

1.0 UCLANESL 0.42 0.53 0.28 0.41

8.0 RMcKenna (NIST-MST) 0.07 0.14 0.04 0.08

8.0 MST 0.08 0.14 0.05 0.09

8.0 DPSyn 0.09 0.20 0.02 0.10

8.0 PrivBayes 0.13 0.23 0.09 0.15

8.0 Gardn999 0.17 0.26 0.24 0.22

8.0 UCLANESL 0.35 0.41 0.25 0.34

Table 5. Evaluation of NIST-MST and other mechanisms from competing teams,
broken down by the three scoring metrics: 3-way marginals, high-order conjunctions,
and income inequality. MST is also shown for comparison, even though that mechanism
was not submitted during the competition. If it was submitted instead of NIST-MST, it
would have placed first overall.

Generally speaking, NIST-MST and DPSyn (and to a lesser extent PrivBayes) seemed to
be the only mechanisms that scored well on the income inequality metric, which is surprising
given that it was the simplest metric and only required preserving one 3-way marginal
accurately. This raises an important point: mechanisms that understood the evaluation
criteria well, and designed their mechanisms around it, generally performed better than
mechanisms that just tried to generate good synthetic data without thinking about how
its utility would be evaluated. NIST-MST and DPSyn did a good job of designing their
mechanism for the task at hand, which was an important contributing factor for why they
outperformed the other solutions.

While NIST-MST relied heavily on the provisional dataset for measurement selection, the
more general variant MST still performs well, without explicitly relying on the provisional
data. In fact, MST would have won first place if it was submitted instead of NIST-MST at the
time of the competition; it was only slightly worse than NIST-MST and still better than the
other submissions. The difference in performance between MST and NIST-MST was at most
0.01 for every metric and privacy budget evaluated.

At ε = 0.3, MST even achieved a smaller overall score than NIST-MST. NIST-MST measures
both 2- and 3-way marginals, while MST only measures 2-way marginals. Since the privacy
budget is relatively small, it makes sense that fewer measurements would work better here.
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A promising direction for future work is to adaptively select the number of marginals to
measure based on the privacy budget and the amount of data available.

For a much more comprehensive evaluation of these mechanisms, we refer the reader
to [10], which goes well beyond the metrics used in the competition to evaluate these
mechanisms. This work is also a useful resource that summarizes each mechanism at a high
level. Their results generally show that NIST-MST was the best performing mechanism for
many of the additional evaluation metrics not used as part of the official scoring criteria.
This suggests that NIST-MST produces the most generally useful synthetic data among the
submitted mechanisms.

8. Related Work

Differentially private synthetic data has been an active area of research for several years. One
of the earliest mechanisms proposed for this task was the “small database mechanism” [21],
which instantiates the exponential mechanism over a set of small databases to select one
that is statistically similar to the true data. Unfortunately, this mechanism is not able to
run in practical settings, as it requires enumerating all possible datasets of a fixed sizes,
resulting in a combinatorial explosion even for small dataset sizes (especially if the domain
size is large).

In the competition, the top four submissions all followed the same basic template
outlined in Figure 1: they selected and measured a collection of marginals, and then used
those to estimate synthetic data. Moreover this approach has been applied more generally in
the literature [9, 14,66,71]. One key difference that sets our approach apart is Private-PGM.
While [14, 66] do leverage graphical models to generate synthetic data, their approach
is limited in how it makes use of the noisy measurements: they more or less treat the
noisy marginals as the true marginals (with some lightweight post-processing), whereas
Private-PGM makes use of all available measurements to resolve inconsistencies and boost
utility in a principled manner. An alternative method for resolving inconsistencies and
generating synthetic data from noisy marginals is proposed in [71]. This method does not
construct an intermediate representation of the data distribution as Private-PGM does. As a
result, their consistency resolution step only ensures local consistency (i.e., that all marginals
internally agree on the common marginals), and does not satisfy the stronger notion of
global consistency (i.e., that there is a data distribution that has all stated marginals), as
Private-PGM does.

Another popular class of approaches for differentially private synthetic data is based
on generative adversarial networks (GANs) [27]. Several differentially private GANs have
been proposed for the purpose of generating synthetic data [3, 8, 23, 32, 52–54, 59, 70]. In
fact, two teams in the NIST competition adopted a GAN-based approach (UCLANESL
in Table 5, and one other team that did not place in the top five), however, their scores
were not generally competitive with the other approaches that used the marginal-based
framework. GANs are notoriously hard to train in practice [49] and when differential privacy
constraints are enforced, it is even more difficult. It typically requires running an algorithm
like DP-SGD [2] to train, and if it fails to converge (which is common) the privacy budget
used for training is essentially wasted. Setting the right hyper-parameters is also a major
challenge for this approach.

Another important and related problem is how to evaluate the quality of synthetic
data [5, 10, 30, 50]. Beyond the metrics used in the NIST competition, one alternative is
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pMSE, which is a general measure of distributional similarity [50]. Another alternative
measure is machine learning efficacy, or how well the synthetic data supports machine
learning applications [30]. A number of other measures for evaluating synthetic data can
be found in [10]. We believe that there may be no universal answer to this question: it
should ultimately depend on the data and its use cases. In general, it would be nice to have
a mechanism that can automatically adapt to an analyst-provided workload, and generate
synthetic data that provides high utility on the queries and tasks in that workload. Several
workload-adaptive mechanisms exist, but they are generally restricted to settings where
the full high-dimensional histogram can be explicitly materialized in vector form, and are
thus unable to scale to high-dimensional domains [21,24,28,36,41]. When combined with
Private-PGM, the scalability (and utility) of some of these mechanisms can be improved,
however [42].

9. Conclusions

In this paper, we described NIST-MST, the winning mechanism from the NIST differential
privacy synthetic data competition, and MST a new mechanism inspired by NIST-MST that
works almost as well, without relying on public provisional data. While these mechanisms
are state-of-the-art, the problem of differentially private synthetic data is far from solved.
Nevertheless, we believe our basic framework centered around Private-PGM can serve as
a core component of new mechanisms for this task. Private-PGM allows the mechanism
designer to focus on what to measure, rather than how to post-process those measurements
to get synthetic data while extracting the most utility from them. In fact, in the final round
of the recently completed follow-up challenge, the NIST 2020 Temporal Map Challenge,
both the first and second place teams used Private-PGM for post-processing, with each team
developing novel techniques for measurement selection.
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Appendix A. Supplementary Material

Noise Calibration for MST. We begin by calculating our total RDP budget from (ε, δ)
by invoking Proposition 4. In particular, we find the largest value of ρ such that (α, αρ)-RDP
implies (ε, δ)-DP by Proposition 4. We accomplish this numerically. We will now divide
our RDP budget “ρ” equally among the three steps (4) and (5) and (6) of MST. To achieve
ρ
3 -RDP in steps (4) and (6), it suffices to set σ =

√
3
2ρ by Proposition 1. To achieve ρ

3 -RDP

in step (5), we simply call Algorithm 6 with privacy parameter ρ
3 . The correctness of this

is proven in Theorem 3. The entire algorithm satisfies ρ-RDP by three-fold composition
(Proposition 3), which translates to (ε, δ)-DP by Proposition 4.

2/3/2021 jpc-noise calibration

localhost:8888/nbconvert/html/jpc-noise calibration.ipynb?download=false 1/1

In [1]: from sympy import * 

α,ε,δ,σ = symbols("alpha epsilon delta sigma") 

expr = α/σ**2 + log(1/δ)/(α - 1) 

expr = expr.subs(α, 1 + σ*sqrt(log(1/δ))) 

expr = expr.subs(σ,(sqrt(log(1/δ))+sqrt(log(1/δ)+ε))/ε) 

expr.simplify() 

In [ ]:  

Out[1]: ϵ

Figure 4. sympy code to augment the proof of Theorem 2

Additional Experiment on MST vs. NIST-MST. In Section 7, we evaluated MST in
the context of the challenge test suite and evaluation metrics, and found that it performed
comparably to NIST-MST. In this section, we compare the quality of the marginals selected
from public data (Algorithm 5) and from the sensitive data (Algorithm 6) using various
privacy budgets. Specifically, we logged the marginals selected by MST, and compared them to
the publicly chosen marginals used in NIST-MST (ignoring the extra 2- and 3-way marginals
selected in step 4) using the mutual information criteria described in Algorithm 5. We
also show the scores that would be achieved by the best marginals (i.e., the true maximum
spanning tree), as well as the scores that would be achieved by a random spanning tree.
As shown in the table below, both the publicly chosen marginals and the privately chosen
marginals nearly match the score acheived by the best marginals, for both the Arizona and
Vermont datasets. The publicly chosen marginals are slightly better at ε = 0.3 and ε = 1.0,
and slightly worse at ε = 8.0. Both variants are much better than the random baseline.

Selected Marginals Arizona Vermont
Best 73.64 63.32

Public (Algorithm 5) 72.81 62.79
ε = 0.3 (Algorithm 6) 70.53 61.15
ε = 1.0 (Algorithm 6) 72.27 62.35
ε = 8.0 (Algorithm 6) 73.05 63.09

Random 8.55 6.95

This work is licensed under the Creative Commons License Attribution-NonCommercial-NoDerivatives
4.0 International (CC BY-NC-ND 4.0). To view a copy of this license, visit https://creativecommons.
org/licenses/by-nc-nd/4.0/ or send a letter to Creative Commons, 171 Second St, Suite
300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2, 10777 Berlin, Germany

26



Algorithm 7: Synthetic column
Input: µ (vector of fractional counts), n (total number of records to generate)
Output: column (synthetic column of data)

(1) Generate bµtc items with value t and add to column for each t in domain

(2) Calculate remainders, pt = µt − bµtc
(3) Sample n−∑tbµtc items (without replacement) from distribution proportional to pt, and add to

column
(4) Shuffle values in column

Algorithm 8: Synthetic data generation
Input: graphical model
Output: dataset (synthetic dataset)

(1) Initialize the set of processed attributes to the empty set

(2) For each attribute i
(3) Let C be the set of all neighbors of i in the graphical model, intersected with the set of

processed attributes
(4) Group data by C, and for each group in C
(5) Calculate µ from the graphical model, the vector of fractional counts for every possible

value of attribute i, for the given group of other attributes
(6) Generate synthetic column for this group using Algorithm 7

(7) Add this partial column to the grouped rows in the dataset

(8) Add i to the set of processed attributes

Algorithm 9: Reverse transformation of Algorithm 3
Input: D (sensitive dataset)
Output: D (transformed sensitive dataset)

(1) Compute DIGITS from INCWAGEB using Algorithm 10

(2) Replace VALUEH and INCWAGE attributes in D using transformations:

VALUEH =





5 · VALUEH VALUEH ≤ 5000

9,999,998 VALUEH = 5001

9,999,999 VALUEH = 5002

INCWAGE =

{
100 · INCWAGEA + DIGITS INCWAGEA ≤ 50

9,999,998 INCWAGEA = 51

Algorithm 10: Convert INCWAGEB to DIGITS

Input: k (a value for INCWAGEB)
Output: l (a value for DIGITS)

(1) Let L = {0, . . . , 99}
(2) Let m = [100, 20, 50, 25, 10, 5, 2, 1]

(3) For i = 0, . . . , k
(4) Let Li = {l ∈ L | l ≡ 0 mod mi}
(5) Let L = L \ Li
(6) Sample l uniformly from Lk
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REVIEW

Privacy and human behavior in the
age of information
Alessandro Acquisti,1* Laura Brandimarte,1 George Loewenstein2

This Review summarizes and draws connections between diverse streams of empirical
research on privacy behavior. We use three themes to connect insights from social and
behavioral sciences: people’s uncertainty about the consequences of privacy-related
behaviors and their own preferences over those consequences; the context-dependence
of people’s concern, or lack thereof, about privacy; and the degree to which privacy
concerns are malleable—manipulable by commercial and governmental interests.
Organizing our discussion by these themes, we offer observations concerning the role
of public policy in the protection of privacy in the information age.

I
f this is the age of information, then privacy is
the issue of our times. Activities that were
once private or sharedwith the few now leave
trails of data that expose our interests, traits,
beliefs, and intentions.We communicateusing

e-mails, texts, and social media; find partners on
dating sites; learn via online courses; seek re-
sponses tomundane and sensitive questionsusing
search engines; read news and books in the cloud;
navigate streets with geotracking systems; and cel-
ebrate our newborns, and mourn our dead, on
social media profiles. Through these and other
activities, we reveal information—both knowingly
and unwittingly—to one another, to commercial
entities, and to our governments. Themonitoring
of personal information is ubiquitous; its storage
is so durable as to render one’s past undeletable
(1)—a modern digital skeleton in the closet. Ac-
companying the acceleration in data collection
are steady advancements in the ability to ag-
gregate, analyze, and draw sensitive inferences
from individuals’ data (2).
Both firms and individuals can benefit from the

sharing of once hidden data and from the appli-
cation of increasingly sophisticated analytics to
larger and more interconnected databases (3). So
too can society as a whole—for instance, when elec-
tronic medical records are combined to observe
novel drug interactions (4). On the other hand, the
potential for personal data to be abused—for eco-
nomic and social discrimination, hidden influence
andmanipulation, coercion, or censorship—is alarm-
ing. The erosion of privacy can threaten our auton-
omy, not merely as consumers but as citizens (5).
Sharing more personal data does not necessarily
always translate into more progress, efficiency,
or equality (6).
Because of the seismic nature of these develop-

ments, there has been considerable debate about
individuals’ ability to navigate a rapidly evolving
privacy landscape, and about what, if anything,
should be done about privacy at a policy level.
Some trust people’s ability to make self-interested

decisions about information disclosing andwith-
holding. Those holding this view tend to see
regulatory protection of privacy as interfering
with the fundamentally benign trajectory of in-
formation technologies and the benefits such
technologies may unlock (7). Others are con-
cerned about the ability of individuals tomanage
privacy amid increasingly complex trade-offs. Tra-
ditional tools for privacy decision-making such as
choice and consent, according to this perspective,
no longer provide adequate protection (8). In-
stead of individual responsibility, regulatory inter-
vention may be needed to balance the interests
of the subjects of data against the power of
commercial entities and governments holding
that data.
Are individuals up to the challenge of navigat-

ing privacy in the information age? To address
this question, we review diverse streams of empir-
ical privacy research from the social and behav-
ioral sciences. We highlight factors that influence
decisions to protect or surrender privacy and
how, in turn, privacy protections or violations
affect people’s behavior. Information technolo-
gies have progressively encroached on every as-
pect of our personal and professional lives. Thus,
the problem of control over personal data has
become inextricably linked to problems of per-
sonal choice, autonomy, and socioeconomic power.
Accordingly, this Review focuses on the concept
of, and literature around, informational privacy
(that is, privacy of personal data) but also touches
on other conceptions of privacy, such as ano-
nymity or seclusion. Such notions all ultimately
relate to the permeable yet pivotal boundaries
between public and private (9).
We use three themes to organize and draw

connections between streams of privacy research
that, in many cases, have unfolded independent-
ly. The first theme is people’s uncertainty about
the nature of privacy trade-offs, and their own
preferences over them. The second is the powerful
context-dependence of privacy preferences: The
same person can in some situations be oblivious
to, but in other situations be acutely concerned
about, issues of privacy. The third theme is the
malleability of privacy preferences, by which we
mean that privacy preferences are subject to

influence by those possessing greater insight
into their determinants. Although most individ-
uals are probably unaware of the diverse in-
fluences on their concern about privacy, entities
whose interests depend on information revela-
tion by others are not. The manipulation of subtle
factors that activate or suppress privacy concern
can be seen inmyriad realms—such as the choice
of sharing defaults on social networks, or the
provision of greater control on social media—
which creates an illusion of safety and encourages
greater sharing.
Uncertainty, context-dependence, and mallea-

bility are closely connected. Context-dependence
is amplified by uncertainty. Because people are
often “at sea” when it comes to the conse-
quences of, and their feelings about, privacy,
they cast around for cues to guide their be-
havior. Privacy preferences and behaviors are,
in turn, malleable and subject to influence in
large part because they are context-dependent
and because those with an interest in informa-
tion divulgence are able tomanipulate context to
their advantage.

Uncertainty

Individuals manage the boundaries between
their private and public spheres in numerous
ways: via separateness, reserve, or anonymity
(10); by protecting personal information; but also
through deception and dissimulation (11). People
establish such boundaries for many reasons, in-
cluding the need for intimacy and psychological
respite and the desire for protection from social
influence and control (12). Sometimes, these mo-
tivations are so visceral and primal that privacy-
seeking behavior emerges swiftly and naturally. This
is often the case when physical privacy is intruded—
such as when a stranger encroaches in one’s per-
sonal space (13–15) or demonstratively eavesdrops
on a conversation. However, at other times (often
including when informational privacy is at stake)
people experience considerable uncertainty about
whether, and to what degree, they should be con-
cerned about privacy.
A first and most obvious source of privacy

uncertainty arises from incomplete and asym-
metric information. Advancements in infor-
mation technology have made the collection
and usage of personal data often invisible. As
a result, individuals rarely have clear knowl-
edge of what information other people, firms,
and governments have about them or how that
information is used and with what consequences.
To the extent that people lack such informa-
tion, or are aware of their ignorance, they are
likely to be uncertain about how much infor-
mation to share.
Two factors exacerbate the difficulty of ascer-

taining the potential consequences of privacy be-
havior. First, whereas some privacy harms are
tangible, such as the financial costs associated
with identity theft, many others, such as having
strangers become aware of one’s life history, are
intangible. Second, privacy is rarely an unalloyed
good; it typically involves trade-offs (16). For
example, ensuring the privacy of a consumer’s
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purchases may protect her from price discrimina-
tion but also deny her the potential benefits of
targeted offers and advertisements.
Elements that mitigate one or both of these

exacerbating factors, by either increasing the tan-
gibility of privacy harms or making trade-offs
explicit and simple to understand, will generally
affect privacy-related decisions. This is illustrated
by one laboratory experiment in which partici-
pantswere asked to use a specially designed search
engine to find online merchants and purchase
from them, with their own credit cards, either a
set of batteries or a sex toy (17). When the search
engine only provided links to the merchants’ sites
and a comparison of the products’ prices from the
different sellers, amajority of participants did not
pay any attention to the merchants’ privacy poli-
cies; they purchased from those offering the lowest
price. However, when the search engine also pro-
vided participants with salient, easily accessible
information about the differences in privacy pro-
tection afforded by the various merchants, a
majority of participants paid a roughly 5% pre-
mium to buy products from (and share their
credit card information with) more privacy-
protecting merchants.
A second source of privacy uncertainty relates

to preferences. Even when aware of the conse-
quences of privacy decisions, people are still
likely to be uncertain about their own privacy
preferences. Research on preference uncertainty
(18) shows that individuals often have little sense
of how much they like goods, services, or other
people. Privacy does not seem to be an exception.
This can be illustrated by research in which peo-
ple were asked sensitive and potentially incrimi-
nating questions either point-blank, or followed
by credible assurances of confidentiality (19). Al-
though logically such assurances should lead to
greater divulgence, they often had the opposite
effect because they elevated respondents’ privacy
concerns, which without assurances would have
remained dormant.
The remarkable uncertainty of privacy prefer-

ences comes into play in efforts to measure indi-
vidual and group differences in preference for
privacy (20). For example, Westin (21) famously
used broad (that is, not contextually specific) pri-
vacy questions in surveys to cluster individuals
into privacy segments: privacy fundamentalists,
pragmatists, andunconcerned.Whenaskeddirect-
ly, many people fall in the first segment: They
profess to care a lot about privacy and express
particular concern over losing control of their
personal information or others gaining unau-
thorized access to it (22, 23). However, doubts
about the power of attitudinal scales to predict
actual privacy behavior arose early in the liter-
ature (24). This discrepancy between attitudes
and behaviors has become known as the “privacy
paradox.”
In one early study illustrating the paradox,

participants were first classified into categories
of privacy concern inspired by Westin’s cate-
gorization based on their responses to a survey
dealing with attitudes toward sharing data
(25). Next, they were presented with products

to purchase at a discount with the assistance of
an anthropomorphic shopping agent. Few,
regardless of the group they were categorized
in, exhibited much reluctance to answering the
increasingly sensitive questions the agent plied
them with.
Why do people who claim to care about pri-

vacy often show little concern about it in their
daily behavior? One possibility is that the para-
dox is illusory—that privacy attitudes, which are
defined broadly, and intentions and behaviors,
which are defined narrowly, should not be ex-
pected to be closely related (26, 27). Thus, one
might care deeply about privacy in general but,
depending on the costs and benefits prevailing
in a specific situation, seek or not seek privacy
protection (28) .
This explanation for the privacy paradox, how-

ever, is not entirely satisfactory for two reasons.
The first is that it fails to account for situations in
which attitude-behavior dichotomies arise under
high correspondence between expressed concerns
and behavioral actions. For example, one study
compared attitudinal survey answers to actual
social media behavior (29). Even within the sub-
set of participants who expressed the highest
degree of concern over strangers being able to
easily find out their sexual orientation, political
views, and partners’ names, 48% did in fact pub-
licly reveal their sexual orientation online, 47%
revealed their political orientation, and 21% re-
vealed their current partner’s name. The second
reason is that privacy decision-making is only in
part the result of a rational “calculus” of costs
and benefits (16, 28); it is also affected by mis-
perceptions of those costs and benefits, as well
as social norms, emotions, and heuristics. Any of
these factors may affect behavior differently from
how they affect attitudes. For instance, present-
bias can cause even the privacy-conscious to
engage in risky revelations of information, if
the immediate gratification from disclosure trumps
the delayed, and hence discounted, future con-
sequences (30).
Preference uncertainty is evident not only in

studies that compare stated attitudeswith behav-
iors, but also in those that estimate monetary
valuations of privacy. “Explicit” investigations
ask people to make direct trade-offs, typically
between privacy of data andmoney. For instance,
in a study conducted both in Singapore and the
United States, students made a series of hypo-
thetical choices about sharing information with
websites that differed in protection of personal
information and prices for accessing services (31).
Using conjoint analysis, the authors concluded
that subjects valued protection against errors, im-
proper access, and secondary use of personal
information between $30.49 and $44.62. Similar
to direct questions about attitudes and inten-
tions, such explicit investigations of privacy
valuation spotlight privacy as an issue that re-
spondents should take account of and, as a re-
sult, increase the weight they place on privacy in
their responses.
Implicit investigations, in contrast, infer valu-

ations of privacy from day-to-day decisions in

which privacy is only one ofmany considerations
and is typically not highlighted. Individuals en-
gage in privacy-related transactions all the time,
even when the privacy trade-offs may be in-
tangible or when the exchange of personal data
may not be a visible or primary component of a
transaction. For instance, completing a query on
a search engine is akin to selling personal data
(one’s preferences and contextual interests) to the
engine in exchange for a service (search results).
“Revealedpreference” economic argumentswould
then conclude that because technologies for infor-
mation sharing have been enormously successful,
whereas technologies for information protection
have not, individuals hold overall low valuations
of privacy. However, that is not always the case:
Although individuals at times give up personal
data for small benefits or discounts, at other times
they voluntarily incur substantial costs to protect
their privacy. Context, as further discussed in the
next section, matters.
In fact, attempts to pinpoint exact valuations

that people assign to privacy may be misguided,
as suggested by research calling into question the
stability, and hence validity, of privacy estimates.
In one field experiment inspired by the literature
on endowment effects (32), shoppers at a mall
were offered gift cards for participating in a non-
sensitive survey. The cards could be used online or
in stores, just like debit cards. Participants were
given either a $10 “anonymous” gift card (trans-
actions donewith that cardwould not be traceable
to the subject) or a $12 trackable card (tran-
sactions done with that card would be linked to
the name of the subject). Initially, half of the
participantswere given one type of card, and half
the other. Then, they were all offered the op-
portunity to switch. Some shoppers, for example,
were given the anonymous $10 card and were
askedwhether theywould accept $2 to “allowmy
name to be linked to transactions done with the
card”; other subjects were asked whether they
would accept a cardwith $2 less value to “prevent
my name from being linked to transactions done
with the card.”Of the subjectswho originally held
the less valuable but anonymous card, five times
as many (52.1%) chose it and kept it over the
other card than did those who originally held the
more valuable card (9.7%). This suggests that
people value privacy more when they have it
than when they do not.
The consistency of preferences for privacy is

also complicated by the existence of a powerful
countervailing motivation: the desire to be pub-
lic, share, and disclose. Humans are social animals,
and information sharing is a central feature of
human connection. Social penetration theory (33)
suggests that progressively increasing levels of self-
disclosure are an essential feature of the natural
and desirable evolution of interpersonal relation-
ships from superficial to intimate. Such a progres-
sion is only possible when people begin social
interactions with a baseline level of privacy. Para-
doxically, therefore, privacy provides an essential
foundation for intimate disclosure. Similar to pri-
vacy, self-disclosure confers numerous objective
and subjective benefits, including psychological
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and physical health (34, 35). The desire for inter-
action, socialization, disclosure, and recognition
or fame (and, conversely, the fear of anonymous
unimportance) are human motives no less funda-
mental than the need for privacy. The electronic
media of the current age provide unprecedented
opportunities for acting on them. Through so-
cial media, disclosures can build social capital,
increase self-esteem (36), and fulfill ego needs
(37). In a series of functional magnetic reso-
nance imaging experiments, self-disclosure was
even found to engage neural mechanisms as-
sociated with reward; people highly value the
ability to share thoughts and feelings with others.
Indeed, subjects in one of the experiments were
willing to forgo money in order to disclose about
themselves (38).

Context-dependence

Much evidence suggests that privacy is a uni-
versal human need (Box 1) (39). However, when
people are uncertain about their preferences they
often search for cues in their environment to
provide guidance. And because cues are a func-
tion of context, behavior is as well. Applied to
privacy, context-dependence means that individ-
uals can, depending on the situation, exhibit any-
thing ranging from extreme concern to apathy
about privacy. Adopting the terminology ofWestin,
we are all privacy pragmatists, privacy funda-
mentalists, or privacy unconcerned, depending
on time and place (40).

The way we construe and negotiate public
andprivate spheres is context-dependent because
the boundaries between the two are murky (41):
The rules people follow for managing privacy
vary by situation, are learned over time, and are
based on cultural, motivational, and purely situ-
ational criteria. For instance, usually we may be
more comfortable sharing secrets with friends,
but at times we may reveal surprisingly personal
information to a stranger on a plane (42). The
theory of contextual “integrity” posits that social
expectations affect our beliefs regarding what is
private and what is public, and that such expec-
tations varywith specific contexts (43). Thus, seeking
privacy in public is not a contradiction; individuals
can manage privacy even while sharing informa-
tion, and even on social media (44). For instance,
a longitudinal study of actual disclosure behavior
of online social network users highlighted that
over time,many users increased the amount of per-
sonal information revealed to their friends (those
connected to them on the network) while simul-
taneously decreasing the amounts revealed to
strangers (those unconnected to them) (Fig. 1) (45).
The cues that people use to judge the impor-

tance of privacy sometimes result in sensible be-
havior. For instance, the presence of government
regulation has been shown to reduce consumer
concern and increase trust; it is a cue that people
use to infer the existence of some degree of pri-
vacy protection (46). In other situations, however,
cues can be unrelated, or even negatively related,

to normative bases of decision-making. For exam-
ple, in one online experiment (47) individualswere
more likely to reveal personal and even incrimi-
nating information on a website with an un-
professional and casual design with the banner
“How Bad R U” than on a site with a formal
interface—even though the site with the formal
interface was judged by other respondents to be
much safer (Fig. 2). Yet in other situations, it is
the physical environment that influences privacy
concern and associated behavior (48), sometimes
even unconsciously. For instance, all else being
equal, intimacy of self-disclosure is higher in
warm, comfortable rooms, with soft lighting, than
in cold rooms with bare cement and overhead
fluorescent lighting (49).
Some of the cues that influence perceptions

of privacy are one’s culture and the behavior of
other people, either through the mechanism of
descriptive norms (imitation) or via reciprocity
(50). Observing other people reveal information
increases the likelihood that one will reveal it
oneself (51). In one study, survey-takerswere asked
a series of sensitive personal questions regarding
their engagement in illegal or ethically question-
able behaviors. After answering each question,
participants were providedwith information, ma-
nipulated unbeknownst to them, about the per-
centage of other participants who in the same
survey had admitted to having engaged in a given
behavior. Being provided with information that
suggested that a majority of survey takers had
admitted a certainquestionable behavior increased
participants’ willingness to disclose their engage-
ment in other, also sensitive, behaviors. Other
studies have found that the tendency to recip-
rocate information disclosure is so ingrained that
people will reveal more information even to a
computer agent that provides information about
itself (52). Findings such as this may help to
explain the escalating amounts of self-disclosure
we witness online: If others are doing it, people
seem to reason unconsciously, doing so oneself
must be desirable or safe.
Other people’s behavior affects privacy con-

cerns in other ways, too. Sharing personal infor-
mation with others makes them “co-owners” of
that information (53) and, as such, responsible
for its protection. Mismanagement of shared
information by one or more co-owners causes
“turbulence” of the privacy boundaries and, con-
sequently, negative reactions, including anger or
mistrust. In a study of undergraduate Facebook
users (54), for instance, turbulence of privacy
boundaries, as a result of having one’s profile
exposed to unintended audiences, dramatically
increased the odds that a user would restrict pro-
file visibility to friends-only.
Likewise, privacy concerns are often a function

of past experiences. When something in an en-
vironment changes, such as the introduction of a
camera or othermonitoring devices, privacy con-
cern is likely to be activated. For instance, surveil-
lance can produce discomfort (55) and negatively
affect worker productivity (56). However, privacy
concern, like other motivations, is adaptive; peo-
ple get used to levels of intrusion that do not
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Fig. 1. Endogenous
privacy behavior and
exogenous shocks.
Privacy behavior is
affected both by
endogenous motiva-
tions (for instance,
subjective preferen-
ces) and exogenous
factors (for instance,
changes in user inter-
faces). Over time, the
percentage of mem-
bers in the Carnegie
Mellon University
Facebook network who
chose to publicly
reveal personal
information decreased
dramatically. For
instance, over 80% of
profiles publicly
revealed their birthday
in 2005, but less than
20% in 2011. The
decreasing trend is not
uniform, however.
After decreasing for
several years, the
percentage of profiles
that publicly revealed their high school roughly doubled between 2009 and 2010—after Facebook
changed the default visibility settings for various fields on its profiles, including high school (bottom),
but not birthday (top) (45).
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change over time. In an experiment conducted in
Helsinki (57), the installation of sensing andmon-
itoring technology in households led familymem-
bers initially to change their behavior, particularly
in relation to conversations, nudity, and sex. And
yet, if they accidentally performed an activity, such
as walking naked into the kitchen in front of the
sensors, it seemed to have the effect of “breaking
the ice”; participants then showed less concern
about repeating the behavior. More generally, par-
ticipants became inured to the presence of the
technology over time.
The context-dependence of privacy concern has

major implications for the risks associated with
modern information and communication technol-
ogy (58). With online interactions, we no longer
have a clear sense of the spatial boundaries of our
listeners. Who is reading our blog post? Who is
looking at our photos online? Adding complexity
to privacy decision-making, boundaries between
public andprivate become even less defined in the
online world (59) where we become social media
friends with our coworkers and post pictures to
an indistinct flock of followers. With different so-
cial groups mixing on the Internet, separating
online and offline identities and meeting our and
others’ expectations regarding privacy becomes
more difficult and consequential (60).

Malleability and influence

Whereas individuals are often unaware of the di-
verse factors that determine their concern about
privacy in a particular situation, entities whose
prosperity depends on information revelation by
others are much more sophisticated. With the
emergence of the information age, growing insti-
tutional and economic interests have developed
around disclosure of personal information, from
online social networks to behavioral advertising.
It is not surprising, therefore, that some entities
have an interest in, and have developed expertise
in, exploiting behavioral andpsychological proces-
ses to promote disclosure (61). Such efforts play on
the malleability of privacy preferences, a term we
use to refer to the observation that various, some-
times subtle, factors can be used to activate or
suppress privacy concerns, which in turn affect
behavior.
Default settings are an important tool used by

different entities to affect information disclo-
sure. A large body of research has shown that
default settings matter for decisions as important
as organ donation and retirement saving (62).
Sticking to default settings is convenient, and
people often interpret default settings as implicit
recommendations (63). Thus, it is not surprising
that default settings for one’s profile’s visibility on
social networks (64), or the existence of opt-in or
opt-out privacy policies on websites (65), affect
individuals’ privacy behavior (Fig. 3).
In addition to default settings, websites can

also use design features that frustrate or even con-
fuse users into disclosing personal information
(66), a practice that has been referred to as “ma-
licious interface design” (67). Another obvious
strategy that commercial entities can use to avoid
raising privacy concerns is not to “ring alarmbells”

when it comes to data collection.When companies
do ring them—for example, by using overly fine-
tuned personalized advertisements—consumers
are alerted (68) and can respond with negative
“reactance” (69).
Various so-called “antecedents” (70) affect pri-

vacy concerns and can be used to influence pri-
vacy behavior. For instance, trust in the entity
receiving one’s personal data soothes concerns.
Moreover, because some interventions that are in-
tended to protect privacy can establish trust, con-

cerns can be muted by the very interventions
intended to protect privacy. Perversely, 62% of
respondents to a survey believed (incorrectly) that
the existence of a privacy policy implied that a site
could not share their personal information with-
out permission (40), which suggests that simply
posting a policy that consumers do not read may
lead to misplaced feelings of being protected.
Control is another feature that can inculcate

trust and produce paradoxical effects. Perhaps be-
cause of its lack of controversiality, control has
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Box 1. Privacy: A modern invention?

Is privacy a modern, bourgeois, and distinctly Western invention? Or are privacy needs a
universal feature of human societies? Although access to privacy is certainly affected by
socioeconomic factors (87) [some have referred to privacy as a “luxury good” (15)], and
privacy norms greatly differ across cultures (65, 85), the need for privacy seems to be a
universal human trait. Scholars have uncovered evidence of privacy-seeking behaviors across
peoples and cultures separated by time and space: from ancient Rome and Greece (39, 88) to
preindustrialized Javanese, Balinese, and Tuareg societies (89, 90). Privacy, as Altman (91)
noted, appears to be simultaneously culturally specific and culturally universal. Cues of a
common human quest for privacy are also found in the texts of ancient religions: The Quran
(49:12) instructs against spying on one another (92); the Talmud (Bava Batra 60a) advises
home-builders to position windows so that they do not directly face those of one’s neighbors
(93); the Bible (Genesis, 3:7) relates how Adam and Eve discovered their nakedness after
eating the fruit of knowledge and covered themselves in shame from the prying eyes of God
(94) [a discussion of privacy in Confucian and Taoist cultures is available in (95)]. Implicit in
this heterogeneous selection of historical examples is the observation that there exist
multiple notions of privacy. Although contemporary attention focuses on informational
privacy, privacy has been also construed as territorial and physical, and linked to concepts as
diverse as surveillance, exposure, intrusion, insecurity, appropriation, as well as secrecy,
protection, anonymity, dignity, or even freedom [a taxonomy is provided in (9)].

Fig. 2.The impact of cues on
disclosure behavior. A measure
of privacy behavior often used in
empirical studies is a subject’s
willigness to answer personal,
sometimes sensitive questions—
for instance, by admitting or
denying having engaged in
questionable behaviors. In an
online experiment (47), individ-
uals were asked a series of
intrusive questions about their
behaviors, such as “Have you
ever tried to peek at someone
else’s e-mail without them
knowing?”Across conditions,
the interface of the question-
naire was manipulated to look
more or less professional. The
y axis captures the mean affir-
mative admission rates (AARs)
to questions that were rated as
intrusive (the proportion of
questions answered affirma-
tively) normed, question by ques-
tion, on the overall average AAR for the question. Subjects revealed more personal and even incriminating
information on the website with a more casual design, even though the site with the formal interface was
judged by other respondents to be much safer.The study illustrates how cues can influence privacy behavior
in a fashion that is unrelated, or even negatively related, to normative bases of decision-making.
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been one of the capstones of the focus of both
industry andpolicy-makers in attempts to balance
privacy needs against the value of sharing. Control
over personal information is often perceived as a
critical feature of privacy protection (39). In prin-
ciple, it does provide users with the means to
manage access to their personal information. Re-
search, however, shows that control can reduce
privacy concern (46), which in turn can have un-
intended effects. For instance, one study found
that participants who were provided with greater
explicit control over whether and how much of
their personal information researchers could
publish ended up sharingmore sensitive informa-
tion with a broader audience—the opposite of the
ostensible purpose of providing such control (71).
Similar to the normative perspective on control,

increasing the transparency of firms’ data prac-
tices would seem to be desirable. However, trans-
parency mechanisms can be easily rendered

ineffective. Research has highlighted not only that
an overwhelming majority of Internet users do
not read privacy policies (72), but also that few
userswould benefit fromdoing so; nearly half of a
sample of online privacy policies were found to be
written in language beyond the grasp of most
Internet users (73). Indeed, and somewhat amus-
ingly, it has been estimated that the aggregate
opportunity cost if U.S. consumers actually read
the privacy policies of the sites they visit would
be $781 billion/year (74).
Although uncertainty and context-dependence

lead naturally to malleability and manipulation,
not all malleability is necessarily sinister. Consid-
er monitoring. Although monitoring can cause
discomfort and reduce productivity, the feeling of
being observed and accountable can induce peo-
ple to engage in prosocial behaviors or (for better
or forworse) adhere to social norms (75). Prosocial
behavior can be heightened bymonitoring cues as

simple as three dots in a stylized face configura-
tion (76). By the same token, thedepersonalization
induced by computer-mediated interaction (77),
either in the form of lack of identifiability or of
visual anonymity (78), can have beneficial effects,
such as increasing truthful responses to sensitive
surveys (79, 80).Whether elevating or suppressing
privacy concerns is socially beneficial critically de-
pends, yet again, on context [ameta-analysis of the
impact of de-identification onbehavior is provided
in (81)]. For example, perceptions of anonymity
can alternatively lead to dishonest or prosocial
behavior. Illusory anonymity induced by darkness
caused participants in an experiment (82) to cheat
in order to gain more money. This can be inter-
preted as a form of disinhibition effect (83), by
which perceived anonymity licenses people to act
in ways that they would otherwise not even con-
sider. In other circumstances, though, anonymity
leads to prosocial behavior—for instance, higher
willingness to share money in a dictator game,
when coupled with priming of religiosity (84).

Conclusions

Norms and behaviors regarding private and pub-
lic realms greatly differ across cultures (85). Amer-
icans, for example, are reputed to be more open
about sexual matters than are the Chinese, whereas
the latter are more open about financial matters
(such as income, cost of home, and possessions).
And even within cultures, people differ substan-
tially in how much they care about privacy and
what information they treat as private. And as we
have sought to highlight in this Review, privacy
concerns can vary dramatically for the same in-
dividual, and for societies, over time.
If privacy behaviors are culture- and context-

dependent, however, the dilemmaofwhat to share
and what to keep private is universal across so-
cieties and over human history. The task of nav-
igating those boundaries, and the consequences
of mismanaging them, have grown increasingly
complex and fateful in the information age, to
the point that our natural instincts seem not
nearly adequate.
In thisReview,weused three themes to organize

and draw connections between the social and be-
havioral science literatures on privacy and behav-
ior. We end the Review with a brief discussion of
the reviewed literature’s relevance to privacy policy.
Uncertainty and context-dependence imply that

people cannot always be counted on to navigate
the complex trade-offs involving privacy in a self-
interested fashion. People are often unaware of
the information they are sharing, unaware of how
it can be used, and even in the rare situations
when they have full knowledge of the conse-
quences of sharing, uncertain about their own
preferences.Malleability, in turn, implies that peo-
ple are easily influenced in what and how much
they disclose. Moreover, what they share can be
used to influence their emotions, thoughts, and
behaviors in many aspects of their lives, as in-
dividuals, consumers, and citizens. Although such
influence is not always or necessarily malevolent
or dangerous, relinquishing control over one’s
personal data and over one’s privacy alters the
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Fig. 3. Changes in Facebook
default profile visibility set-
tings over time (2005–2014).
Over time, Facebook profiles
included an increasing amount of
fields and, therefore, types of
data. In addition, default visibility
settings became more revelatory
between 2005 (top) and 2014
(bottom), disclosing more per-
sonal information to larger audi-
ences, unless the user manually
overrode the defaults (fields such
as “Likes” and “Extended Profile
Data” did not exist in 2005).
“Basic profile data” includes
hometown, current city, high
school, school (status, concen-
tration, secondary concentration),
interested in, relationship,
workplace, about you, and quotes.
Examples of “Extended profile
data” include life events such as
new job, new school, engagement,
expecting a baby, moved, bought
a home, and so forth. “Picture”
refers to the main profile image.
“Photos” refers to the additional
images that users might have
shared in their account. “Names”
refers to the real name, the user-
name, and the user ID. This figure
is based on the authors’ data and
the original visualization created
by M. McKeon, available at
http://mattmckeon.com/
facebook-privacy.
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balance of power between those holding the data
and those who are the subjects of that data.
Insights from the social and behavioral empir-

ical research on privacy reviewed here suggest
that policy approaches that rely exclusively on
informing or “empowering” the individual are un-
likely to provide adequate protection against the
risks posed by recent information technologies.
Consider transparency and control, two principles
conceived as necessary conditions for privacy pro-
tection. The research we highlighted shows that
theymayprovide insufficient protections and even
backfire when used apart from other principles
of privacy protection.

The research reviewed here suggests that if
the goal of policy is to adequately protect pri-
vacy (as we believe it should be), then we need
policies that protect individuals with minimal
requirement of informed and rational decision-
making—policies that include a baseline framework
of protection, such as the principles embedded
in the so-called fair information practices (86).
People need assistance and even protection to aid
in navigating what is otherwise a very uneven
playing field. As highlighted by our discussion, a
goal of public policy should be to achieve a more
even equity of power between individuals, con-
sumers, and citizens on the one hand and, on the
other, the data holders such as governments and
corporations that currently have the upper hand.
To be effective, privacy policy should protect real
people—who are naïve, uncertain, and vulnerable—
and should be sufficiently flexible to evolve with
the emerging unpredictable complexities of the
information age.
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administrative action by the Secretary of Health, Education, and Welfare. Rather, the Commission recommended that 
the Belmont Report be adopted in its entirety, as a statement of the Department's policy. The Department requests 
public comment on this recommendation. 
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Ethical Principles & Guidelines for Research Involving Human Subjects 
Scientific research has produced substantial social benefits. It has also posed some troubling ethical 
questions. Public attention was drawn to these questions by reported abuses of human subjects in 
biomedical experiments, especially during the Second World War. During the Nuremberg War Crime Trials, 
the Nuremberg code was drafted as a set of standards for judging physicians and scientists who had 
conducted biomedical experiments on concentration camp prisoners. This code became the prototype of 
many later codes [1] intended to assure that research involving human subjects would be carried out in an 
ethical manner. 

The codes consist of rules, some general, others specific, that guide the investigators or the reviewers of 
research in their work. Such rules often are inadequate to cover complex situations; at times they come into 
conflict, and they are frequently difficult to interpret or apply. Broader ethical principles will provide a basis 
on which specific rules may be formulated, criticized and interpreted. 

Three principles, or general prescriptive judgments, that are relevant to research involving human subjects 
are identified in this statement. Other principles may also be relevant. These three are comprehensive, 
however, and are stated at a level of generalization that should assist scientists, subjects, reviewers and 
interested citizens to understand the ethical issues inherent in research involving human subjects. These 
principles cannot always be applied so as to resolve beyond dispute particular ethical problems. The 
objective is to provide an analytical framework that will guide the resolution of ethical problems arising from 
research involving human subjects. 

This statement consists of a distinction between research and practice, a discussion of the three basic 
ethical principles, and remarks about the application of these principles. 

 

Part A: Boundaries Between Practice & Research 
A. Boundaries Between Practice and Research 

It is important to distinguish between biomedical and behavioral research, on the one hand, and the practice 
of accepted therapy on the other, in order to know what activities ought to undergo review for the protection 
of human subjects of research. The distinction between research and practice is blurred partly because both 
often occur together (as in research designed to evaluate a therapy) and partly because notable departures 
from standard practice are often called "experimental" when the terms "experimental" and "research" are not 
carefully defined. 

For the most part, the term "practice" refers to interventions that are designed solely to enhance the well-
being of an individual patient or client and that have a reasonable expectation of success. The purpose of 
medical or behavioral practice is to provide diagnosis, preventive treatment or therapy to particular 
individuals [2]. By contrast, the term "research' designates an activity designed to test an hypothesis, permit 
conclusions to be drawn, and thereby to develop or contribute to generalizable knowledge (expressed, for 
example, in theories, principles, and statements of relationships). Research is usually described in a formal 
protocol that sets forth an objective and a set of procedures designed to reach that objective. 

When a clinician departs in a significant way from standard or accepted practice, the innovation does not, in 
and of itself, constitute research. The fact that a procedure is "experimental," in the sense of new, untested 
or different, does not automatically place it in the category of research. Radically new procedures of this  



description should, however, be made the object of formal research at an early stage in order to determine 
whether they are safe and effective. Thus, it is the responsibility of medical practice committees, for 
example, to insist that a major innovation be incorporated into a formal research project [3]. 

Research and practice may be carried on together when research is designed to evaluate the safety and 
efficacy of a therapy. This need not cause any confusion regarding whether or not the activity requires 
review; the general rule is that if there is any element of research in an activity, that activity should undergo 
review for the protection of human subjects. 

 

Part B: Basic Ethical Principles 
B. Basic Ethical Principles 

The expression "basic ethical principles" refers to those general judgments that serve as a basic justification 
for the many particular ethical prescriptions and evaluations of human actions. Three basic principles, 
among those generally accepted in our cultural tradition, are particularly relevant to the ethics of research 
involving human subjects: the principles of respect of persons, beneficence and justice. 

1. Respect for Persons. — Respect for persons incorporates at least two ethical convictions: first, 
that individuals should be treated as autonomous agents, and second, that persons with diminished 
autonomy are entitled to protection. The principle of respect for persons thus divides into two separate moral 
requirements: the requirement to acknowledge autonomy and the requirement to protect those with 
diminished autonomy. 

An autonomous person is an individual capable of deliberation about personal goals and of acting under the 
direction of such deliberation. To respect autonomy is to give weight to autonomous persons' considered 
opinions and choices while refraining from obstructing their actions unless they are clearly detrimental to 
others. To show lack of respect for an autonomous agent is to repudiate that person's considered 
judgments, to deny an individual the freedom to act on those considered judgments, or to withhold 
information necessary to make a considered judgment, when there are no compelling reasons to do so. 

However, not every human being is capable of self-determination. The capacity for self-determination 
matures during an individual's life, and some individuals lose this capacity wholly or in part because of 
illness, mental disability, or circumstances that severely restrict liberty. Respect for the immature and the 
incapacitated may require protecting them as they mature or while they are incapacitated. 

Some persons are in need of extensive protection, even to the point of excluding them from activities which 
may harm them; other persons require little protection beyond making sure they undertake activities freely 
and with awareness of possible adverse consequence. The extent of protection afforded should depend 
upon the risk of harm and the likelihood of benefit. The judgment that any individual lacks autonomy should 
be periodically reevaluated and will vary in different situations. 

In most cases of research involving human subjects, respect for persons demands that subjects enter into 
the research voluntarily and with adequate information. In some situations, however, application of the 
principle is not obvious. The involvement of prisoners as subjects of research provides an instructive 
example. On the one hand, it would seem that the principle of respect for persons requires that prisoners not 
be deprived of the opportunity to volunteer for research. On the other hand, under prison conditions they 
may be subtly coerced or unduly influenced to engage in research activities for which they would not 
otherwise volunteer. Respect for persons would then dictate that prisoners be protected. Whether to allow 



prisoners to "volunteer" or to "protect" them presents a dilemma. Respecting persons, in most hard cases, is 
often a matter of balancing competing claims urged by the principle of respect itself. 

2. Beneficence. — Persons are treated in an ethical manner not only by respecting their decisions and 
protecting them from harm, but also by making efforts to secure their well-being. Such treatment falls under 
the principle of beneficence. The term "beneficence" is often understood to cover acts of kindness or charity 
that go beyond strict obligation. In this document, beneficence is understood in a stronger sense, as an 
obligation. Two general rules have been formulated as complementary expressions of beneficent actions in 
this sense: (1) do not harm and (2) maximize possible benefits and minimize possible harms. 

The Hippocratic maxim "do no harm" has long been a fundamental principle of medical ethics. Claude 
Bernard extended it to the realm of research, saying that one should not injure one person regardless of the 
benefits that might come to others. However, even avoiding harm requires learning what is harmful; and, in 
the process of obtaining this information, persons may be exposed to risk of harm. Further, the Hippocratic 
Oath requires physicians to benefit their patients "according to their best judgment." Learning what will in 
fact benefit may require exposing persons to risk. The problem posed by these imperatives is to decide 
when it is justifiable to seek certain benefits despite the risks involved, and when the benefits should be 
foregone because of the risks. 

The obligations of beneficence affect both individual investigators and society at large, because they extend 
both to particular research projects and to the entire enterprise of research. In the case of particular projects, 
investigators and members of their institutions are obliged to give forethought to the maximization of benefits 
and the reduction of risk that might occur from the research investigation. In the case of scientific research in 
general, members of the larger society are obliged to recognize the longer term benefits and risks that may 
result from the improvement of knowledge and from the development of novel medical, psychotherapeutic, 
and social procedures. 

The principle of beneficence often occupies a well-defined justifying role in many areas of research involving 
human subjects. An example is found in research involving children. Effective ways of treating childhood 
diseases and fostering healthy development are benefits that serve to justify research involving children -- 
even when individual research subjects are not direct beneficiaries. Research also makes it possible to 
avoid the harm that may result from the application of previously accepted routine practices that on closer 
investigation turn out to be dangerous. But the role of the principle of beneficence is not always so 
unambiguous. A difficult ethical problem remains, for example, about research that presents more than 
minimal risk without immediate prospect of direct benefit to the children involved. Some have argued that 
such research is inadmissible, while others have pointed out that this limit would rule out much research 
promising great benefit to children in the future. Here again, as with all hard cases, the different claims 
covered by the principle of beneficence may come into conflict and force difficult choices. 

3. Justice. — Who ought to receive the benefits of research and bear its burdens? This is a question of 
justice, in the sense of "fairness in distribution" or "what is deserved." An injustice occurs when some benefit 
to which a person is entitled is denied without good reason or when some burden is imposed unduly. 
Another way of conceiving the principle of justice is that equals ought to be treated equally. However, this 
statement requires explication. Who is equal and who is unequal? What considerations justify departure 
from equal distribution? Almost all commentators allow that distinctions based on experience, age, 
deprivation, competence, merit and position do sometimes constitute criteria justifying differential treatment 
for certain purposes. It is necessary, then, to explain in what respects people should be treated equally. 
There are several widely accepted formulations of just ways to distribute burdens and benefits. Each 
formulation mentions some relevant property on the basis of which burdens and benefits should be 
distributed. These formulations are (1) to each person an equal share, (2) to each person according to 
individual need, (3) to each person according to individual effort, (4) to each person according to societal 
contribution, and (5) to each person according to merit. 



Questions of justice have long been associated with social practices such as punishment, taxation and 
political representation. Until recently these questions have not generally been associated with scientific 
research. However, they are foreshadowed even in the earliest reflections on the ethics of research 
involving human subjects. For example, during the 19th and early 20th centuries the burdens of serving as 
research subjects fell largely upon poor ward patients, while the benefits of improved medical care flowed 
primarily to private patients. Subsequently, the exploitation of unwilling prisoners as research subjects in 
Nazi concentration camps was condemned as a particularly flagrant injustice. In this country, in the 1940's, 
the Tuskegee syphilis study used disadvantaged, rural black men to study the untreated course of a disease 
that is by no means confined to that population. These subjects were deprived of demonstrably effective 
treatment in order not to interrupt the project, long after such treatment became generally available. 

Against this historical background, it can be seen how conceptions of justice are relevant to research 
involving human subjects. For example, the selection of research subjects needs to be scrutinized in order 
to determine whether some classes (e.g., welfare patients, particular racial and ethnic minorities, or persons 
confined to institutions) are being systematically selected simply because of their easy availability, their 
compromised position, or their manipulability, rather than for reasons directly related to the problem being 
studied. Finally, whenever research supported by public funds leads to the development of therapeutic 
devices and procedures, justice demands both that these not provide advantages only to those who can 
afford them and that such research should not unduly involve persons from groups unlikely to be among the 
beneficiaries of subsequent applications of the research. 

 

Part C: Applications 
C. Applications 

Applications of the general principles to the conduct of research leads to consideration of the following 
requirements: informed consent, risk/benefit assessment, and the selection of subjects of research. 

1. Informed Consent. — Respect for persons requires that subjects, to the degree that they are 
capable, be given the opportunity to choose what shall or shall not happen to them. This opportunity is 
provided when adequate standards for informed consent are satisfied. 

While the importance of informed consent is unquestioned, controversy prevails over the nature and 
possibility of an informed consent. Nonetheless, there is widespread agreement that the consent process 
can be analyzed as containing three elements: information, comprehension and voluntariness. 

Information. Most codes of research establish specific items for disclosure intended to assure that subjects 
are given sufficient information. These items generally include: the research procedure, their purposes, risks 
and anticipated benefits, alternative procedures (where therapy is involved), and a statement offering the 
subject the opportunity to ask questions and to withdraw at any time from the research. Additional items 
have been proposed, including how subjects are selected, the person responsible for the research, etc. 

However, a simple listing of items does not answer the question of what the standard should be for judging 
how much and what sort of information should be provided. One standard frequently invoked in medical 
practice, namely the information commonly provided by practitioners in the field or in the locale, is 
inadequate since research takes place precisely when a common understanding does not exist. Another 
standard, currently popular in malpractice law, requires the practitioner to reveal the information that 
reasonable persons would wish to know in order to make a decision regarding their care. This, too, seems 
insufficient since the research subject, being in essence a volunteer, may wish to know considerably more 
about risks gratuitously undertaken than do patients who deliver themselves into the hand of a clinician for 



needed care. It may be that a standard of "the reasonable volunteer" should be proposed: the extent and 
nature of information should be such that persons, knowing that the procedure is neither necessary for their 
care nor perhaps fully understood, can decide whether they wish to participate in the furthering of 
knowledge. Even when some direct benefit to them is anticipated, the subjects should understand clearly the 
range of risk and the voluntary nature of participation. 

A special problem of consent arises where informing subjects of some pertinent aspect of the research is 
likely to impair the validity of the research. In many cases, it is sufficient to indicate to subjects that they are 
being invited to participate in research of which some features will not be revealed until the research is 
concluded. In all cases of research involving incomplete disclosure, such research is justified only if it is 
clear that (1) incomplete disclosure is truly necessary to accomplish the goals of the research, (2) there are 
no undisclosed risks to subjects that are more than minimal, and (3) there is an adequate plan for debriefing 
subjects, when appropriate, and for dissemination of research results to them. Information about risks 
should never be withheld for the purpose of eliciting the cooperation of subjects, and truthful answers should 
always be given to direct questions about the research. Care should be taken to distinguish cases in which 
disclosure would destroy or invalidate the research from cases in which disclosure would simply 
inconvenience the investigator. 

Comprehension. The manner and context in which information is conveyed is as important as the 
information itself. For example, presenting information in a disorganized and rapid fashion, allowing too little 
time for consideration or curtailing opportunities for questioning, all may adversely affect a subject's ability to 
make an informed choice. 

Because the subject's ability to understand is a function of intelligence, rationality, maturity and language, it 
is necessary to adapt the presentation of the information to the subject's capacities. Investigators are 
responsible for ascertaining that the subject has comprehended the information. While there is always an 
obligation to ascertain that the information about risk to subjects is complete and adequately comprehended, 
when the risks are more serious, that obligation increases. On occasion, it may be suitable to give some oral 
or written tests of comprehension. 

Special provision may need to be made when comprehension is severely limited -- for example, by 
conditions of immaturity or mental disability. Each class of subjects that one might consider as incompetent 
(e.g., infants and young children, mentally disable patients, the terminally ill and the comatose) should be 
considered on its own terms. Even for these persons, however, respect requires giving them the opportunity 
to choose to the extent they are able, whether or not to participate in research. The objections of these 
subjects to involvement should be honored, unless the research entails providing them a therapy 
unavailable elsewhere. Respect for persons also requires seeking the permission of other parties in order to 
protect the subjects from harm. Such persons are thus respected both by acknowledging their own wishes 
and by the use of third parties to protect them from harm. 

The third parties chosen should be those who are most likely to understand the incompetent subject's 
situation and to act in that person's best interest. The person authorized to act on behalf of the subject 
should be given an opportunity to observe the research as it proceeds in order to be able to withdraw the 
subject from the research, if such action appears in the subject's best interest. 

Voluntariness. An agreement to participate in research constitutes a valid consent only if voluntarily given. 
This element of informed consent requires conditions free of coercion and undue influence. Coercion occurs 
when an overt threat of harm is intentionally presented by one person to another in order to obtain 
compliance. Undue influence, by contrast, occurs through an offer of an excessive, unwarranted, 
inappropriate or improper reward or other overture in order to obtain compliance. Also, inducements that 
would ordinarily be acceptable may become undue influences if the subject is especially vulnerable. 

Unjustifiable pressures usually occur when persons in positions of authority or commanding influence -- 
especially where possible sanctions are involved -- urge a course of action for a subject. A continuum of 



such influencing factors exists, however, and it is impossible to state precisely where justifiable persuasion 
ends and undue influence begins. But undue influence would include actions such as manipulating a 
person's choice through the controlling influence of a close relative and threatening to withdraw health 
services to which an individual would otherwise be entitled. 

2. Assessment of Risks and Benefits. — The assessment of risks and benefits requires a 
careful arrayal of relevant data, including, in some cases, alternative ways of obtaining the benefits sought in 
the research. Thus, the assessment presents both an opportunity and a responsibility to gather systematic 
and comprehensive information about proposed research. For the investigator, it is a means to examine 
whether the proposed research is properly designed. For a review committee, it is a method for determining 
whether the risks that will be presented to subjects are justified. For prospective subjects, the assessment 
will assist the determination whether or not to participate. 

The Nature and Scope of Risks and Benefits. The requirement that research be justified on the basis of a 
favorable risk/benefit assessment bears a close relation to the principle of beneficence, just as the moral 
requirement that informed consent be obtained is derived primarily from the principle of respect for persons. 
The term "risk" refers to a possibility that harm may occur. However, when expressions such as "small risk" 
or "high risk" are used, they usually refer (often ambiguously) both to the chance (probability) of 
experiencing a harm and the severity (magnitude) of the envisioned harm. 

The term "benefit" is used in the research context to refer to something of positive value related to health or 
welfare. Unlike, "risk," "benefit" is not a term that expresses probabilities. Risk is properly contrasted to 
probability of benefits, and benefits are properly contrasted with harms rather than risks of harm. 
Accordingly, so-called risk/benefit assessments are concerned with the probabilities and magnitudes of 
possible harm and anticipated benefits. Many kinds of possible harms and benefits need to be taken into 
account. There are, for example, risks of psychological harm, physical harm, legal harm, social harm and 
economic harm and the corresponding benefits. While the most likely types of harms to research subjects 
are those of psychological or physical pain or injury, other possible kinds should not be overlooked. 

Risks and benefits of research may affect the individual subjects, the families of the individual subjects, and 
society at large (or special groups of subjects in society). Previous codes and Federal regulations have 
required that risks to subjects be outweighed by the sum of both the anticipated benefit to the subject, if any, 
and the anticipated benefit to society in the form of knowledge to be gained from the research. In balancing 
these different elements, the risks and benefits affecting the immediate research subject will normally carry 
special weight. On the other hand, interests other than those of the subject may on some occasions be 
sufficient by themselves to justify the risks involved in the research, so long as the subjects' rights have been 
protected. Beneficence thus requires that we protect against risk of harm to subjects and also that we be 
concerned about the loss of the substantial benefits that might be gained from research. 

The Systematic Assessment of Risks and Benefits. It is commonly said that benefits and risks must be 
"balanced" and shown to be "in a favorable ratio." The metaphorical character of these terms draws 
attention to the difficulty of making precise judgments. Only on rare occasions will quantitative techniques be 
available for the scrutiny of research protocols. However, the idea of systematic, nonarbitrary analysis of 
risks and benefits should be emulated insofar as possible. This ideal requires those making decisions about 
the justifiability of research to be thorough in the accumulation and assessment of information about all 
aspects of the research, and to consider alternatives systematically. This procedure renders the assessment 
of research more rigorous and precise, while making communication between review board members and 
investigators less subject to misinterpretation, misinformation and conflicting judgments. Thus, there should 
first be a determination of the validity of the presuppositions of the research; then the nature, probability and 
magnitude of risk should be distinguished with as much clarity as possible. The method of ascertaining risks 
should be explicit, especially where there is no alternative to the use of such vague categories as small or 
slight risk. It should also be determined whether an investigator's estimates of the probability of harm or 
benefits are reasonable, as judged by known facts or other available studies. 



Finally, assessment of the justifiability of research should reflect at least the following 
considerations: (i)Brutal or inhumane treatment of human subjects is never morally justified. (ii) Risks should 
be reduced to those necessary to achieve the research objective. It should be determined whether it is in 
fact necessary to use human subjects at all. Risk can perhaps never be entirely eliminated, but it can often 
be reduced by careful attention to alternative procedures. (iii) When research involves significant risk of 
serious impairment, review committees should be extraordinarily insistent on the justification of the risk 
(looking usually to the likelihood of benefit to the subject -- or, in some rare cases, to the manifest 
voluntariness of the participation). (iv) When vulnerable populations are involved in research, the 
appropriateness of involving them should itself be demonstrated. A number of variables go into such 
judgments, including the nature and degree of risk, the condition of the particular population involved, and 
the nature and level of the anticipated benefits. (v) Relevant risks and benefits must be thoroughly arrayed 
in documents and procedures used in the informed consent process. 

3. Selection of Subjects. — Just as the principle of respect for persons finds expression in the 
requirements for consent, and the principle of beneficence in risk/benefit assessment, the principle of justice 
gives rise to moral requirements that there be fair procedures and outcomes in the selection of research 
subjects. 

Justice is relevant to the selection of subjects of research at two levels: the social and the individual. 
Individual justice in the selection of subjects would require that researchers exhibit fairness: thus, they 
should not offer potentially beneficial research only to some patients who are in their favor or select only 
"undesirable" persons for risky research. Social justice requires that distinction be drawn between classes of 
subjects that ought, and ought not, to participate in any particular kind of research, based on the ability of 
members of that class to bear burdens and on the appropriateness of placing further burdens on already 
burdened persons. Thus, it can be considered a matter of social justice that there is an order of preference 
in the selection of classes of subjects (e.g., adults before children) and that some classes of potential 
subjects (e.g., the institutionalized mentally infirm or prisoners) may be involved as research subjects, if at 
all, only on certain conditions. 

Injustice may appear in the selection of subjects, even if individual subjects are selected fairly by 
investigators and treated fairly in the course of research. Thus injustice arises from social, racial, sexual and 
cultural biases institutionalized in society. Thus, even if individual researchers are treating their research 
subjects fairly, and even if IRBs are taking care to assure that subjects are selected fairly within a particular 
institution, unjust social patterns may nevertheless appear in the overall distribution of the burdens and 
benefits of research. Although individual institutions or investigators may not be able to resolve a problem 
that is pervasive in their social setting, they can consider distributive justice in selecting research subjects. 

Some populations, especially institutionalized ones, are already burdened in many ways by their infirmities 
and environments. When research is proposed that involves risks and does not include a therapeutic 
component, other less burdened classes of persons should be called upon first to accept these risks of 
research, except where the research is directly related to the specific conditions of the class involved. Also, 
even though public funds for research may often flow in the same directions as public funds for health care, 
it seems unfair that populations dependent on public health care constitute a pool of preferred research 
subjects if more advantaged populations are likely to be the recipients of the benefits. 

One special instance of injustice results from the involvement of vulnerable subjects. Certain groups, such 
as racial minorities, the economically disadvantaged, the very sick, and the institutionalized may continually 
be sought as research subjects, owing to their ready availability in settings where research is conducted. 
Given their dependent status and their frequently compromised capacity for free consent, they should be 
protected against the danger of being involved in research solely for administrative convenience, or because 
they are easy to manipulate as a result of their illness or socioeconomic condition. 

 



 

[1] Since 1945, various codes for the proper and responsible conduct of human experimentation in medical research have been 
adopted by different organizations. The best known of these codes are the Nuremberg Code of 1947, the Helsinki Declaration of 
1964 (revised in 1975), and the 1971 Guidelines (codified into Federal Regulations in 1974) issued by the U.S. Department of 
Health, Education, and Welfare Codes for the conduct of social and behavioral research have also been adopted, the best known 
being that of the American Psychological Association, published in 1973. 

[2] Although practice usually involves interventions designed solely to enhance the well-being of a particular individual, interventions 
are sometimes applied to one individual for the enhancement of the well-being of another (e.g., blood donation, skin grafts, organ 
transplants) or an intervention may have the dual purpose of enhancing the well-being of a particular individual, and, at the same 
time, providing some benefit to others (e.g., vaccination, which protects both the person who is vaccinated and society generally). 
The fact that some forms of practice have elements other than immediate benefit to the individual receiving an intervention, 
however, should not confuse the general distinction between research and practice. Even when a procedure applied in practice may 
benefit some other person, it remains an intervention designed to enhance the well-being of a particular individual or groups of 
individuals; thus, it is practice and need not be reviewed as research. 

[3] Because the problems related to social experimentation may differ substantially from those of biomedical and behavioral 
research, the Commission specifically declines to make any policy determination regarding such research at this time. Rather, the 
Commission believes that the problem ought to be addressed by one of its successor bodies. 
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Executive Summary
This report proposes a framework for ethical guidelines 
for computer and information security research, based 
on the principles set forth in the 1979 Belmont Report, 
a seminal guide for ethical research in the biomedical 
and behavioral sciences. Despite its age, the Belmont 
Report’s insightful abstraction renders it a valuable cor-
nerstone for other domains. We describe how the three 
principles in the Belmont report can be usefully applied 
in fields related to research about or involving informa-
tion and communication technology. ICT research raises 
new challenges resulting from interactions between 
humans and communications technologies. In particular, 
today’s ICT research contexts contend with ubiquitously 
connected network environments, overlaid with varied, 
often discordant legal regimes and social norms. We il-
lustrate the application of these principles to information 
systems security research – a critical infrastructure pri-
ority with broad impact and demonstrated potential for 
widespread harm – although we expect the proposed 
framework to be relevant to other disciplines, including 
those targeted by the Belmont report but now operating 
in more complex and interconnected contexts. 

We first outline the scope and motivation for this docu-
ment, including a historical summary of the conceptual 
framework for traditional human subjects research, and 
the landscape of ICT research stakeholders. We review 
four core ethical principles, the three from the Belmont 
Report (Respect for Persons, Beneficence, and Justice) 
and an additional principle Respect for Law and Public 
Interest. We propose standard methods to operational-
ize these principles in the domain of research involving 
information and communication technology: identifica-
tion of stakeholders and informed consent; balancing 
risks and benefits; fairness and equity; and compliance, 
transparency and accountability, respectively. We also 
describe how these principles and applications can be 
supported through assistive external oversight by ethical 
review boards, and internal self-evaluation tools such  
as an Ethical Impact Assessment. 

The intent of this report is to help clarify how the  
characteristics of ICT raise new potential for harm   
and to show how a reinterpretation of ethical principles 
and their application can lay the groundwork for   
ethically defensible research. 
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A Introduction  – Focus and Motivations

This report attempts to summarize a set of basic princi-

ples to guide the identification and resolution of ethical 

problems arising in research of or involving information 

and communication technology (ICT).1 ICT is a general 

umbrella term that encompasses networks, hardware 

and software technologies that involve information 

communications pertaining to or impacting individuals 

and organizations. ICT has increasingly become  

integrated into our individual and collective daily   

lives, mediating our behaviors and communications  

and presenting new tensions that challenge   

the applications of these guiding principles. 

ICT research (ICTR) involves the collection, use and 

disclosure of information and/or interaction with this 

ubiquitously connected network context which is 

overlaid with varied, often discordant legal regimes and 

social norms. The challenge of evaluating the ethical 

issues in ICTR stems in large part from the attributes 

of ICT: scale, speed, tight coupling, decentralization 

and wide distribution, and opacity. This environment 

complicates achieving ethically defensible research for 

several reasons. It results in interactions with humans 

that are often indirect, stemming from an increase in 

either logical or physical “distance” between researcher 

and humans to be protected over research involving 

direct intervention. The relative ease in engaging multi-

tudes of distributed human subjects (or data about them) 

through intermediating systems speeds the potential for 

harms to arise, and extends the range of stakeholders 

who may be impacted. Also, legal restrictions and 

requirements have expanded considerably since the 

1980s, and ICTR is unquestionably subject to a variety 

of laws and regulations that address data collection and 

use. While it is true that these individual complications 

are shared by traditional biomedical and behavioral 

research, this report seeks to manage the tension 

resulting from the simultaneous confluence of these 

complicating factors that occur with regularity in ICTR. 

There is a need to interpret and extend the traditional 

ethical framework to enable ICT researchers and 

oversight entities to appropriately and consistently 

assess and render ethically defensible research.2 Such 

a framework should also support current and potential 

institutional mechanisms that are well served to imple-

ment it, such as a research ethics board (REB). We build 

on the foundation set by the Belmont Report, which 

articulates three fundamental ethical principles and 

guiding applications of these principles for protecting 

human subjects of biomedical and behavioral research: 

respecting persons; balancing potential benefits and 

harms; and equitably apportioning benefits and burdens 

across research subjects and society.3 The guidelines 

in this report are applicable to research that has the 

potential to harm humans, regardless of whether 

those humans are the direct research subjects or are 

indirectly at risk of harm from interactions with ICT. This 

report explains how the traditional framework fits within 

the context of the computer science sub-discipline of 

information security research. Specifically, this domain 

addresses ICT vulnerabilities, digital crime, and informa-

tion assurance for critical infrastructure systems. These 

are areas where harms are not well understood yet are 

potentially significant in scope and impact. The frame-

work proposed herein is germane to other disciplines 

that involve the use of ICT, including those targeted by 

the Belmont Report that now operate in ICT contexts. 

A.1  Target Audience for this Report

This report offers guidance primarily for ICT researchers 

(including academic, corporate, and independent 

researchers), professional societies, publication review 

committees, and funding agencies. Secondarily, this 

report aims to assist those who administer and apply 

these principles, such as oversight authorities (e.g., 

REBs), policy makers, attorneys, and others who  

shape and implement human subject protection  

policies and procedures. 

This report does not recommend particular enforcement 

mechanisms. To the extent that enforcement of ethical 

practices is inconsistent across and within academic and 

non-academic ICTR, we intend this report to improve 

consistency in ethical analyses and self-regulation 

for both individuals and organizations striving toward 

ethically  defensible research. 

A.2   Historical Context

Despite a long history of well-publicized abuses, it took 

over a decade for the ethical standards prescribed 

in the Belmont Report to first be defined in the Code 

of Federal Regulations (CFR). Language from 45 CFR 

46, which covers biomedical and behavioral research 
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funded by the Department of Health and Human 

Services (HHS), was later adopted by all executive 

branch departments in what is known as the Common 

Rule.4 It ushered in a government-wide requirement for 

REB oversight of research protocols to protect human 

research subjects. Prior to this point, there was no 

regulated oversight mechanism and biomedical and 

behavioral researchers relied on subjective, ad hoc,  

and inconsistent ethical compasses to guide their  

decision making. 

In parallel during the 1970s, a U.S. Defense Advanced 

Research Projects Agency (DARPA) project was design-

ing and implementing a communications architecture 

to support cooperative time-sharing of computational 

resources across large government-funded laboratories. 

Although this network architecture would eventually 

evolve into the global Internet, the community at the 

time was small, trusted, non-commercial, and re-

search-oriented. This burgeoning Internet was not under 

constant attack from around the world. It did not provide 

access to numerous databases containing millions of 

personally-identifying records. It was not an integral part 

of providing and maintaining critical services or commu-

nications. A tiny number of people accessed the Internet 

during those early years compared to the billions of 

users who engage in this environment on a regular and 

almost unconscious basis today. 

Early ICT research evolved without significant concern 

for human subjects, leading to instances where ethical 

considerations were either absent or misapplied be-

cause researchers failed to understand their relevance, 

or lacked any standards for assessment, accountability, 

or oversight. Cases include interactive studies of ma-

licious software and platforms, engagement in active 

counterattack measures, exploitation and disclosure of 

systems vulnerabilities, and collection and sharing of 

sensitive information. The demonstrated potential for 

harm in ICTR illustrates the need to re-conceptualize 

the traditional human subject protection paradigm that 

underpins ethical oversight in other fields. 

ICTR challenges us to re-conceptualize the traditional 

human subject protection paradigm that underpins 

ethical oversight. The foremost misunderstandings and 

disagreements about the applicability and scope of this 

protection in ICTR stem largely from how the Common 

Rule was written and has historically been interpreted. 

Specifically, human subject means, “a living individual 

about whom an investigator (whether professional or 

student) conducting research obtains (1) Data through 

intervention or interaction with the individual, or (2) 

Identifiable private information” (45 CFR 46.102(f)). Key 

terms here are “intervention” and “private information.” 

Intervention does not just mean physical procedures, 

but also “manipulations of the [subject’s] environment 

that are performed for research purposes,” which could 

include manipulation of their computing devices, or 

automated appliances in the home. Private information 

is not just medical records, but “information about be-

havior that occurs in a context in which an individual can 

reasonably expect that no observation or recording is 

taking place, and information which has been provided 

for specific purposes by an individual and which the indi-

vidual can reasonably expect will not be made public.” 

This could include electronic communications, or data 

captured by malicious actors recording online financial 

transactions in order to commit fraud. Taken as a whole, 

the intent of the Common Rule is to protect persons 

who might be harmed from involvement in research, 

not simply with whether humans are participating in re-

search. Confusion starts because of the wording above 

and linkage of the terms human and research subject, 

and continues with the determination of risk and how to 

protect humans within a research study. 

An evolved paradigm for applying ethical principles 

to protect humans who may be impacted by research 

considers activities having human-harming potential 

rather than simply looking at whether the research 

does or does not involve human subjects. Examples of 

potentially human-harming ICT artifacts that researchers 

may interact with include avatars in online virtual worlds, 

malware controlling compromised machines, embed-

ded medical devices controlling biological functions,  

or process controllers for critical infrastructure. The 

significant changes brought about by ICT since the 

commencement of formal regulated research necessi-

tates a reconceptualization of the application of ethical 

principles for research involving ICT. 

B Restatement of Belmont Principles    

in the ICTR Context

In framing the principles and applications for evaluating 

and applying ethics in ICTR the Menlo Report explicitly 

adopts the Belmont principles and acknowledges the 

Common Rule regime which implemented that model. 

As such, this Report deliberately does not explore 
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alternate ethical  paradigms, and while not discounting 

that there may be novel implementations of the Belmont 

Report principles and applications that should be  

considered it makes no definitive recommendations in 

that regard. However, this Report does highlight areas 

within the Common Rule that are more consequential  

or problematic for ICTR. 

The first three rows of Table 1 summarize the three 

core principles and their application as outlined in the 

Belmont Report.5 We offer an additional principle to 

guide ethical considerations in ICTR research, listed in 

the fourth line of Table 1 We call this principle Respect 

for Law and Public Interest because it addresses the 

expansive and evolving, yet often varied and discor-

dant, legal controls relevant to communication privacy 

and information assurance (i.e., the confidentiality, 

availability, and integrity of information and information 

systems). While respect for the law and public interest is 

implicit in Belmont’s application of Beneficence, several 

challenging factors suggest these issues merit explicit 

consideration in the ICTR context: the myriad laws that 

may be germane to any given ICTR; conflicts and ambi-

guities among laws in different geo-political jurisdictions; 

the difficulty in identifying stakeholders, a necessary 

prerequisite to enforcing legal obligations; and possible  

incongruence between law and public interest. 

C Application of the Principles

The challenges of ICTR risk assessment derive from 

three factors: the researcher-subject relationships, which 

tend to be disconnected, dispersed, and intermediated 

by technology; the proliferation of data sources and 

analytics, which can heighten risk incalculably; and the 

inherent overlap between research and operations. 

In order to properly apply any of the principles listed 

above in the complex setting of ICT research, it is first 

necessary to perform a systematic and comprehensive  

stakeholder analysis. 

Principle  Application 

Respect for Persons  Participation as a research subject is voluntary, and follows from informed consent;  

 Treat individuals as autonomous agents and respect their right to determine their 

 own best interests; Respect individuals who are not targets of research yet are 

 impacted; Individuals with diminished autonomy, who are incapable of deciding  

 for themselves, are entitled to protection. 

Beneficence  Do not harm; Maximize probable benefits and minimize probable harms; 

 Systematically assess both risk of harm and benefit. 

Justice  Each person deserves equal consideration in how to be treated, and the benefits 

 of research should be fairly distributed according to individual need, effort, 

 societal contribution, and merit; Selection of subjects should be fair, and burdens 

 should be allocated equitably across impacted subjects. 

Respect for Law  Engage in legal due diligence; Be transparent in methods and results; 
and Public Interest Be accountable for actions. 

Table 1:  Proposed guidelines for ethical assessment of ICT Research.
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C.1 Stakeholder Perspectives     

 and Considerations

Stakeholder identification includes consideration of sev-

eral factors: the degree to which information involved 

in the research identifies individuals (including their 

digital identities), groups and organizations and what 

behaviors, communications, or relationships are associ-

ated with such identification. Harms related to exposing 

the identity of research subjects engaging in sensitive 

behaviors, communications, or relationships, which 

they they assume to be private, can extend beyond 

the direct research subject to family, friends or other 

community relations. While this is also true of some 

research where the subject is the primary party at risk, 

in ICTR these harms may often be broader because ICT 

can amplify both the disclosure as well as the number 

of stakeholders impacted. 

Further, ICTR often involves stakeholders that are 

non-research entities who rely on information and 

systems that are involved in the research and who may 

be harmed by its unavailability or corruption. Groups 

or organizations (e.g., companies or networks) may 

warrant different consideration from that of individuals, 

especially when applying the principles of Beneficence 

and Justice. Research involving ICT can be complex 

when the risks and benefits associated with multiple 

stakeholders require identification and balancing.  

ICT Researchers In commercial, academic, and  

government sectors, 

ICT researchers have a vested interest in pursuing, 

sharing, and applying empirically grounded scientific 

knowledge. Research in economics, network science, 

security, and social behavior may inform operations, 

policies, and business models. 

Human Subjects, Non-Subjects, and ICT Users 

Traditional biomedical and behavioral research requires 

protection of natural persons and certain data that 

identifies them. In ICTR, the target of research may be 

an information system or associated data, which com-

plicates the assessment of potential harm to users of 

that system or data. Primary considerations include the 

ability to interact with ICT without suffering harms such 

as disruption of access, loss of privacy, or unreasonable 

constraints on protected speech or activities. Victims  

of computer crimes are potential human non-subjects  

of research. 

Malicious Actors   A subset of ICTR involves criminal 

activity or potential exploitation of vulnerabilities in 

the design or implementation of ICT. The disclosures 

of some types of research results have a greater 

potential for misuse and thus greater value to malicious 

actors. This can provide a blueprint for widespread and 

wide-ranging harm by disclosing system vulnerability 

details of legitimate or malicious applications (the former 

by providing exploitation knowledge and the latter by 

illuminating countermeasures). Malicious actors avail 

themselves of published research results for nefarious 

purposes, which can result in harm that outweighs 

the intended research benefits. Consideration of this 

stakeholder’s interest, therefore, involves understanding 

and avoiding or minimizing these potentially harmful 

impacts. 

Network/Platform Owners and Providers   Network 

owners or providers are typically commercial entities 

who are vested in safeguarding their physical and 

intellectual property, pursuing innovation and wealth, 

and building business and customer relationships. They 

are concerned about obligations associated with such 

representation. As intermediaries between a research 

and end users, they may be in a position of authority to 

serve as proxies for consent on behalf of their customers 

when it is otherwise impracticable for the researcher to 

individually obtain informed consent from  end users. 

Government: Law Enforcement   Public law en-

forcement is mandated to advance criminal justice 

by protecting individuals and fostering public safety. 

Law enforcement also has an interest in research that 

improves its strategic, tactical, or operational efficacy in 

preventing, investigating, and responding to illegal ac-

tivities. Examples include countering new and complex 

criminal ecosystems and instruments of crime such   

as botnets. 

Government: Non-Law Enforcement   Local, state, and 

federal government agencies are responsible for provid-

ing public services, protecting the rights of their citizens, 

and establishing law and policy governing social con-

duct. Research is an important vehicle through which the 

government can promote social good and innovation. 

For example, cybercrime research may enhance under-

standing of infrastructure risks, online social networks, or 
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economic markets of criminal enterprises; influence the 

deployment of commercial countermeasure technolo-

gies; and inform the interpretation or reform of relevant 

laws and policies. Acknowledging the different scope of 

their mission, the military  and Intelligence Community 

(IC) is another subset of this stakeholder group. 

Society   ICTR implicates the collective rights and 

interests of owners and users of networks and data 

to know, influence, and choose how and when to 

engage with information communications networks and 

systems. Society benefits from knowledge that improves 

policies, laws and the administration of justice, and 

the well-being of the lives of its citizens. Society may 

likewise be harmed through actions that negatively 

impact information systems infrastructures, or through 

the collection, use, or disclosure of information that may 

assist criminals as much if not more than ICT system 

developers and operators. 

C.2    Respect for Persons

In the Belmont Report, the principle of Respect for 

Persons reflects two tenets: individuals should be treat-

ed as autonomous agents, and persons with diminished 

autonomy are entitled to protection. This principle has 

been applied by involving as research subjects only 

those with sufficient understanding or awareness to pro-

vide informed consent, or by obtaining informed consent 

from legally authorized representatives (e.g., parents of 

minors, relatives of unconscious patients, or guardians 

of those incapable of deciding for themselves). In the 

ICTR context, the principle of Respect for Persons 

includes consideration of the computer systems and  

data that directly interface, integrate with, or otherwise 

impact persons who are typically not research  

subjects themselves. 

C.2.1  Informed Consent

Informed consent is a process during which the re-

searcher accurately describes the project and its risks to 

subjects and they accept the risks and agree to partici-

pate or decline. Subjects must be free to withdraw from 

research participation without negative consequences. 

Researchers obtain informed consent when research 

activity has the potential to harm individuals with whom 

a researcher interacts or about whom the researcher 

obtains identifiable private information. Research involv-

ing ICT also raises the potential for harms to secondary 

stakeholders who, while not the direct subjects of 

research, may have the right to autonomy. 

Researchers should inform subjects that they may not 

benefit from the research, although society may benefit 

in the future. Researchers should be mindful that lever-

aging intended benefits to coerce or entice consent 

from subjects fails the voluntary participation element 

of informed consent. Examples include suggesting that 

research participants will receive improved or enhanced 

services, or that services will be degraded or withheld 

if a subject declines participation in or withdraws from 

a study. Informed consent for one research purpose or 

use should not be considered valid for other research 

purposes. When an individual is identified with a group 

or organization, individual consent does not imply con-

sent from other members of the group. Finally, informed 

consent for one research purpose or use should not  

be considered valid for different research purposes. 

The process of informed consent is intended to respect 

the autonomy of research subjects. The process 

involves three components: notice, comprehension, 

and voluntariness. Notice is typically achieved through 

a clearly written consent document that details the 

intended benefits of research activities and the risks 

to research subjects. The language level is kept to 8th 

grade or lower to improve the ability of subjects to com-

prehend the benefits and risks. The consent document 

stresses that participation is voluntary and that subjects  

are free to withdraw from research participation without 

negative consequences. 

Research involving ICT also raises the potential for 

harms to secondary stakeholders who, while not the 

direct subjects of research, may also have the right to 

autonomy. When considering informed consent, we 

suggest researchers and REBs carefully explore the 

complex interconnected relationships between users 

and the myriad of organizations which provide ICT 

services. Decisions about mechanisms for obtaining 

informed consent, or requesting waivers of informed 

consent, may be impacted by whether entities have  

obtained valid authorization from their users – via  

explicit agreements or contractual terms of service –  
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for participation in research activities. Such authori-

zation, whether supportive or restrictive of research,  

should be appropriately balanced when considering 

informed consent. 

When a researcher believes that obtaining informed 

consent makes the pursuit of research objectives impos-

sible, the application process allows for researchers to 

seek waivers from an ethical review board. REBs make 

the determination of whether or not the Common Rule 

criteria of 45 CFR 46.116 and 45 CFR 46.117 allowing for 

alteration or elimination of informed consent have been 

met. These requirements ensure that: (1) The research 

involves no more than minimal risk to the subjects; (2) 

The waiver or alteration will not adversely affect the 

rights and welfare of the subjects; (3) The research could 

not practicably be carried out without the waiver or 

alteration; and (4) Whenever appropriate, the subjects 

will be provided with additional pertinent information 

after participation. 

There are justifiable reasons why it may be im-

practicable for research to be carried out without 

a waiver or alteration of the informed consent 

process. Because of the difficulty in identifying all 

individuals from whom consent should be sought 

or in practicably obtaining consent, researchers 

or REBs may frequently conclude that seeking a 

waiver of informed consent or waiver of documen-

tation of informed consent are the only options. 

For example, it may be infeasible to identify, 

or obtain consent from millions of users whose 

everyday communication generates traffic across 

a heavily aggregated backbone link in a traffic 

modeling study. Or it can be impossible to attempt 

to inform the owners of hundreds of thousands 

of compromised home computers that are being 

used as  a single instrument of criminal activity 

(i.e., a botnet) under study. The Common Rule 

criteria for a waiver of documentation of informed 

consent in minimal or no-risk situations allows for 

less formal consent than a signed consent form, 

including verbal consent from a legally authorized 

representative rather than the research subjects 

themselves. REBs may also require some form of 

notification to research subjects, even if the REB 

does not require signed consent forms. 

Some research involving retrospectively collected 

identifiable data may not be possible if consent 

must be obtained from all individuals identifiable 

in the data. In such situations, respect for persons 

is maintained by REBs instead focusing on data 

protections and/or removal of identifying informa-

tion that is not germane to research as alternative 

means of minimizing potential harm and granting 

a waiver of informed consent for the research. 

Data that has already been de-identified and can 

be approved for exemption from REB review falls 

into a a special regulatory category of “pre-exist-

ing public data.” REBs have some flexibility in how 

they define and interpret this class of data and 

some institutions maintain a list of pre-approved 

sources of such data that researchers may freely 

use. Data that is not on such pre-approved lists 

that contains fields that can identify individuals – 

even though it may be accessible to the general 

public – may not be considered “pre-existing 

public data.” Researchers should therefor consult 

with their REB to discuss whether the data they 

wish to use falls under their institution’s “pre-ex-

isting public data” exemption criteria, or whether 

they can qualify for a waiver of informed consent 

to re-use existing data in conformance with REB 

requirements. Prospective research is the more 

problematic case, where informed consent may 

be required by an REB unless it can be shown 

there is no risk what so ever. 

As a contingency of granting a waiver of informed 

consent, REBs often require that the researcher 

notify subjects post hoc of their involvement in 

research, and demonstrate respect for autonomy 

by allowing subjects to direct the destruction of 

the data collected about them. Research involving 

deception may be performed by providing mis-

leading data in the consent form, or with consent 

having been waived and no subject knowledge of 

the research activity at all. In either case, an REB 

may require debriefing in order to mitigate harm 

resulting from loss of trust in researchers by those 

subjects who were deceived. Research of criminal 

activity often involves deception or clandestine 

research activity, so requests for waivers of 

both informed consent and post hoc notification 

and debriefing may be relatively common as 

compared with research studies of non-criminal 

activity. 
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C.3	 	Beneficence

In the Belmont Report, the Beneficence principle reflects 

the concept of appropriately balancing probable harm 

and likelihood of enhanced welfare resulting from the 

research. Translating this principle to ICTR demands 

a framework for systematic identification of risks and 

benefits for a range of stakeholders, diligent analysis of 

how harms are minimized and benefits are maximized, 

preemptive planning to mitigate any realized harms, 

and implementing these evaluations into the research 

methodology. 

C.3.1			Identification	of	Potential	Benefits		 	 	

 and Harms

Similar to traditional human-centered research, ICT 

researchers should identify benefits and potential harms 

from the research for all relevant stakeholders, including 

society as a whole, based on objective, generally 

accepted facts or studies. Since communication tech-

nologies intermediate so much of our lives, designing, 

conducting and evaluating ICTR may demand attention 

to potential societal benefits and harms related to: 

systems assurance (confidentiality, availability, integrity); 

individual and organizational privacy; reputation, 

emotional well-being, or financial sensitivities; and 

infringement of legal rights (derived from constitution, 

contract, regulation, or common law). Challenges iden-

tifying harms in ICTR environments stem from the scale 

and rapidity at which risk can manifest, the difficulty of 

attributing research risks to specific individuals and/

or organizations, and our limited understanding of the 

causal dynamics between the physical and virtual 

worlds. As with all exploratory research, it can be 

challenging to articulate benefits such that subjects can 

make informed decisions. In ICTR our ability to qualita-

tively and quantitatively foresee the probable benefits  

is particularly immature. 

One helpful approach to identifying harms is to review 

the laws and regulations that apply to an ICTR activity, 

and analyze the underlying individual and public 

interests that the research might negatively impact. 

While researchers are not expected to render legal 

conclusions or have legal subject matter expertise, they 

are obligated to respect what is written in the law and 

understand the underlying societal norms those laws 

represent. However, as the development of the law and 

technology occur at a different trajectory and pace, 

relying exclusively on the law may overlook important 

harms not expressly addressed by law. Similarly, it is not 

the role of researchers to judge guilt or innocence, but 

they should consider how malicious actors might avail 

themselves of published research results for nefarious 

purposes, and assess whether that potential harm  

might outweigh the intended research benefits. 

C.3.2			Balancing	Risks	and	Benefits

A simplistic interpretation of Beneficence is the 

maximization of benefits and minimization of harms. 

Beneficence does not require that all harm be 

completely eliminated and every possible benefit be 

identified and fully realized. Rather, researchers should 

systematically assess risks and benefits across all 

stakeholders. In so doing, researchers should be mind-

ful that risks to individual subjects are weighed against 

the benefits to society, not to the benefit of individual 

researchers or research subjects themselves. Ideally, 

researcher actions are measured using the objective 

standard of a reasonable researcher, who exercises 

the knowledge, skills, attention, and judgment that 

the community requires of its members to protect their 

interests and the interests of others. As researchers gain 

a greater understanding of how to reason about and 

apply ethical principles, community norms and expec-

tations about what is reasonable will evolve. From the 

subjective perspective of the researcher, especially in 

light of evolving community standards, the elements of 

“integrity” are instructive: (1) discerning what is right and 

what is wrong, (2) acting on what you have discerned, 

even at personal cost; and (3) saying openly that you 

are acting on your understanding of right and wrong.” 6 

When ICT is involved, burdens and risks can extend 

beyond “the human subject,” making the quantification 

of potential harm more difficult than with direct inter-

vention. It can be difficult to balance risks and benefits 

with novel research whose value may be speculative 

or delayed, or whose realized harm may be perceived 

differently across stakeholders. If there are plausible 

risks, researchers bear the burden of illuminating those 

risks and their consideration of how those risks will be 

managed, and not simply rely on outside reviewers or 

REBs to identify and oversee those risks. 

In a direct intervention research scenario, balancing 

is partially addressed through the informed consent 

process. When a study involves minimal risk and a 

researcher can give valid scientific reasons for altering 

or eliminating the consent requirement, post-research 
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debriefing may be required to respect individual autono-

my. Balancing benefit and harm gets complicated when 

both deception and waiver of informed consent are 

involved, as may occur when studying social engineer-

ing using email (i.e., phishing). A researcher may seek 

to justify a waiver of the debriefing requirement under 

a relative degree of harm rationale, whereby deceived 

research subjects could suffer more harm from knowing 

researchers had deceived them than they would suffer 

from malicious actions. This in turn would be balanced 

by an REB against the knowledge developed through 

research intended to ameliorate the malicious harm. 

The process of comprehensive stakeholder analysis 

can assist both researchers and REBs to consider how 

best to balance benefit and harm in conformance with 

Common Rule waiver justification requirements (see 45 

CFR 46.116 and .117). 

While it is incumbent upon a researcher to identify 

and minimize potential harms, even with reasonable 

measures to detect and reduce them, harms may still 

occur. REBs must evaluate such risks in the context of 

what at-risk individuals actually experience in normal 

ICT usage, and in light of researchers’ pursuit of gen-

eralizable knowledge that is vital to understanding the 

problem studied. For example, a researcher studying 

live malicious software may need to run the software 

on his own platform and observe its interactions with 

the criminals controlling it. Even with multiple layers of 

protection, the malicious software under study could still 

accidentally infect other computers. The risks posed by 

these accidental infections must be considered in light 

of everyday events that users encounter – programs 

crashing, malicious software accessing and infecting 

networked computers, and electronic communications 

being exposed – and must be balanced with potential 

benefits of understanding the behavior of the malicious 

software. Ethically defensible Beneficence lies on a 

spectrum between unequivocal adherence to averting 

all risk, which can have a chilling effect on beneficial 

research, and acting without regard to risk, which can  

be harmful to individuals and society. 

C.3.3   Mitigation of Realized Harms

Some research involves greater than minimal risk, yet 

still has the potential to yield benefit to society and is 

allowed to be carried out. Despite appropriate precau-

tions and attempts to balance risks and benefits in ICTR, 

such research may cause unintended side effects that 

harm stakeholders. Data breaches are one such form of 

harm, but others may exist from disruption of information 

systems. Research of greater than minimal risk that has 

been approved by an REB must undergo continuation 

review regularly in accordance with the period set for 

the study by the specific REB, but no less than annually. 

While reporting of adverse events is part of regular 

status reports, “serious adverse events” may need to 

be reported immediately to an REB for possible actions. 

This can include the REB requiring a halt to research 

activities. For the same reasons that benefit is hard to 

calculate in ICTR, determining what could constitute a 

“serious adverse event” in the ICTR context is unclear. 

In anticipation, researchers should consider preempting 

the escalation of realized harms by notifying affected 

parties or otherwise engaging mitigation actions. To that 

end, researchers should develop mitigation procedures 

and checklists, such as a contact list of parties to notify, 

if such unintended consequences ensue. Other potential 

harms that are reasonably foreseeable may have a 

low probability of occurring, but have a high impact. 

Researchers should anticipate such worst-case scenar-

ios and make appropriate preparations to respond in a 

manner and scope that shows due diligence on the part 

of the researcher. It may be necessary and prudent to 

involve the researchers’ own institutional risk manage-

ment and oversight authorities and media relations in 

addition to the REB. 

ICTR may involve records containing sensitive data 

about individuals, evidence of criminal activity, or 

that could potentially cause disruption to millions of 

computers around the world. ICT researchers must be 

aware of these harms as not only primary risks, but also 

secondary, collateral risks (e.g., to customers of primary 

data subjects or computer owners) and be prepared 

to responsibly inform affected stakeholders. In many 

cases, it is impracticable to notify all affected individuals, 

but it may be feasible to notify service providers or other 

entities who have the authority and capability – derived 

from their relationship with the affected stakeholders – 

to mitigate harm. A mitigation strategy should admit the 

variance in capacity and/or willingness of the notified 

entity to understand and act on the notification. 

Research records that identify individuals pose a risk 

of disclosure as long as those records exist, and may 

fall under REB oversight because of the risk posed. 

Researchers should be prepared to continually protect 

these records for as long as those records exist and 

are under researchers’ control. Upon completion or 
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termination of approved research activities (allowing 

for a reasonable retention period approved by REBs in 

order to satisfy obligations of scientific reproducibility), 

the risky data should be destroyed. If records are  

maintained, the data should continue to be protected 

at the same level as was implemented during research 

under the same REB-approved mechanisms. 

C.4   Justice: Fairness and Equity

In the Belmont Report, the principle of Justice is applied 

through fairness in the selection of research subjects, 

and equitable distribution of the burdens and benefits 

of research according to individual need, effort, societal 

contribution, and merit. Fairness should guide the initial 

selection of the subjects, as well as the apportionment 

of burdens to those who will most likely benefit from the 

research. Research design and implementation should 

consider all stakeholders’ interests, although conflicting 

interests may render equal treatment impracticable. 

In the ICTR context, this principle implies that research 

should not arbitrarily target persons or groups based on 

attributes including (but not limited to): religion, political 

affiliation, sexual orientation, health, age, technical com-

petency, national origin, race, or socioeconomic status. 

Neither should ICTR target specific populations for the 

sake of convenience or expediency. 

It is important to distinguish between purposefully 

excluding groups based on prejudice or bias versus pur-

posefully including entities who are willing to cooperate 

and consent, or who are better able to understand the 

technical issues raised by the researcher. The former 

raises Justice concerns, while the latter demonstrates 

efforts to apply the principles of Respect for Persons and 

Beneficence and still conduct meaningful research. All 

researchers have an obligation to not exclude/include 

individuals or groups from participation for reasons un-

related to the research purpose. The arbitrary targeting 

of subjects in ways that are not germane to pursuing 

legitimate research questions violates this principle. 

Challenges to obtaining informed consent from users 

might motivate a researcher to work with a service 

provider who has direct contractual relationships with its 

network’s users. These may serve as legally authorized 

representatives as described in the Common Rule 

for situations of minimal risk and requests for waivers 

of documentation of consent through “short form” or 

verbal consent. Such decisions to engage entities 

who are willing and able to act as legally authorized 

representatives for obtaining consent and move forward 

with non-representative subject populations may raise 

fairness and equity concerns. Each provider with whom 

a researcher may interact will have varying levels of 

understanding and ability (or willingness) to act. If a 

researcher is required to get unanimous and uniform 

responses from all autonomous entities, it may be 

impossible to perform beneficial research. On the other 

hand, moving forward with risky research without the 

involvement, or at least awareness, of autonomous 

entities is undesirable as it may increase the potential 

for greater harm. 

From an equity standpoint, open public disclosure of 

system vulnerabilities demands that researchers con-

sider how the burdens and benefits of publicizing newly 

discovered vulnerability balance out. The burdens might 

be borne by the developers, yet actually might benefit 

malicious actors more in the short-term than developers 

or users of those systems. The calculation of benefits is 

actually  a function of time, where malicious actors may  

act faster at exploiting vulnerability information than be-

nevolent actors can act in mitigating the vulnerabilities. 

C.5  Respect for Law and Public Interest

Respect for Law and Public Interest is implicit in the 

Belmont Report’s application of Beneficence. In the 

context of ICTR, we include it as a separate principle 

with two applications – Compliance and Transparency 

and Accountability. The second application refers 

to transparency of methodologies and results, and 

accountability for actions. Transparency and account-

ability serve vital roles in many ICTR contexts where it is 

challenging or impossible to identify stakeholders (e.g., 

attribution of sources and intermediaries of information), 

to understand interactions between highly dynamic 

and globally distributed systems and technologies, 

and consequently to balance associated harms and 

benefits. A lack of transparency and accountability risks 

undermining the credibility of, trust and confidence in, 

and ultimately support for, ICT research. 

There may be a conflict between simultaneously 

satisfying ethical review requirements and applicable 

legal protections. Even if a researcher obtains a waiver 

of informed consent due to impracticability reasons, this 

may not eliminate legal risk under laws that require con-

sent or some other indication of authorization by rights 

holders in order to avoid liability. For example, informa-

tion privacy and trespass statutes prohibit researchers 
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from accessing, acquiring or disclosing communications 

or other protected information without the consent of 

the communicating parties or owner of the system. Until 

REBs can overcome limited ICT expertise on committees 

and in administrative staff positions, they may not be 

capable of recognizing that certain ICT research data 

actually presents greater than minimal risk and may 

erroneously consider it exempt from review or subject it 

to expedited review procedures that bypass full commit-

tee review. As long as there is a gap in the capacity  

of REBs to properly evaluate research proposals just 

entering the review process, researchers following the 

guidance provided in this report can help illuminate 

the risks and relevant laws so as to improve the REB 

oversight process. 

C.5.1  Compliance

Researchers should engage in due diligence to 

identify laws, regulations, contracts, and other private 

agreements that are applicable to their research, and 

should design and implement ICTR that respects these 

restrictions. While legal controls that call for compliance 

can be numerous and wide-ranging, those that should 

inform ethical assessments cluster categorically around 

computer crime and information security, privacy and 

anonymity, intellectual property, computer system 

assurance, and civil rights and liberties. More specifi-

cally, ICT research may implicate rights and obligations 

related to: identity theft; unsolicited bulk electronic 

mail; privacy in electronic and wire communications; 

notification of security breaches; copyright and other 

intellectual property infringement; data security and 

destruction; child pornography; spyware and phishing; 

fraudulent deception; financial privacy; economic espio-

nage; constitutional privacy; health information security 

and privacy; industry standards and best practices; and 

contractual privacy and acceptable use policies. 

Respect for public interest can often be addressed by 

obeying relevant laws. If applicable laws conflict with 

each other or contravene the public interest, research-

ers should have ethically defensible justification and be 

prepared to accept responsibility for their actions and 

consequences. 

C.5.2  Transparency and Accountability

Transparency is a mechanism to assess and implement 

accountability, which itself is necessary to ensure that 

researchers behave responsibly. These applications in-

teract to ultimately generate trust in ICTR by the public. 

Transparency-based accountability helps researchers, 

oversight entities, and other stakeholders avoid guess-

work and incorrect inferences about whether, where, 

and how ethical principles are addressed. Transparency 

entails clearly communicating the purposes of research 

– why data collection and/or direct interaction with ICT 

is required to fulfill those  purposes – and how research 

results will be used. It also involves clear communication 

of risk assessment and harm minimization related to  

research activities. 

Accountability demands that research methodology, 

ethical evaluations, data collected, and results gen-

erated should be documented and made available 

responsibly in accordance with balancing risks and ben-

efits. Data should be available for legitimate research, 

policy-making, or public knowledge, subject to appro-

priate collection, use, and disclosure controls informed 

by the Beneficence principle. The appropriate format, 

scope and modality of the data exposure will vary 

with the circumstances, as informed by Beneficence 

determinations. 

D Implementing the Principles 

 and Applications

This document describes foundational ethical principles 

and their applications at a level intended to span a 

broad range of current and future research that will 

undoubtedly be affected by changes in ICT. For feder-

ally funded biomedical and behavioral research, the 

responsibility for evaluating whether a research project 

comports with these principles lies with REBs, which 

in the United States are known as Institutional Review 

Boards (IRBs). IRB review is a requirement for federally 

funded research, however researchers in the ICT field 

frequently either do not know of this requirement, or 

believe that they are not engaged in “human subjects 

research” and do not interact with their IRB at all. This 

report contends that ICTR will benefit from similar 

oversight, and the proposed guidelines will assist ICT 

researchers and oversight authorities identify, preempt 

and manage ethical risks. Current ICTR that does not 

fall under the purview of REBs would also benefit from 

community-derived self-regulation guided by this report. 

Proactively and transparently engaging in ethical 

assessment of ICT research will help move the research 
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community mindset in the direction of embedding ethics 

into ICTR design as productively and safely as possible, 

and more practically influence policy and governance 

at these crossroads. 

Notes
1The term information and communication technology 

was coined by Denis Stevenson in a 1997 report to 

the United Kingdom government, Information and 

Communication Technologies in the UK Schools: 

An Independent Inquiry 

http://rubble.heppell.net/stevenson/ICT.pdf 

2This report offers pragmatic guidance in the application 

of these fundamental principles to ICTR, and avoids 

taking a position in the philosophical debate about the 

uniqueness of computer ethics. For an overview of the 

philosophical debate, see Bynum, Terrell, “Computer 

and Information Ethics”, The Stanford Encyclopedia of 

Philosophy (Winter 2008 Edition), Edward N. Zalta (ed.). 

http://plato.stanford.edu/archives/win2008/entries/

ethics-computer/ 

3The Belmont Report, the touchstone document guiding 

human subjects research in the biomedical and behav-

ioral research fields, was named after the conference 

center where it was drafted in 1976 (See http://ohsr.

od.nih.gov/guidelines/belmont.html) This document 

similarly takes its name from the city where a substantial 

portion of the working group meetings that resulted in 

this document took place in 2009-2010. 

4Fifteen government departments and agencies per-

forming research involving human subjects adopted 

45 CFR 46 Subpart A in what is known as the Common 

Rule. Each has its own guidance on the interpretation of 

their section of the CFR. Refer to guidance appropriate 

to the funding source. 

5See http://ohsr.od.nih.gov/guidelines/belmont.html 

6Stephen L. Carter Carter, Stephen L (1996). Integrity. 

New York: BasicBooks/HarperCollins. pp. 7, 10. ISBN 

0-06-092807-7. 
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