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An algorithm deployed across the 
United States is now known to 
underestimate the health needs of 
black patients1. The algorithm uses 
health-care costs as a proxy for health 

needs. But black patients’ health-care costs 
have historically been lower because systemic 
racism has impeded their access to treatment 
— not because they are healthier. 

This example illustrates how machine 
learning and artificial intelligence can main-
tain and amplify inequity. Most algorithms 
exploit crude correlations in data. Yet these 
correlations are often by-products of more 
salient social relationships (in the health-care 
example, treatment that is inaccessible is, by 
definition, cheaper), or chance occurrences 
that will not replicate. 

To identify and mitigate discriminatory 

relationships in data, we need models that 
capture or account for the causal pathways 
that give rise to them. Here we outline what 
is required to build models that would allow 
us to explore ethical issues underlying seem-
ingly objective analyses. Only by unearthing 
the true causes of discrimination can we build 
algorithms that correct for these.

Causal models
Models that account for causal pathways 
have three advantages. These ‘causal models’ 
are: tailored to the data at hand; allow us to 
account for quantities that aren’t observed; 
and address shortcomings in current concepts 
of fairness (see ‘Fairness four ways’). 

A causal model2 represents how data are 
generated, and how variables might change in 
response to interventions. This can be shown 
as a graph in which each variable is a node 
and arrows represent the causal connections 
between them. Take, for example, a data set 
about who gets a visa to work in a country. 
There is information about the country each 
person comes from, the work they do, their 
religion and whether or not they obtained a 

A migrant farm worker has her fingerprints scanned so that she can register for a national identity card in India.
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visa (see ‘Three causal tests’, part 1). 
This model says that the country of origin 

directly influences a person’s religion and 
whether they obtain a visa; so, too, do religion 
and type of work. Having a causal model allows 
us to address questions related to ethics, such 
as does religion influence the visa process? 

But because many different causal models 
could have led to a particular observed data 
set, it is not generally possible to identify the 
right causal model from that data set alone3. 
For example, without any extra assump-
tions, data generated from the causal graph 
described here could seem identical to those 
from a graph in which religion is no longer 
linked to visa granting. A modeller must there-
fore also leverage experiments and expert 
knowledge, and probe assumptions. 

Experiments can help in identifying factors 
that affect fairness. For example, a modeller 
wishing to explore whether ethnicity would 
affect treatment recommendations made 
online by health-care professionals could 
create two patient profiles that differ only 
in some respect that relates to ethnicity. For 
instance, one profile could have a name com-
mon to Americans of Chinese descent, and the 
other a name common to Americans of African 
descent. If the treatment recommendations 
are the same, then names can be ruled out as 
a source of bias, and the model can be stress-
tested in another way. 

Few aspects of a deep, multifaceted concept 
can be tested as easily as changing a name. 
This means that experimental evidence can 
underestimate the effects of discrimination. 
Integration of expert knowledge, particularly 

Build models that identify 
and mitigate the causes of 
discrimination.

The long road to  
fairer algorithms 
Matt J. Kusner & Joshua R. Loftus
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from the social sciences and including 
qualitative methods, can help to overcome 
such limitations. This knowledge can be used 
to, for example, inform the modeller of varia-
bles that might be influential but unobserved 
(lighter circles in ‘Three causal tests’), or to 
determine where to put arrows. 

Assumptions about unobserved variables 
that might alter the predictions of a model 
need to be clearly stated. This is particularly 
important when experiments cannot be run 
or more detailed expert knowledge is not 
available. For example, if ‘health-care access’ 
is not observed in a model attempting to pre-
dict ‘health need’, then it is crucial to identify 
any potential impacts it might have on ‘health 
costs’ as well as how it is affected by ‘ethnicity’.

This need for context and metadata makes 
causal models harder to build than non-causal 
ones. It can also make them a more powerful 
way to explore ethical questions. 

Three tests
Causal models can test the fairness of 
predictive algorithms in three ways. 

Counterfactuals. A causal model allows us to 
ask and answer questions such as ‘Had the past 
been different, would the present or future 
have changed?’ In the visa example (see ‘Three 
causal tests’, part 1), algorithmic biases could 
be smoked out by tweaking parts of the model 
to explore, for instance: ‘Had individual X been 
Christian, would this algorithm have granted 
them a visa?’ A researcher could then identify 
what pieces of information an algorithm could 
use to achieve counterfactual fairness4: the 
algorithm’s output would not change regard-
less of the individual’s religion. For example, if 
the algorithm used just work and not country 
of origin or religion, it would satisfy counter-
factual fairness. 

Sensitivity. In many settings, unknowns alter 
knowns — data we can observe are influenced 
by data we cannot. Consider a causal model for 
a trial setting (see ‘Three causal tests’, part 2). 

This model shows how two independent sets 
of unobserved quantities, structural racism 
and jury racism, can unfairly lead to a guilty 
verdict. Although researchers often cannot 
precisely identify unobserved variables, they 
can reason about how sensitive a model is to 
them. For instance, they can explore how sen-
sitive our estimate of the causal link between 
legal representation and guilty verdict is to 
different levels of jury racism. Simulations of 
the worst-case bias scenarios (that is, when 
jury racism is highest) can then be used to 
alter jury selection to minimize the bias. 

Impacts. Data-driven decisions can have 
long-term consequences and spillover effects. 
These effects might not be obvious, especially 
in the standard machine-learning paradigm 

of predicting one short-term outcome. But 
carefully designed causal models can help 
researchers to use ‘interventions’ to probe the 
ripple effects of decisions far into the future 5,6. 
For instance, the models can help regulatory 
agencies to understand how changing a schol-
arship algorithm influences who is accepted 
into law school (see ‘Three causal tests’, part 3). 
In this example, a single parent might need a 
scholarship so that they can reduce the hours 
they need to spend at a job, leaving them more 
time for study. That boosts their grades and 
therefore influences their chances of being 
admitted to law school. This complex chain 
can be explored using causal models. 

Five steps 
Causal models are powerful tools, but they 
must be used appropriately. They are only 
models, and will thus fail to capture impor-
tant aspects of the real world. Here we offer 
some guidelines on using them wisely. 

Collaborate across fields. Researchers in 
statistics and machine learning need to know 
more about the causes of unfairness in soci-
ety. They should work closely with those in 
disciplines such as law, social sciences and the 
humanities. This will help them to incorporate 
the context of the data used to train the algo-
rithms. For example, scholars should meet at 
interdisciplinary workshops and conferences. 
One such is next year’s Association for Com-
puting and Machinery (ACM) conference on 
Fairness, Accountability and Transparency to 
derive a set of causal models for setting bail 
price and for immigration decisions.

A great example of such collaborations 
is one between information scientist Solon 
Barocas at Cornell University in Ithaca, New 
York, and attorney Andrew Selbst at the Data 
& Society Research Institute in New York City. 
They described how current law is unable to 
deal with algorithmic bias7. Partly in response 
to this work, machine-learning researchers 
have launched a large subfield, known as 
algorithmic fairness, that looks into ways of 
removing bias from data. And we and other 
researchers now use causal models to quantify 
discrimination due to data. 

Partner with stakeholders. Predictive algo-
rithms should be developed with people they 
are likely to affect. Stakeholders are best placed 
to provide input on difficult ethical questions 
and historical context. One example is the 
work by statistician Kristian Lum at the Human 
Rights Data Analysis Group in San Francisco, 
California, which investigates criminal-justice 
algorithms8. Such algorithms decide whether 
to detain or release arrested individuals and 
how high to set their bail, yet they are known 
to be biased. Lum has invited people affected 
by such decisions to speak at academic confer-
ences attended by people who research these 
algorithms. This has led to closer collabora-
tion, including the tutorial ‘Understanding the 
context and consequences of pre-trial deten-
tion’ presented at the 2018 ACM conference on 
Fairness, Accountability and Transparency in 
New York. So far, most stakeholder work has 
focused on criminal justice. Another setting 
that would benefit from it is mortgage lending. 

We propose that a rotating, interdisciplinary 
panel of stakeholders investigates the impacts 
of algorithmic decisions, for example as part 
of a new international regulatory institute.

Make the workforce equitable. Women and 
people from minority groups are under-rep-
resented in the fields of statistics and machine 
learning. This directly contributes to the crea-
tion of unfair algorithms. For example, if facial 
detection software struggles to detect faces 
of black people9, it is likely the algorithm was 
trained largely on data representing white peo-
ple. Initiatives such as Black in AI (go.nature.
com/38pbcaa) or Women in Machine Learning 
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Algorithmic fairness can be 
examined in different ways.
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(go.nature.com/2s5km5g) are positive steps. 
And we can go further. Causal models 

can themselves help to address the field’s 
‘pipeline problem’ by identifying where 
unfairness enters the process and which 
interventions can increase the participation of 
under-represented groups without shifting the 
burden to extra work for role models in those 
groups. Academic institutions should critically 
evaluate and use these models for fairer admis-
sions in fields related to artificial intelligence.

Identify when algorithms are inappro-
priate. Statistics and machine learning are 
not all-powerful. Some problems should 

not be solved by expanding data-gathering 
capabilities and automating decisions. For 
example, a more accurate model for predic-
tive policing won’t solve many of the ethical 
concerns related to the criminal legal sys-
tem. In fact, these methods can mask struc-
tural issues, including the fact that many 
neighbourhoods are policed by people who 
do not live in them10. This disconnect means 
that police officers might not be invested 
in the community they police or the people 
they arrest. 

There are red flags when demographics, 
such as ethnic origin, influence nearly every 
piece of information in a causal graph, or 

when previous attempts to address a bias 
failed because people strategically changed 
behaviours in response. In these cases, an algo-
rithmic solution would paper over a system 
that needs fundamental change. 

Foment criticism. A vibrant culture of 
feedback is essential. Researchers need to 
continually question their models, evalua-
tion techniques and assumptions. Useful as 
causal models are, they should be scrutinized 
intensely: bad models can make discrimina-
tion worse11. At the very least, a scientist should 
check whether a model has the right data to 
make causal claims, and how much these 
claims would change when the assumptions 
are relaxed. 

Algorithms are increasingly used to make 
potentially life-changing decisions about 
people. By using causal models to formalize 
our understanding of discrimination, we must 
build these algorithms to respect the ethical 
standards required of human decision makers. 

The authors

Matt J. Kusner is an associate professor in the 
Department of Computer Science at University 
College London, and a fellow at the Alan 
Turning Institute, London, UK. Joshua R. Loftus 
is an assistant professor in the Department of 
Technology, Operations, and Statistics at New 
York University, New York, USA.
e-mails: matt.kusner@gmail.com;  
loftus@nyu.edu
1. Obermeyer, Z. et al. Science 366, 447–453 (2019).
2. Pearl, J. Causality: Models, Reasoning, and Inference 

(Cambridge Univ. Press, 2000). 
3. Spirtes, P. et al. Causation, Prediction, and Search 

(MIT Press, 2000).
4. Kusner, M. J., Loftus, J., Russell, C. & Silva, R. In Advances 

in Neural Information Processing Systems 4066–4076 
(MIT Press, 2017).

5. Liu, L. T. et al. In International Conference on Machine 
Learning 3150–3158 (ACM, 2018).

6. Kusner, M., Russell, C., Loftus, J. & Silva, R. Proc. Machine 
Learning Res. 97, 3591–3600 (2019). 

7. Barocas, S. & Selbst, A. D. Calif. L. Rev. 104, 671 (2016).
8. Lum, K. Nature Hum. Behav. 1, 0141 (2017).
9. Simon, M. ‘HP looking into claim webcams can’t see 

black people.’ (CNN Tech, 23 December 2009).
10. McManus, H. D. et al. Race Justice https://doi.

org/10.1177/2153368719849486 (2019).
11. Kilbertus, N. et al. ‘The Sensitivity of Counterfactual 

Fairness to Unmeasured Confounding’. In Uncertainty in 
Artificial Intelligence (AUAI, 2019).

12. Grgic-Hlaca, N. et al. ‘The case for process fairness in 
learning: Feature selection for fair decision making.’ 
NeurIPS Symposium on Machine Learning and the Law 
(2016).

13. Wilford, M. M. & Khairalla, A. in Social Sciences 
Contributions to the Real Legal System Ch. 7, 132 (2019).

14. Zafar, M. B., Valera, I., Rogriguez, M. G. & Gummadi, K. P. 
In Artificial Intelligence and Statistics 962–970 (2017).

15. Dobash, R. E., Dobash, R. P., Cavanagh, K. & Lewis, R. 
Violence Against Women 10, 577–605 (2004).

16. Hardt, M., Price, E. & Srebro, N. ‘Equality of opportunity in 
supervised learning’. In Advances in Neural Information 
Processing Systems 3315–3323 (2016). 

17. Dwork, C. et al. ‘Fairness through awareness’. In Proc. 3rd 
Innov. Theoret. Comp. Sci. Conf. 214–226 (2012). 

18. Pizer, J. C. et al. Loy. LAL Rev. 45, 715 (2011).

Fairness four ways
A flurry of work has conceptualized 
fairness. Here are some of the most popular, 
and ways in which causal models offer 
alternatives. 

Fairness through unawareness12. This 
method works by removing any data that 
are considered prima facie to be unfair. For 
example, for an algorithm used by judges 
making parole decisions, fairness through 
unawareness could dictate that data on 
ethnic origin should be removed when 
training this algorithm, whereas data on the 
number of previous offences can be used. 
But most data are biased. For instance, 
number of previous offences can bear the 
stamp of historical racial bias in policing, 
as can the use of plea bargaining (pleading 
guilty being more likely to reduce a sentence 
than arguing innocence)13. This can leave 
researchers with a hard choice: either 
remove all data or keep biased data. 

Alternatively, causal models can directly 
quantify how data are biased.

Demographic parity14. A predictive algorithm 
satisfies demographic parity if, on average, 
it gives the same predictions to different 
groups. For example, a university-admissions 
algorithm would satisfy demographic 
parity for gender if 50% of its offers went to 
women and 50% to men. It is currently more 
common in law to relax demographic parity 
so that predictions aren’t necessarily equal, 
but are not too imbalanced. Specifically, 
the US Equal Employment Opportunity 
Commission states that fair employment 
should satisfy the 80% rule: the acceptance 
rate for any group should be no less than 
80% of that of the highest-accepted group. 
For instance, if 25% of women were offered 
jobs, and this is the highest acceptance rate, 
then at least 20% of men must be offered 

jobs4. One criticism of demographic parity 
is that it might not make sense to use it in 
certain settings, such as a fair arrest rate for 
violent crimes (men are significantly more 
likely to commit acts of violence)15. 

Instead, one could require that 
counterfactual versions of the same 
individual should get the same prediction4. 

Equality of opportunity16. This is the 
principle of giving the same beneficial 
predictions to individuals in each group. 
Consider a predictive algorithm that grants 
loans only to individuals who have paid back 
previous loans. It satisfies ‘disability-based 
equality of opportunity’ if it grants loans to 
the same percentage of individuals who both 
pay back and have a disability as it does to 
those who pay back and who do not have a 
disability. However, being able to pay back a 
loan in the first place can be affected by bias: 
discriminatory employers might be less likely 
to hire a person with a disability, which can 
make it harder for that person to pay back a 
loan. This societal unfairness is not captured 
by equality of opportunity. 

A causal model could be used to quantify 
the bias and estimate an unbiased version of 
loan repayment.

Individual fairness17. This concept states 
that similar individuals should get similar 
predictions. If two people are alike except 
for their sexual orientation, say, an algorithm 
that displays job advertisements should 
display the same jobs to both. The main 
issue with this concept is how to define 
similar. In this example, training data will 
probably have been distorted by the fact that 
one in five individuals from sexual or gender 
minorities report discrimination against 
them in hiring, promotions and pay18. Thus 
similarity is hard to define, which makes 
individual fairness hard to use in practice. 

In causal modelling, counterfactuals 
offer a natural way to define a similar 
individual. M.J.K. & J.R.L.
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RESEARCH ARTICLE
◥

ECONOMICS

Dissecting racial bias in an algorithm used to manage
the health of populations
Ziad Obermeyer1,2*, Brian Powers3, Christine Vogeli4, Sendhil Mullainathan5*†

Health systems rely on commercial prediction algorithms to identify and help patients with complex
health needs. We show that a widely used algorithm, typical of this industry-wide approach and
affecting millions of patients, exhibits significant racial bias: At a given risk score, Black patients
are considerably sicker than White patients, as evidenced by signs of uncontrolled illnesses.
Remedying this disparity would increase the percentage of Black patients receiving additional
help from 17.7 to 46.5%. The bias arises because the algorithm predicts health care costs rather than
illness, but unequal access to care means that we spend less money caring for Black patients than
for White patients. Thus, despite health care cost appearing to be an effective proxy for health
by some measures of predictive accuracy, large racial biases arise. We suggest that the choice of
convenient, seemingly effective proxies for ground truth can be an important source of algorithmic
bias in many contexts.

T
here is growing concern that algorithms
may reproduce racial and gender dis-
parities via the people building them or
through the data used to train them (1–3).
Empirical work is increasingly lending

support to these concerns. For example, job
search ads for highly paid positions are less
likely to be presented to women (4), searches
for distinctively Black-sounding names are
more likely to trigger ads for arrest records
(5), and image searches for professions such
as CEO produce fewer images of women (6).
Facial recognition systems increasingly used
in law enforcement perform worse on recog-
nizing faces of women and Black individuals
(7, 8), and natural language processing algo-
rithms encode language in gendered ways (9).
Empirical investigations of algorithmic bias,

though, have been hindered by a key constraint:
Algorithms deployed on large scales are typically
proprietary, making it difficult for indepen-
dent researchers to dissect them. Instead, re-
searchers must work “from the outside,” often
with great ingenuity, and resort to clever work-
arounds such as audit studies. Such efforts can
document disparities, but understanding how
and why they arise—much less figuring out
what to do about them—is difficult without
greater access to the algorithms themselves.
Our understanding of a mechanism therefore
typically relies on theory or exercises with

researcher-created algorithms (10–13). With-
out an algorithm’s training data, objective func-
tion, and predictionmethodology, we can only
guess as to the actual mechanisms for the
important algorithmic disparities that arise.
In this study, we exploit a rich dataset that

provides insight into a live, scaled algorithm
deployed nationwide today. It is one of the
largest and most typical examples of a class
of commercial risk-prediction tools that, by
industry estimates, are applied to roughly
200 million people in the United States each
year. Large health systems and payers rely on
this algorithm to target patients for “high-risk
care management” programs. These programs
seek to improve the care of patients with
complex health needs by providing additional
resources, including greater attention from
trained providers, to help ensure that care is
well coordinated. Most health systems use
these programs as the cornerstone of pop-
ulation health management efforts, and they
are widely considered effective at improving
outcomes and satisfaction while reducing costs
(14–17). Because the programs are themselves
expensive—with costs going toward teams of
dedicated nurses, extra primary care appoint-
ment slots, and other scarce resources—health
systems rely extensively on algorithms to iden-
tify patients who will benefit the most (18, 19).
Identifying patients who will derive the

greatest benefit from these programs is a
challenging causal inference problem that
requires estimation of individual treatment ef-
fects. To solve this problem, health systems
make a key assumption: Those with the great-
est care needs will benefit the most from the
program. Under this assumption, the targeting
problem becomes a pure prediction policy prob-
lem (20). Developers then build algorithms

that rely on past data to build a predictor of
future health care needs.
Our dataset describes one such typical algo-

rithm. It contains both the algorithm’s predic-
tions as well as the data needed to understand
its inner workings: that is, the underlying in-
gredients used to form the algorithm (data,
objective function, etc.) and links to a rich
set of outcome data. Because we have the
inputs, outputs, and eventual outcomes, our
data allow us a rare opportunity to quantify
racial disparities in algorithms and isolate the
mechanisms by which they arise. It should be
emphasized that this algorithm is not unique.
Rather, it is emblematic of a generalized ap-
proach to risk prediction in the health sec-
tor, widely adopted by a range of for- and
non-profit medical centers and governmental
agencies (21).
Our analysis has implications beyond what

we learn about this particular algorithm. First,
the specific problem solved by this algorithm
has analogies in many other sectors: The pre-
dicted risk of some future outcome (in our
case, health care needs) is widely used to tar-
get policy interventions under the assumption
that the treatment effect is monotonic in that
risk, and the methods used to build the algo-
rithm are standard. Mechanisms of bias un-
covered in this study likely operate elsewhere.
Second, even beyond our particular finding,
we hope that this exercise illustrates the im-
portance, and the large opportunity, of study-
ing algorithmic bias in health care, not just
as a model system but also in its own right. By
any standard—e.g., number of lives affected,
life-and-death consequences of the decision—
health is one of the most important and wide-
spread social sectors in which algorithms are
already used at scale today, unbeknownst
to many.

Data and analytic strategy

Working with a large academic hospital, we
identified all primary care patients enrolled
in risk-based contracts from2013 to 2015. Our
primary interest was in studying differences
betweenWhite and Black patients.We formed
race categories by using hospital records,which
are based onpatient self-reporting. Any patient
who identified as Black was considered to be
Black for the purpose of this analysis. Of the
remaining patients, those who self-identified
as races other thanWhite (e.g., Hispanic) were
so considered (data on these patients are pre-
sented in table S1 and fig. S1 in the supplemen-
tary materials). We considered all remaining
patients to beWhite. This approach allowed
us to study one particular racial difference of
social and historical interest between patients
who self-identified as Black and patients who
self-identified as White without another race
or ethnicity; it has the disadvantage of not
allowing for the study of intersectional racial
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and ethnic identities. Our main sample thus
consisted of (i) 6079patientswho self-identified
as Black and (ii) 43,539 patients who self-
identified as White without another race or
ethnicity, whom we observed over 11,929 and
88,080 patient-years, respectively (1 patient-
year represents data collected for an indivi-
dual patient in a calendar year). The sample
was 71.2% enrolled in commercial insurance
and 28.8% in Medicare; on average, 50.9 years
old; and 63% female (Table 1).
For these patients, we obtained algorith-

mic risk scores generated for each patient-
year. In the health system we studied, risk
scores are generated for each patient during
the enrollment period for the system’s care
management program. Patients above the
97th percentile are automatically identified
for enrollment in the program. Those above
the 55th percentile are referred to their pri-
mary care physician, who is provided with
contextual data about the patients and asked
to consider whether they would benefit from
program enrollment.
Many existing metrics of algorithmic bias

may apply to this scenario. Some definitions
focus on calibration [i.e., whether the realized
value of some variable of interest Y matches
the risk score R (2, 22, 23)]; others on statis-
tical parity of some decision D influenced by
the algorithm (10); and still others on balance
of average predictions, conditional on the real-
ized outcome (22). Given this multiplicity and
the growing recognition that not all condi-
tions can be simultaneously satisfied (3, 10, 22),
we focus on metrics most relevant to the real-
world use of the algorithm, which are related
to calibration bias [formally, comparing Blacks
B and WhitesW, E½Y jR;W " ¼ E½Y jR;B" indi-
cates the absence of bias (here, E is the ex-
pectation operator)]. The algorithm’s stated
goal is to predict complex health needs for the
purpose of targeting an intervention that
manages those needs. Thus, we compare the
algorithmic risk score for patient i in year t
(Ri,t), formed on the basis of claims data Xi,(t−1)
from the prior year, to data on patients’ real-
ized health Hi,t, assessing how well the algo-
rithmic risk score is calibrated across race for
health outcomesHi,t. We also ask howwell the
algorithm is calibrated for costs Ci,t.
To measureH, we link predictions to a wide

range of outcomes in electronic health record
data, including all diagnoses (in the form of
International Classification of Diseases codes)
as well as key quantitative laboratory studies
and vital signs capturing the severity of chro-
nic illnesses. To measure C, we link predictions
to insurance claims data on utilization, includ-
ing outpatient and emergency visits, hospital-
izations, and health care costs. These data, and
the rationale for the specific measures of H
used in this study, are described inmore detail
in the supplementary materials.

Health disparities conditional on risk score
We begin by calculating an overall measure of
health status, the number of active chronic
conditions [or “comorbidity score,” a metric
used extensively in medical research (24) to
provide a comprehensive view of a patient’s
health (25)] by race, conditional on algorith-
mic risk score. Fig. 1A shows that, at the same
level of algorithm-predicted risk, Blacks have
significantly more illness burden thanWhites.
We can quantify these differences by choosing
one point on the x axis that corresponds to

a very-high-risk group (e.g., patients at the
97th percentile of risk score, at which patients
are auto-identified for program enrollment),
where Blacks have 26.3% more chronic ill-
nesses than Whites (4.8 versus 3.8 distinct
conditions; P < 0.001).
What do these prediction differences mean

for patients? Algorithm scores are a key input
to decisions about future enrollment in a care
coordination program. So as we might expect,
with less-healthy Blacks scored at similar risk
scores to more-healthy Whites, we find evidence
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Table 1. Descriptive statistics on our sample, by race. BP, blood pressure; LDL, low-density
lipoprotein.

White Black

n (patient-years) 88,080 11,929
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

n (patients) 43,539 6079
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Demographics
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Age 51.3 48.6
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Female (%) 62 69
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Care management program
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Algorithm score (percentile) 50 52
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Race composition of program (%) 81.8 18.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Care utilization
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Actual cost $7540 $8442
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hospitalizations 0.09 0.13
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hospital days 0.50 0.78
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Emergency visits 0.19 0.35
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Outpatient visits 4.94 4.31
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Mean biomarker values
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

HbA1c (%) 5.9 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Systolic BP (mmHg) 126.6 130.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Diastolic BP (mmHg) 75.5 75.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Creatinine (mg/dl) 0.89 0.98
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hematocrit (%) 40.7 37.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

LDL (mg/dl) 103.4 103.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Active chronic illnesses (comorbidities)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Total number of active illnesses 1.20 1.90
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hypertension 0.29 0.44
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Diabetes, uncomplicated 0.08 0.22
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Arrythmia 0.09 0.08
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hypothyroid 0.09 0.05
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Obesity 0.07 0.18
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Pulmonary disease 0.07 0.11
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Cancer 0.07 0.06
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Depression 0.06 0.08
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Anemia 0.05 0.10
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Arthritis 0.04 0.04
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Renal failure 0.03 0.07
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Electrolyte disorder 0.03 0.05
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Heart failure 0.03 0.05
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Psychosis 0.03 0.05
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Valvular disease 0.03 0.02
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Stroke 0.02 0.03
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Peripheral vascular disease 0.02 0.02
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Diabetes, complicated 0.02 0.07
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Heart attack 0.01 0.02
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Liver disease 0.01 0.02
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .
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of substantial disparities in program screening.
We quantify this by simulating a counterfactual
world with no gap in health conditional on
risk. Specifically, at some risk threshold a, we
identify the supramarginal White patient (i)
with Ri > a and compare this patient’s health
to that of the inframarginal Black patient ( j )
with Rj < a. IfHi >Hj , as measured by number
of chronic medical conditions, we replace the
(healthier, but supramarginal) White patient
with the (sicker, but inframarginal) Black patient.
We repeat this procedure until Hi = Hj, to
simulate an algorithm with no predictive gap
between Blacks and Whites. Fig. 1B shows the
results: At all risk thresholds a above the 50th
percentile, this procedure would increase the
fraction of Black patients. For example, at a =
97th percentile, among those auto-identified
for the program, the fraction of Black patients
would rise from 17.7 to 46.5%.
We then turn to amoremultidimensional pic-

ture of the complexity and severity of patients’
health status, as measured by biomarkers that
index the severity of the most common chro-
nic illnesses in our sample (as shown inTable 1).
This allows us to identify patients who might
derive a great deal of benefit from care man-
agement programs—e.g., patients with severe

diabetes who are at risk of catastrophic com-
plications if they do not lower their blood sugar
(18, 26). (The materials and methods section
describes several experiments to rule out a large
effect of the program on these health measures
in year t; had there been such an effect, we
could not easily use the measures to assess the
accuracy of the algorithm’s predictions onhealth,
because the program is allocated as a function
of algorithm score.) Across all of these impor-
tant markers of health needs—severity of diabe-
tes, highbloodpressure, renal failure, cholesterol,
and anemia—we find that Blacks are substan-
tially less healthy than Whites at any level of
algorithmpredictions, as shown in Fig. 2. Blacks
havemore-severe hypertension, diabetes, renal
failure, and anemia, and higher cholesterol.
Themagnitudes of these differences are large:
For example, differences in severity of hyper-
tension (systolic pressure: 5.7 mmHg) and
diabetes [glycated hemoglobin (HbA1c): 0.6%]
imply differences in all-causemortality of 7.6%
(27) and 30% (28), respectively, calculatedusing
data fromclinical trials and longitudinal studies.

Mechanism of bias

An unusual aspect of our dataset is that we
observe the algorithm’s inputs and outputs

as well as its objective function, providing us
a unique window into the mechanisms by
which bias arises. In our setting, the algorithm
takes in a large set of raw insurance claims
data Xi,t−1 (features) over the year t − 1: demo-
graphics (e.g., age, sex), insurance type, diag-
nosis and procedure codes, medications, and
detailed costs. Notably, the algorithm specifi-
cally excludes race.
The algorithm uses these data to predict Yi,t

(i.e., the label). In this instance, the algorithm
takes total medical expenditures (for simplic-
ity, we denote “costs” Ct) in year t as the label.
Thus, the algorithm’s prediction on health
needs is, in fact, a prediction on health costs.
As a first check on this potential mechanism

of bias, we calculate the distribution of real-
ized costs C versus predicted costs R. By this
metric, one could call the algorithm unbiased.
Fig. 3A shows that, at every level of algorithm-
predicted risk, Blacks andWhites have (rough-
ly) the same costs the following year. In other
words, the algorithm’s predictions are well cal-
ibrated across races. For example, at the med-
ian risk score, Black patients had costs of $5147
versus $4995 for Whites (U.S. dollars); in the
top 5% of algorithm-predicted risk, costs were
$35,541 for Blacks versus $34,059 for Whites.
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Fig. 1. Number of chronic illnesses versus algorithm-predicted risk,
by race. (A) Mean number of chronic conditions by race, plotted against
algorithm risk score. (B) Fraction of Black patients at or above a given risk
score for the original algorithm (“original”) and for a simulated scenario
that removes algorithmic bias (“simulated”: at each threshold of risk, defined
at a given percentile on the x axis, healthier Whites above the threshold are

replaced with less healthy Blacks below the threshold, until the marginal patient
is equally healthy). The × symbols show risk percentiles by race; circles
show risk deciles with 95% confidence intervals clustered by patient. The
dashed vertical lines show the auto-identification threshold (the black
line, which denotes the 97th percentile) and the screening threshold (the gray
line, which denotes the 55th percentile).
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Because these programs are used to target
patients with high costs, these results are large-
ly inconsistent with algorithmic bias, as mea-
sured by calibration: Conditional on risk score,
predictions do not favor Whites or Blacks any-
where in the risk distribution.
To summarize, we find substantial disparities

in health conditional on risk but little disparity
in costs. On the one hand, this is surprising:
Health care costs and health needs are highly
correlated, as sicker patients need and receive
more care, on average. On the other hand, there
aremany opportunities for awedge to creep in
between needing health care and receiving
health care—and crucially, we find that wedge
to be correlated with race, as shown in Fig. 3B.
At a given level of health (again measured by
number of chronic illnesses), Blacks generate
lower costs thanWhites—on average, $1801 less
per year, holding constant the number of chron-
ic illnesses (or $1144 less, if we instead hold
constant the specific individual illnesses that
contribute to the sum). Table S2 also shows
that Black patients generate very different
kinds of costs: for example, fewer inpatient
surgical and outpatient specialist costs, and
more costs related to emergency visits and
dialysis. These results suggest that the driv-
ing force behind the bias we detect is that
Black patients generate lesser medical ex-
penses, conditional on health, even when we
account for specific comorbidities. As a re-
sult, accurate prediction of costs necessarily
means being racially biased on health.
How might these disparities in cost arise?

The literature broadly suggests two main po-
tential channels. First, poor patients face sub-
stantial barriers to accessing health care, even
when enrolled in insurance plans. Although
the population we study is entirely insured,
there are many other mechanisms by which
poverty can lead to disparities in use of health
care: geography and differential access to trans-
portation, competing demands from jobs or
child care, or knowledge of reasons to seek care
(29–31). To the extent that race and socioeco-
nomic status are correlated, these factors will
differentially affect Black patients. Second, race
could affect costs directly via several channels:
direct (“taste-based”) discrimination, changes
to the doctor–patient relationship, or others. A
recent trial randomly assigned Black patients
to a Black or White primary care provider and
found significantly higher uptake of recom-
mended preventive carewhen the provider was
Black (32). This is perhaps the most rigorous
demonstration of this effect, and it fits with a
larger literature on potential mechanisms by
which race can affect health care directly. For
example, it has long been documented that
Black patients have reduced trust in the health
care system (33), a fact that some studies trace
to the revelations of the Tuskegee study and
other adverse experiences (34). A substantial

literature in psychology has documented phys-
icians’differential perceptions of Blackpatients,
in terms of intelligence, affiliation (35), or pain
tolerance (36). Thus, whether it is communi-
cation, trust, or bias, something about the inter-
actions of Black patients with the health care
system itself leads to reduced use of health care.
The collective effect of these many channels is
to lower health spending substantially for Black

patients, conditional on need—a finding that has
been appreciated for at least two decades (37).

Problem formulation

Our findings highlight the importance of the
choice of the label on which the algorithm is
trained. On the one hand, the algorithmman-
ufacturer’s choice to predict future costs is rea-
sonable: The program’s goal, at least in part, is
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Fig. 2. Biomarkers of health versus
algorithm-predicted risk, by race. (A to
E) Racial differences in a range of biological
measures of disease severity, conditional
on algorithm risk score, for the most common
diseases in the population studied. The ×
symbols show risk percentiles by race, except
in (C) where they show risk ventiles; circles
show risk quintiles with 95% confidence
intervals clustered by patient. The y axis in
(D) has been trimmed for readability, so the
highest percentiles of values for Black patients
are not shown. The dashed vertical lines
show the auto-identification threshold (black
line: 97th percentile) and the screening
threshold (gray line: 55th percentile).
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to reduce costs, and it stands to reason that
patients with the greatest future costs could
have the greatest benefit from the program.
As noted in the supplementary materials,
the manufacturer is not alone. Although the
details of individual algorithms vary, the cost
label reflects the industry-wide approach. For
example, the Society of Actuaries’s compre-
hensive evaluation of the 10 most widely
used algorithms, including the particular al-
gorithm we study, used cost prediction as its
accuracy metric (21). As noted in the report,
the enthusiasm for cost prediction is not
restricted to industry: Similar algorithms are
developed and used by non-profit hospitals,
academic groups, and governmental agen-
cies, and are often described in academic
literature on targeting population health
interventions (18, 19).
On the other hand, future cost is by no

means the only reasonable choice. For exam-
ple, the evidence on care management prog-
rams shows that they do not operate to reduce
costs globally. Rather, these programs primar-
ily work to prevent acute health decompensa-
tions that lead to catastrophic health care
utilization (indeed, they actually work to in-
crease other categories of costs, such as pri-
mary care and home health assistance; see
table S2). Thus avoidable future costs, i.e.,
those related to emergency visits and hospi-

talizations, could be a useful label to predict.
Alternatively, rather than predicting costs
at all, we could simply predict a measure of
health; e.g., the number of active chronic health
conditions. Because the program ultimately
operates to improve the management of these
conditions, patients with the most encoun-
ters related to them could also be a promis-
ing group on which to deploy preventative
interventions.
The dilemma of which label to choose re-

lates to a growing literature on “problem formu-
lation” in data science: the task of turning an
often amorphous concept we wish to predict
into a concrete variable that can be predicted
in a given dataset (38). Problems in health
seem particularly challenging: Health is, by
nature, holistic and multidimensional, and
there is no single, precise way to measure it.
Health care costs, though well measured and
readily available in insurance claims data,
are also the result of a complex aggregation
process with a number of distortions due to
structural inequality, incentives, and ineffi-
ciency. So although the choice of label is
perhaps the single most important decision
made in the development of a prediction al-
gorithm, in our setting and in many others,
there is often a confusingly large array of
different options, each with its own profile
of costs and benefits.

Experiments on label choice
Through a series of experiments with our data-
set, we can gain some insight into how label
choice affects both predictive performance and
racial bias. We develop three new predictive
algorithms, all trained in the same way, to
predict the following outcomes: total cost in
year t (this tailors cost predictions to our own
dataset rather than the national training set),
avoidable cost in year t (due to emergency
visits and hospitalizations), and health in year
t (measured by the number of chronic condi-
tions that flare up in that year). We train all
models in a random ⅔ training set and show
all results only from the ⅓ holdout set. Fur-
thermore, as with the original algorithm, we
exclude race from the feature set (more details
are in the materials and methods).
Table 2 shows the results of these experi-

ments. The first finding is that all algorithms
perform reasonably well for predicting not
only the outcome on which they were trained
but also the other outcomes: The concentra-
tion of realized outcomes in those at or above
the 97th percentile is notably similar for all
algorithms across all outcomes. The largest
difference in performance across algorithms
is seen for cost prediction: Of all costs in the
holdout set, the fraction generated by those
at or above the 97th percentile is 16.5% for the
cost predictor versus 12.1% for the predictor
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Fig. 3. Costs versus algorithm-predicted risk, and costs versus health, by race. (A) Total medical expenditures by race, conditional on algorithm risk score.
The dashed vertical lines show the auto-identification threshold (black line: 97th percentile) and the screening threshold (gray line: 55th percentile). (B) Total medical
expenditures by race, conditional on number of chronic conditions. The × symbols show risk percentiles; circles show risk deciles with 95% confidence intervals
clustered by patient. The y axis uses a log scale.
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of chronic conditions. We then test for label
choice bias, defined analogously to calibra-
tion bias above: For two algorithms trained to
predict Y and Y ', and using a threshold t
indexing a (similarly sized) high-risk group,
we would test p½BjR > t" ¼ p½BjR′ > t" (here,
p denotes probability and B represents Black
patients).
We find that the racial composition of this

highest-risk group varies far more across algo-
rithms: The fraction of Black patients at or
above these risk levels ranges from 14.1% for
the cost predictor to 26.7% for the predictor
of chronic conditions. Thus, although there
could be many reasonable choices of label—
all predictions are highly correlated, and any
could be justified as a measure of patients’
likely benefit from the program—they have
markedly different implications in terms of
bias, with nearly twofold variation in composi-
tion of Black patients in the highest-risk groups.

Relation to human judgment

As noted above, the algorithm is not used for
program enrollment decisions in isolation.
Rather, it is used as a screening tool, in part
to alert primary care doctors to high-risk

patients. Specifically, for patients at or above
a certain level of predicted risk (the 55th per-
centile), doctors are presented with contex-
tual information from patients’ electronic health
records and insurance claims and are promp-
ted to consider enrolling them in the prog-
ram. Thus, realized enrollment decisions largely
reflect how doctors respond to algorithmic
predictions, along with other administrative
factors related to eligibility (for instance, pri-
mary care practice site, residence outside of
a nursing home, and continual enrollment in
an insurance plan).
Table 3 shows statistics on those enrolled in

the program, accounting for 1.3% of observa-
tions in our sample: The enrolled individuals
are 19.2% Black (versus 11.9% Black in our en-
tire sample) and account for 2.9% of all costs
and 3.3% of all active chronic conditions in the
population as a whole. We then perform four
counterfactual simulations to put these num-
bers in context; naturally, these simulations
use only observable factors, not the many un-
observed administrative and human factors
that also affect enrollment. First, we calculate
the realized program enrollment rate within
each percentile of the original algorithm’s pre-

dicted risk bins and randomly sample patients
in each bin for enrollment. This simulation,
which mimics “race-blind” enrollment condi-
tional on algorithm score, would yield an en-
rolled population that is 18.3% Black (versus
19.2% observed; P = 0.8348). Second, rather
than randomly sampling, we sample thosewith
the highest predicted number of active chronic
conditions within a risk bin (using our ex-
perimental algorithm described above); this
would yield a population that is 26.9% Black.
Finally, we compare this to simply assigning
those with the highest predicted costs, or the
highest number of active chronic conditions,
to the program (also using our own algorithms
detailed above), which would yield 17.2 and
29.2% Black patients, respectively. Thus, al-
though doctors do redress a small part of the
algorithm’s bias, they do so far less than an
algorithm trained on a different label.

Discussion

Bias attributable to label choice—the difference
between some unobserved optimal prediction
and thepredictionof an algorithm trained onan
observed label—is a useful framework through
which to understand bias in algorithms, both
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Table 3. Doctors’ decisions versus algorithmic predictions. For those
enrolled in the high-risk care management program (1.3% of our sample),
we first show the fraction of the population that is Black, as well as
the fraction of all costs and chronic conditions accounted for by these
observations. We also show these quantities for four alternative program
enrollment rules, which we simulate in our dataset (using the holdout
set when we use our experimental predictors). We first calculate the program

enrollment rate within each percentile bin of predicted risk from the original
algorithm and either (i) randomly sample patients or (ii) sample those
with the highest predicted number of active chronic conditions within a bin
and assign them to the program. The resultant values are then compared
with values obtained by simply assigning the aforementioned 1.3% of
our sample with (iii) the highest predicted cost or (iv) the highest number
of active chronic conditions to the program.

Population Fraction Black (SE) Fraction of all costs (SE) Fraction of all active chronic conditions (SE)

Observed program enrollment (1.3%) 0.192 (0.003) 0.029 (0.001) 0.033 (0.001)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Simulated alternative enrollment rules
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Random, in predicted-cost bin 0.183 (0.003) 0.044 (0.002) 0.034 (0.001)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Predicted health, in predicted-cost bin 0.269 (0.003) 0.044 (0.002) 0.064 (0.002)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Highest predicted cost 0.172 (0.003) 0.100 (0.002) 0.047 (0.002)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Worst predicted health 0.292 (0.004) 0.067 (0.002) 0.076 (0.002)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Table 2. Performance of predictors trained on alternative labels. For each new algorithm, we show the label on which it was trained (rows) and the
concentration of a given outcome of interest (columns) at or above the 97th percentile of predicted risk. We also show the fraction of Black patients
in each group.

Algorithm training
label

Concentration in highest-risk patients (SE) Fraction of Black patients in
group with highest risk (SE)Total costs Avoidable costs Active chronic conditions

Total costs 0.165 (0.003) 0.187 (0.003) 0.105 (0.002) 0.141 (0.003)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Avoidable costs 0.142 (0.003) 0.215 (0.003) 0.130 (0.003) 0.210 (0.003)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Active chronic conditions 0.121 (0.003) 0.182 (0.003) 0.148 (0.003) 0.267 (0.003)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Best-to-worst difference 0.044 0.033 0.043 0.126
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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in the health sector and further afield. This is
because labels are often measured with errors
that reflect structural inequalities (39). Within
the health sector, using mortality or readmis-
sion rates to measure hospital performance
penalizes those serving poor or non-White pop-
ulations (40, 41). Outside of the health arena,
credit-scoring algorithms predict outcomes re-
lated to income, thus incorporating disparities
in employment and salary (2). Policing algo-
rithms predict measured crime, which also re-
flects increased scrutiny of some groups (42).
Hiring algorithms predict employment deci-
sions or supervisory ratings, which are affec-
ted by race and gender biases (43). Even retail
algorithms, which set pricing for goods at the
national level, penalize poorer households,
which are subjected to increased prices as a
result (44).
This mechanism of bias is particularly perni-

cious because it can arise from reasonable
choices: Using traditional metrics of overall
prediction quality, cost seemed to be an effec-
tive proxy for health yet still produced large
biases. After completing the analyses described
above, we contacted the algorithm manufac-
turer for an initial discussion of our results. In
response, themanufacturer independently rep-
licated our analyses on its national dataset of
3,695,943 commercially insured patients. This
effort confirmed our results—by one measure
of predictive bias calculated in their dataset,
Black patients had 48,772 more active chronic
conditions thanWhite patients, conditional on
risk score—illustrating how biases can indeed
arise inadvertently.
To resolve the issue, we began to experiment

with solutions together. As a first step, we sug-
gested using the existing model infrastructure—
sample, predictors (excluding race, as before),
training process, and so forth—but changing
the label: Rather than future cost, we created
an index variable that combined health pre-
diction with cost prediction. This approach
reduced the number of excess active chronic
conditions in Blacks, conditional on risk score,
to 7758, an 84% reduction in bias. Building on
these results, we are establishing an ongoing
(unpaid) collaboration to convert the results of
Table 3 into a better, scaled predictor of multi-
dimensional health measures, with the goal of
rolling these improvements out in a future
round of algorithm development. Of course,
our experience may not be typical of all algo-
rithm developers in this sector. But because
the manufacturer of the algorithm we study is
widely viewed as an industry leader in data
and analytics, we are hopeful that this en-
deavor will prompt other manufacturers to
implement similar fixes.
These results suggest that label biases are

fixable. Changing the procedures by which
we fit algorithms (for instance, by using a new
statistical technique for decorrelating predic-

tors with race or other similar solutions) is
not required. Rather, we must change the data
we feed the algorithm—specifically, the labels
we give it. Producing new labels requires deep
understanding of the domain, the ability to
identify and extract relevant data elements,
and the capacity to iterate and experiment.
But there is precedent for all of these func-
tions in the literature and, more concretely,
in the private companies that invest heavily
in developing new and improved labels to
predict factors such as consumer behavior
(45). In addition, although health—as well
as criminal justice, employment, and other
socially important areas—presents substan-
tial challenges to measurement, the impor-
tance of these sectors emphasizes the value
of investing in such research. Because labels
are the key determinant of both predictive
quality and predictive bias, careful choice
can allow us to enjoy the benefits of algo-
rithmic predictions while minimizing their
risks.
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Abstract

In this work, we argue for the importance of causal reasoning in cre-
ating fair algorithms for decision making. We give a review of existing
approaches to fairness, describe work in causality necessary for the under-
standing of causal approaches, argue why causality is necessary for any
approach that wishes to be fair, and give a detailed analysis of the many
recent approaches to causality-based fairness.

1 Introduction

The success of machine learning algorithms has created a wave of excitement
about the problems they could be used to solve. Already we have algorithms that
match or outperform humans in non-trivial tasks such as image classification
[18], the game of Go [37], and skin cancer classification [15]. This has spurred
the use of machine learning algorithms in predictive policing [25], in loan lending
[17], and to predict whether released people from jail will re-o↵end [9]. In these
life-changing settings however, it has quickly become clear that machine learning
algorithms can unwittingly perpetuate or create discriminatory decisions that
are biased against certain individuals (for example, against a particular race,
gender, sexual orientation, or other protected attributes). Specifically, such
biases have already been demonstrated in natural language processing systems
[5] (where algorithms associate men with technical occupations like ‘computer
programmer’ and women with domestic occupations like ‘homemaker’), and in
online advertising [41] (where Google showed advertisements suggesting that a
person had been arrested when that person had a name more often associated
with black individuals).

As machine learning is deployed in an increasingly wide range of human sce-
narios, it is more important than ever to understand what biases are present in a
decision making system, and what constraints we can put in place to guarantee
that a learnt system never exhibits such biases. Research into these problems
is referred to as algorithmic fairness. It is a particularly challenging area of
research for two reasons: many di↵erent features are intrinsically linked to pro-
tected classes such as race or gender. For example, in many scenarios, knowledge
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of someone’s address makes it easy to predict their race with relatively high accu-
racy; while their choice of vocabulary might reveal much about their upbringing
or gender. As such it is to easy to accidentally create algorithms that make de-
cisions without knowledge of a persons race or gender, but still exhibit a racial
or gender bias. The second issue is more challenging still, there is fundamental
disagreement in the field as to what algorithmic fairness really means. Should
algorithms be fair if they always make similar decisions for similar individuals?
Should we instead call algorithms that make beneficial decisions for all genders
at roughly the same rate fair? Or should we use a third di↵erent criteria? This
question is of fundamental importance as many of these di↵erent criteria can
not be satisfied at the same time [22].

In this work we argue that it is important to understand where these sources
of bias come from in order to rectify them, and that causal reasoning is a
powerful tool for doing this. We review existing notions of fairness in prediction
problems; the tools of causal reasoning; and show how these can be combined
together using techniques such as counterfactual fairness [23].

2 Current Work in Algorithmic Fairness

To discuss the existing measures of fairness, we use capital letters to refer to
variables and lower case letters to refer to a value a variable takes. For example,
we will always use A for a protected attribute such as gender, and a or a0 to
refer to the di↵erent values the attribute can take such as man or woman. We
use Y to refer to the true state of a variable we wish to predict, for example
the variable might denote whether a person defaults on a loan or if they will
violate parole conditions. We will use Ŷ to denote our prediction of the true
variable Y . The majority of definitions of fairness in prediction problems are
statements about probability of a particular prediction occurring given that
some prior conditions hold. In what follows, we will use P (· | ·) to represent
either conditional probability of events, probability mass functions or density
functions, as required by the context.

2.0.1 Equalised Odds

Two definitions of fairness that have received much attention are equalised odds
and calibration. Both were heavily used in the ProPublica investigation into
Northpointe’s COMPAS score, designed to gauge the propensity of a prisoner
to re-o↵end upon release [16]. The first measure is equalised odds, which says
that if a person truly has state y, the classifier will predict this at the same rate
regardless of the value of their protected attribute. This can be written as an
equation in the following form:

P (Ŷ = y | A = a, Y = y) = P (Ŷ = y | A = a0, Y = y) (1)

for all y, a, a0. Another way of stating this property is by saying that Ŷ is
independent of A given Y , which we will denote by Ŷ ?? A | Y .
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2.0.2 Calibration

The second condition is referred to as calibration (or ‘test fairness’ in [9]). This
reverses the previous condition of equalised odds, and says that if the classifier
predicts that a person has state y, their probability of actually having state y
should be the same for all choices of attribute.

P (Y = y | A = a, Ŷ = y) = P (Y = y | A = a0, Ŷ = y) (2)

for all choices of y, a, and a0, that is, Y ?? A | Ŷ .
Although the two measures sound very similar, they are fundamentally in-

compatible. These two measures achieved some notoriety when Propublica
showed that Northpointe’s COMPAS score violated equalised odds, accusing
them of racial discrimination. In response, Northpointe claimed that their
COMPAS score satisfied calibration and that they did not discriminate. Klein-
berg et al. [22] and Chouldechova [8] showed that both conditions cannot be
satisfied at the same time except in special cases such as zero prediction error
or if Y ?? A.

The use of calibration and equalised odds has another major limitation. If
Y 6?? A, the true scores Y typically have some inherent bias. This happens,
for example, if the police are more likely to unfairly decide that minorities are
violating their parole. The definitions of calibration or equalised odds do not
explicitly forbid the classifier from preserving an existing bias.

2.0.3 Demographic Parity/Disparate Impact

Perhaps the most common non-causal notion of fairness is demographic parity,
defined as follows:

P (Ŷ = y | A = a) = P (Ŷ = y | A = a0), (3)

for all y, a, a0, that is, Ŷ ?? A. If unsatisfied, this notion is also referred to as
disparate impact. Demographic parity has been used, for several purposes, in
the following works: [14, 19, 20, 24, 42, 43].

Satisfying demographic parity can often require positive discrimination, where
certain individuals who are otherwise very similar are treated di↵erently due to
having di↵erent protected attributes. Such disparate treatment can violate other
intuitive notions of fairness or equality, contradict equalised odds or calibration,
and in some cases is prohibited by law.

2.0.4 Individual Fairness

Dwork et al. [12] proposed the concept of individual fairness as follows.

P (Ŷ (i) = y | X(i), A(i)) ⇡ P (Ŷ (j) = y | X(j), A(j)), if d(i, j) ⇡ 0, (4)

where i, j refer to two di↵erent individuals and the superscripts (i), (j) are their
associated data. The function d(·, ·) is a ‘task-specific’ metric that describes
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how any pair of individuals should be treated similarly in a fair world. The
work suggests that this metric could be defined by ‘a regulatory body, or . . . a
civil rights organization’. While this notion mitigates the issues with individ-
ual predictions that arose from demographic parity, it replaces the problem of
defining fairness with defining a fair metric d(·, ·). As we observed in the in-
troduction, many variables vary along with protected attributes such as race
or gender, making it challenging to find a distance measure that will not allow
some implicit discrimination.

2.0.5 Causal Notions of Fairness

A number of recent works use causal approaches to address fairness [1, 7, 21,
23, 35, 44], which we review in more detail in Section 5. We describe selected
background on causal reasoning in Section 3. These works depart from the pre-
vious approaches in that they are not wholly data-driven but require additional
knowledge of the structure of the world, in the form of a causal model. This
additional knowledge is particularly valuable as it informs us how changes in
variables propagate in a system, be it natural, engineered or social. Explicit
causal assumptions remove ambiguity from methods that just depend upon sta-
tistical correlations. For instance, causal methods provide a recipe to express
assumptions on how to recover from sampling biases in the data (Section 4)
or how to describe mixed scenarios where we may believe that certain forms
of discrimination should be allowed while others should not (e.g., how gender
influences one’s field of study in college, as in Section 5).

3 Causal Models

We now review causality in su�cient detail for our analysis of causal fairness
in Section 5. It is challenging to give a self-contained definition of causality,
as many working definitions reveal circularities on close inspection. For two
random variables X and Y , informally we say that X causes Y when there exist
at least two di↵erent interventions on X that result in two di↵erent probability
distributions of Y . This does not mean we will be able to define what an
“intervention” is without using causal concepts, hence circularities appear.

Nevertheless, it is possible to formally express causal assumptions and to
compute the consequences of such assumptions if one is willing to treat some
concepts, such as interventions, as primitives. This is just an instance of the tra-
ditional axiomatic framework of mathematical modelling, dating back to Euclid.
In particular, in this paper we will make use primarily of the structural causal
model (SCM) framework advocated by [29], which shares much in common with
the approaches by [33] and [39].

3.1 Structural Causal Models

We define a causal model as a triplet (U, V, F ) of sets such that:

4



is set to intervention levels a and a0. A joint distribution for Y (a) and Y (a0) is
implied by the model. Conditional distributions, such as P (Y (a) = ya, Y (a0) =
ya0 | A = a, Y = y, Z = z) are also defined. Figure 1(c) shows the case for
interventions on Y . It is not di�cult to show, as Y is not an ancestor of A
in the graph, that A(y, u) = A(y0, u) = A(u) for all u, y, y0. This captures the
notion the Y does not cause A.

3.3 Counterfactuals Require Untestable Assumptions

Unless structural equations depend on observed variables only, they cannot
be tested for correctness (unless other untestable assumptions are imposed).
We can illustrate this problem by noting that a conditional density function
P (Vj | Vi = v) can be written as an equation Vj = f1(v, U) ⌘ F�1

Vi=v(U) =

F�1
Vi=v(g�1(g(U))) ⌘ f2(v, U 0), where F�1

Vi=V (·) is the inverse cumulative distri-
bution function corresponding to P (Vj | Vi = v), U is an uniformly distributed
random variable on [0, 1], g(·) is some arbitrary invertible function on [0, 1], and
U 0 ⌘ g(U). While this is not fundamental for e↵ects of causes, which depend
solely on predictive distributions that at least in theory can be estimated from
RCTs, di↵erent structural equations with the same interventional distributions
will imply di↵erent joint distributions over the counterfactuals.

The traditional approach for causal inference in statistics tries to avoid any
estimand that cannot be expressed by the marginal distributions of the counter-
factuals (i.e., all estimands in which marginals P (Y (a) = ya) and P (Y (a0) = ya0)
would provide enough information, such as the average causal e↵ect E[Y (a) �
Y (a0)] = E[Y | do(A = a)]�E[Y | do(A = a0)]). Models that follow this approach
and specify solely the univariate marginals of a counterfactual joint distribution
are sometimes called single-world models [32]. However, as we will see, cross-
world models seem a natural fit to algorithmic fairness. In particular, they are
required for non-trivial statements that concern fairness at an individual level
as opposed to fairness measures averaged over groups of individuals.

4 Why Causality is Critical For Fairness

Ethicists and social choice theorists recognise the importance of causality in
defining and reasoning about fairness. Terminology varies, but many of their
central questions and ideas, such as the role of agency in justice, responsibility-
sensitive egalitarianism, and luck egalitarianism [10, 13, 31] involve causal rea-
soning. Intuitively, it is unfair for individuals to experience di↵erent outcomes
caused by factors outside of their control. Empirical studies of attitudes about
distributive justice [6, 26] have found that most participants prefer redistribu-
tion to create fairer outcomes, and do so in ways that depend on how much
control individuals have on their outcomes. Hence, when choosing policies and
designing systems that will impact people, we should minimise or eliminate the
causal dependence on factors outside an individual’s control, such as their per-
ceived race or where they were born. Since such factors have influences on other
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aspects of peoples’ lives that may also be considered relevant for determining
what is fair, applying this intuitive notion of fairness requires careful causal
modelling as we describe here.

Is it necessary that models attempting to remove such factors be causal?
Many other notions of algorithmic fairness have also attempted to control or
adjust for covariates. While it is possible to produce identical predictions or de-
cisions with a model that is equivalent mathematically but without overt causal
assumptions or interpretations, the design decisions underlying a covariate ad-
justment are often based on implicit causal reasoning. There is a fundamental
benefit from an explicit statement of these assumptions. To illustrate this, we
consider a classic example of bias in graduate admissions.

4.1 Revisiting Gender Bias In Berkeley Admissions

The Berkeley admissions example [3] is often used to explain Simpson’s paradox
[38] and highlight the importance of adjusting for covariates. In the fall of 1973,
about 34.6% of women and 44.3% of men who applied to graduate studies at
Berkeley were admitted. However, this was not evidence that the admissions
decisions were biased against women. Decisions were made on a departmental
basis, and each department admitted proportions of men and women at ap-
proximately the same rate. However, a greater proportion of women applied to
the most selective departments, resulting in a lower overall acceptance rate for
women.

While the overall outcome is seemingly unfair, after controlling for choice
of department it appears to be fair, at least in some sense. In fact, while the
presentation of this example to illustrate Simpson’s paradox often ends there,
the authors in [3] conclude, ”Women are shunted by their socialisation and
education toward fields of graduate study that are generally more crowded, less
productive of completed degrees, and less well funded, and that frequently o↵er
poorer professional employment prospects.” The outcome can still be judged to
be unfair, not due to biased admissions decisions, but rather to the causes of
di↵erences in choice of department, such as socialisation. Achieving or defining
fairness requires addressing those root causes and applying value judgements.
Applicants certainly have some agency over which department they apply to,
but that decision is not made free of outside influences. They had no control
over what kind of society they had been born into, what sort of gender norms
that society had during their lifetime, or the scarcity of professional role models,
and so on.

The quote above suggests that the authors in [3] were reasoning about causes
even if they did not make explicit use of causal modelling. Indeed, conditioning
on the choice of the department only makes sense because we understand it has
a causal relationship with the outcome of interest and is not just a spurious cor-
relation. Pearl [29] provides a detailed account of the causal basis of Simpson’s
paradox.
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4.2 Selection Bias and Causality

Unfairness can also arise from bias in how data is collected or sampled. For
instance, if the police stop individuals on the street to check for the possession
of illegal drugs, and if the stopping protocol is the result of discrimination
that targets individuals of a particular race, this can create a feedback loop
that justifies discriminatory practice. Namely, if data gathered by the police
suggests that P (Drugs = yes | Race = a) > P (Drugs = yes | Race = a0),
this can be exploited to justify an unbalanced stopping process when police
resources are limited. How then can we assess its fairness? It is possible to
postulate structures analogous to the Berkeley example, where a mechanism
such as Race ! Economic status ! Drugs explains the pathway. Debate
would focus on the level of agency of an individual on finding himself or herself
at an economic level that leads to increased drug consumption.

But selection bias cuts deeper than that, and more recently causal knowledge
has been formally brought in to understand the role of such biases [2, 40]. This
is achieved by representing a selection variable Selected as part of our model,
and carrying out inference by acknowledging that, in the data, all individuals
are such that “Selected = true”. The association between race and drug is
expressed as P (Drugs = yes | Race = a, Selected = true) > P (Drugs =
yes | Race = a0, Selected = true), which may or may not be representative of
the hypothetical population in which everyone has been examined. The data
cannot directly tell whether P (Drugs = yes | Race = a, do(Selected = true)) >
P (Drugs = yes | Race = a0, do(Selected = true)). As an example, it is possible
to postulate the two following causal structures that cannot be distinguished
on the basis of data already contaminated with selection bias: (i) the structure
Race ! Drugs, with Selected being a disconnected vertex; (ii) the structure
Race ! Selected  H ! Drugs, where H represents hidden variables not
formally logged in police records.

In the latter case, we can check that drugs and race and unrelated. However,
P (Drugs = yes | Race = a, Selected = true) 6= P (Drugs = yes | Race =
a0, Selected = true), as conditioning on Selected means that both of its causes
Race and H “compete” to explain the selection. This induces an association
between Race and H, which carries over the association between Race and
Drugs. At the same time, P (Drugs = yes | Race = a, do(Selected = true)) =
P (Drugs = yes | Race = a0, do(Selected = true)), a conclusion that cannot
be reached without knowledge of the causal graph or a controlled experiment
making use of interventions. Moreover, if the actual structure is a combination
of (i) and (ii), standard statistical adjustments that remove the association
between Race and Drugs cannot disentangle e↵ects due to selection bias from
those due to the causal link Race ! Drugs, harming any arguments that can
be constructed around the agency behind the direct link.
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4.3 Fairness Requires Intervention

Approaches to algorithmic fairness usually involve imposing some kind of con-
straints on the algorithm (such as those formula given by Section 2). We can
view this as an intervention on the predicted outcome Ŷ . And, as argued in
[1], we can also try to understand the causal implications for the system we are
intervening on. That is, we can use an SCM to model the causal relationships
between variables in the data, between those and the predictor Ŷ that we are
intervening on, and between Ŷ and other aspects of the system that will be
impacted by decisions made based on the output of the algorithm.

To say that fairness is an intervention is not a strong statement considering
that any decision can be considered to be an intervention. Collecting data, using
models and algorithms with that data to predict some outcome variable, and
making decisions based on those predictions are all intentional acts motivated
by a causal hypothesis about the consequences of that course of action. In
particular, not imposing fairness can also be a deliberate intervention, albeit
one of inaction.

We should be clear that prediction problems do not tell the whole story.
Breaking the causal links between A and a prediction Ŷ is a way of avoiding
some unfairness in the world, but it is only one aspect of the problem. Ideally,
we would like that no paths from A to Y existed, and the provision of fair
predictions is predicated on the belief that it will be a contributing factor for
the eventual change in the generation of Y . We are not, however, making any
formal claims of modelling how predictive algorithmic fairness will lead to this
ideal stage where causal paths from A to Y themselves disappear.

5 Causal Notions of Fairness

In this section we discuss some of the emerging notions of fairness formulated
in terms of SCMs, focusing in particular on a notion introduced by us in [23],
counterfactual fairness. We explain how counterfactual fairness relates to some
of the more well-known notions of statistical fairness and in which ways a causal
perspective contributes to their interpretation. The remainder of the section will
discuss alternative causal notions of fairness and how they relate to counterfac-
tual fairness.

5.1 Counterfactual Fairness

A predictor Ŷ is said to satisfy counterfactual fairness if

P (Ŷ (a, U) = y | X = x, A = a) = P (Ŷ (a0, U) = y | X = x, A = a), (8)

for all y, x, a, a0 in the domain of the respective variables [23]. The randomness
here is on U (recall that background variables U can be thought of as describing
a particular individual person at some point in time). In practice, this means
we can build Ŷ from any variable Z in the system which is not caused by A
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