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THE LAST DECADE has seen a vast increase both in the 
diversity of applications to which machine learning 
is applied, and to the import of those applications. 
Machine learning is no longer just the engine behind 
ad placements and spam filters; it is now used to filter 
loan applicants, deploy police officers, and inform 
bail and parole decisions, among other things. The 
result has been a major concern for the potential for 
data-driven methods to introduce and perpetuate 
discriminatory practices, and to otherwise be unfair. 
And this concern has not been without reason: a 
steady stream of empirical findings has shown that 
data-driven methods can unintentionally both encode 
existing human biases and introduce new ones.7,9,11,60

At the same time, the last two years 
have seen an unprecedented explo-
sion in interest from the academic 
community in studying fairness and 
machine learning. “Fairness and 
transparency” transformed from a 
niche topic with a trickle of papers 
produced every year (at least since the 
work of Pedresh56 to a major subfield 
of machine learning, complete with a 
dedicated archival conference—ACM 
FAT*). But despite the volume and 
velocity of published work, our un-
derstanding of the fundamental ques-
tions related to fairness and machine 
learning remain in its infancy. What 
should fairness mean? What are the 
causes that introduce unfairness in 
machine learning? How best should 
we modify our algorithms to avoid 
unfairness? And what are the corre-
sponding trade offs with which we 
must grapple?

In March 2018, we convened a 
group of about 50 experts in Philadel-
phia, drawn from academia, industry, 
and government, to assess the state of 
our understanding of the fundamen-
tals of the nascent science of fairness 
in machine learning, and to identify 
the unanswered questions that seem 
the most pressing. By necessity, the 
aim of the workshop was not to com-
prehensively cover the vast growing 
field, much of which is empirical. In-
stead, the focus was on theoretical 
work aimed at providing a scientific 
foundation for understanding algo-

A Snapshot of 
the Frontiers 
of Fairness 
in Machine 
Learning

DOI:10.1145/3376898

A group of industry, academic, and 
government experts convene in Philadelphia  
to explore the roots of algorithmic bias.

BY ALEXANDRA CHOULDECHOVA AND AARON ROTH

 key insights
	˽ The algorithmic fairness literature  

is enormous and growing quickly, but  
our understanding of basic questions 
remains nascent.

	˽ Researchers have yet to find entirely 
compelling definitions, and current work 
focuses mostly on supervised learning  
in static settings.

	˽ There are many compelling open 
questions related to robustly accounting 
for the effects of interventions in  
dynamic settings, learning in  
the presence of data contaminated  
with human bias, and finding definitions 
of fairness that guarantee individual-level 
semantics while remaining actionable.
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the minority population. This leads to 
a different (and higher) distribution 
of errors in the minority population. 
This effect can be quantified and can 
be partially alleviated via concerted 
data gathering effort.14

3.	 The need to explore. In many im-
portant problems, including recidi-
vism prediction and drug trials, the 
data fed into the prediction algorithm 
depends on the actions that algorithm 
has taken in the past. We only observe 
whether an inmate will recidivate if we 
release him. We only observe the effi-
cacy of a drug on patients to whom it is 
assigned. Learning theory tells us that 
in order to effectively learn in such 
scenarios, we need to explore—that 
is, sometimes take actions we believe 
to be sub-optimal in order to gather 
more data. This leads to at least two 
distinct ethical questions. First, when 
are the individual costs of exploration 
borne disproportionately by a certain 
sub-population? Second, if in certain 
(for example, medical) scenarios, we 
view it as immoral to take actions we 
believe to be sub-optimal for any par-
ticular patient, how much does this 
slow learning, and does this lead to 
other sorts of unfairness?

Definitions of fairness. With a few 
exceptions, the vast majority of work 
to date on fairness in machine learn-
ing has focused on the task of batch 
classification. At a high level, this lit-
erature has focused on two main fami-
lies of definitions:a statistical notions 
of fairness and individual notions 
of fairness. We briefly review what 
is known about these approaches to 
fairness, their advantages, and their 
shortcomings.

Statistical definitions of fairness. 
Most of the literature on fair classifica-
tion focuses on statistical definitions 
of fairness. This family of definitions 
fixes a small number of protected 
demographic groups G (such as ra-
cial groups), and then ask for (ap-
proximate) parity of some statistical 
measure across all of these groups. 
Popular measures include raw posi-
tive classification rate, considered in 

a	 There is also an emerging line of work that 
considers causal notions of fairness (for exam-
ple, see Kilbertus,43 Kusner,48 Nabi55). We in-
tentionally avoided discussions of this poten-
tially important direction because it will be the 
subject of its own CCC visioning workshop.

rithmic bias. This document captures 
several of the key ideas and directions 
discussed. It is not an exhaustive ac-
count of work in the area.

What We Know
Even before we precisely specify what 
we mean by “fairness,” we can iden-
tify common distortions that can lead 
off-the-shelf machine learning tech-
niques to produce behavior that is in-
tuitively unfair. These include:

1.	 Bias encoded in data. Often, the 
training data we have on hand already 
includes human biases. For example, 
in the problem of recidivism predic-
tion used to inform bail and parole de-
cisions, the goal is to predict whether 
an inmate, if released, will go on to 
commit another crime within a fixed 
period of time. But we do not have 
data on who commits crimes—we 
have data on who is arrested. There is 
reason to believe that arrest data—es-
pecially for drug crimes—is skewed 
toward minority populations that are 
policed at a higher rate.59 Of course, 
machine learning techniques are de-
signed to fit the data, and so will natu-
rally replicate any bias already present 
in the data. There is no reason to ex-
pect them to remove existing bias.

2.	 Minimizing average error fits ma-
jority populations. Different popula-
tions of people have different distribu-
tions over features, and those features 
have different relationships to the 
label that we are trying to predict. As 
an example, consider the task of pre-
dicting college performance based 
on high school data. Suppose there 
is a majority population and a minor-
ity population. The majority popula-
tion employs SAT tutors and takes the 
exam multiple times, reporting only 
the highest score. The minority popu-
lation does not. We should naturally 
expect both that SAT scores are high-
er among the majority population, 
and that their relationship to college 
performance is differently calibrated 
compared to the minority population. 
But if we train a group-blind classi-
fier to minimize overall error, if it can-
not simultaneously fit both popula-
tions optimally, it will fit the majority 
population. This is because—simply 
by virtue of their numbers—the fit to 
the majority population is more im-
portant to overall error than the fit to 

Given the limitations 
of extant notions  
of fairness,  
is there a way  
to get some  
of the “best of  
both worlds?”
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work such as Calders,10 Dwork,19 Feld-
man,25 Kamishima,36 (also sometimes 
known as statistical parity,19 false pos-
itive and false negative rates15,29,46,63 
(also sometimes known as equal-
ized odds29), and positive predictive 
value15,46 (closely related to equalized 
calibration when working with real 
valued risk scores). There are others—
see, for example, Berk4 for a more ex-
haustive enumeration. 

This family of fairness definitions 
is attractive because it is simple, and 
definitions from this family can be 
achieved without making any assump-
tions on the data and can be easily ver-
ified. However, statistical definitions 
of fairness do not on their own give 
meaningful guarantees to individuals 
or structured subgroups of the pro-
tected demographic groups. Instead 
they give guarantees to “average” 
members of the protected groups. 
(See Dwork19 for a litany of ways in 
which statistical parity and similar 
notions can fail to provide meaning-
ful guarantees, and Kearns40 for exam-
ples of how some of these weaknesses 
carry over to definitions that equalize 
false positive and negative rates.) Dif-
ferent statistical measures of fairness 
can be at odds with one another. For 
example, Chouldechova15 and Klein-
berg46 prove a fundamental impossi-
bility result: except in trivial settings, 
it is impossible to simultaneously 
equalize false positive rates, false 
negative rates, and positive predictive 
value across protected groups. Learn-
ing subject to statistical fairness con-
straints can also be computationally 
hard,61 although practical algorithms 
of various sorts are known.1,29,63

Individual definitions of fairness. 
Individual notions of fairness, on the 
other hand, ask for constraints that 
bind on specific pairs of individu-
als, rather than on a quantity that is 
averaged over groups. For example, 
Dwork19 gives a definition which 
roughly corresponds to the constraint 
that “similar individuals should be 
treated similarly,” where similarity is 
defined with respect to a task-specific 
metric that must be determined on a 
case by case basis. Joseph35 suggests a 
definition that corresponds approxi-
mately to “less qualified individuals 
should not be favored over more qual-
ified individuals,” where quality is de-

fined with respect to the true underly-
ing label (unknown to the algorithm). 
However, although the semantics of 
these kinds of definitions can be more 
meaningful than statistical approach-
es to fairness, the major stumbling 
block is that they seem to require 
making significant assumptions. For 
example, the approach of Dwork19 pre-
supposes the existence of an agreed 
upon similarity metric, whose defini-
tion would itself seemingly require 
solving a non-trivial problem in fair-
ness, and the approach of Joseph35 
seems to require strong assumptions 
on the functional form of the relation-
ship between features and labels in 
order to be usefully put into practice. 
These obstacles are serious enough 
that it remains unclear whether in-
dividual notions of fairness can be 
made practical—although attempting 
to bridge this gap is an important and 
ongoing research agenda.

Questions at the Research Frontier
Given the limitations of extant no-
tions of fairness, is there a way to get 
some of the “best of both worlds?” 
In other words, constraints that are 
practically implementable without 
the need for making strong assump-
tions on the data or the knowledge 
of the algorithm designer, but which 
nevertheless provide more meaning-
ful guarantees to individuals? Two 
recent papers, Kearns40 and Hèbert-
Johnson30 (see also Kearns42 and 
Kim44 for empirical evaluations of 
the algorithms proposed in these pa-
pers), attempt to do this by asking for 
statistical fairness definitions to hold 
not just on a small number of pro-
tected groups, but on an exponential 
or infinite class of groups defined by 
some class of functions of bounded 
complexity. This approach seems 
promising—because, ultimately, they 
are asking for statistical notions of 
fairness—the approaches proposed 
by these papers enjoy the benefits of 
statistical fairness: that no assump-
tions need be made about the data, 
nor is any external knowledge (like a 
fairness metric) needed. It also bet-
ter addresses concerns about “inter-
sectionality,” a term used to describe 
how different kinds of discrimination 
can compound and interact for indi-
viduals who fall at the intersection of 

several protected classes. 
At the same time, the approach 

raises a number of additional ques-
tions: What function classes are rea-
sonable, and once one is decided 
upon (for example, conjunctions of 
protected attributes), what features 
should be “protected?” Should these 
only be attributes that are sensitive 
on their own, like race and gender, or 
might attributes that are innocuous 
on their own correspond to groups we 
wish to protect once we consider their 
intersection with protected attributes 
(for example clothing styles inter-
sected with race or gender)? Finally, 
this family of approaches significantly 
mitigates some of the weaknesses of 
statistical notions of fairness by ask-
ing for the constraints to hold on av-
erage not just over a small number 
of coarsely defined groups, but over 
very finely defined groups as well. Ulti-
mately, however, it inherits the weak-
nesses of statistical fairness as well, 
just on a more limited scale.

Another recent line of work aims 
to weaken the strongest assumption 
needed for the notion of individual 
fairness from Dwork:19 namely the al-
gorithm designer has perfect knowl-
edge of a “fairness metric.” Kim45 as-
sumes the algorithm has access to an 
oracle which can return an unbiased 
estimator for the distance between 
two randomly drawn individuals ac-
cording to an unknown fairness met-
ric, and show how to use this to ensure 
a statistical notion of fairness related 
to Hèbert-Johnson30 and Kearns,40 
which informally state that “on aver-
age, individuals in two groups should 
be treated similarly if on average the 
individuals in the two groups are simi-
lar” and this can be achieved with re-
spect to an exponentially or infinitely 
large set of groups. Similarly, Gillen28 
assumes the existence of an oracle, 
which can identify fairness violations 
when they are made in an online set-
ting but cannot quantify the extent of 
the violation (with respect to the un-
known metric). It is shown that when 
the metric is from a specific learn-
able family, this kind of feedback is 
sufficient to obtain an optimal regret 
bound to the best fair classifier while 
having only a bounded number of vio-
lations of the fairness metric. Roth-
blum58 considers the case in which 
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and do not necessarily coordinate. In 
settings like this, in which we do not 
have direct control over the decision-
making process, it is important to 
think about how to incentivize ratio-
nal agents to behave in a way that we 
view as fair. Kannan37 takes a prelimi-
nary stab at this task, showing how to 
incentivize a particular notion of in-
dividual fairness in a simple, stylized 
setting, using small monetary pay-
ments. But how should this work for 
other notions of fairness, and in more 
complex settings? Can this be done by 
controlling the flow of information, 
rather than by making monetary pay-
ments (monetary payments might be 
distasteful in various fairness-rele-
vant settings)? More work is needed 
here as well. Finally, Corbett-Davies17 
take a welfare maximization view of 
fairness in classification and charac-
terize the cost of imposing additional 
statistical fairness constraints as well. 
But this is done in a static environ-
ment. How would the conclusions 
change under a dynamic model?

Modeling and correcting bias in 
the data. Fairness concerns typically 
surface precisely in settings where 
the available training data is already 
contaminated by bias. The data itself 
is often a product of social and his-
torical process that operated to the 
disadvantage of certain groups. When 
trained in such data, off-the-shelf ma-
chine learning techniques may repro-
duce, reinforce, and potentially exac-
erbate existing biases. Understanding 
how bias arises in the data, and how 
to correct for it, are fundamental chal-
lenges in the study of fairness in ma-
chine learning.

Bolukbasi7 demonstrate how ma-
chine learning can reproduce biases 
in their analysis of the popular word-
2vec embedding trained on a corpus 
of Google News texts (parallel effects 
were independently discovered by Ca-
liskan11). The authors show that the 
trained embedding exhibit female/
male gender stereotypes, learning 
that “doctor” is more similar to man 
than to woman, along with analogies 
such as “man is to computer program-
mer as woman is to homemaker.” 
Even if such learned associations ac-
curately reflect patterns in the source 
text corpus, their use in automated 
systems may exacerbate existing bi-

the metric is known and show that 
a PAC-inspired approximate variant 
of metric fairness generalizes to new 
data drawn from the same underly-
ing distribution. Ultimately, however, 
these approaches all assume fairness 
is perfectly defined with respect to 
some metric, and that there is some 
sort of direct access to it. Can these 
approaches be generalized to a more 
“agnostic” setting, in which fairness 
feedback is given by human beings 
who may not be responding in a way 
that is consistent with any metric?

Data evolution and dynamics of 
fairness. The vast majority of work 
in computer science on algorithmic 
fairness has focused on one-shot clas-
sification tasks. But real algorithmic 
systems consist of many different 
components combined together, and 
operate in complex environments 
that are dynamically changing, some-
times because of the actions of the 
learning algorithm itself. For the field 
to progress, we need to understand 
the dynamics of fairness in more com-
plex systems.

Perhaps the simplest aspect of dy-
namics that remains poorly under-
stood is how and when components 
that may individually satisfy notions 
of fairness compose into larger con-
structs that still satisfy fairness guar-
antees. For example, if the bidders in 
an advertising auction individually 
are fair with respect to their bidding 
decisions, when will the allocation of 
advertisements be fair, and when will 
it not? Bower8 and Dwork20 have made 
a preliminary foray in this direction. 
These papers embark on a systematic 
study of fairness under composition 
and find that often the composition 
of multiple fair components will not 
satisfy any fairness constraint at all. 
Similarly, the individual components 
of a fair system may appear to be un-
fair in isolation. There are certain 
special settings, for example, the “fil-
tering pipeline” scenario of Bower8—
modeling a scenario in which a job 
applicant is selected only if she is se-
lected at every stage of the pipeline—
in which (multiplicative approxima-
tions of) statistical fairness notions 
compose in a well behaved way. But 
the high-level message from these 
works is that our current notions of 
fairness compose poorly. Experience 

from differential privacy21,22 suggests 
that graceful degradation under com-
position is key to designing compli-
cated algorithms satisfying desirabl  
e statistical properties, because it al-
lows algorithm design and analysis to 
be modular. Thus, it seems important 
to find satisfying fairness definitions 
and richer frameworks that behave 
well under composition.

In dealing with socio-technical 
systems, it is also important to under-
stand how algorithms dynamically ef-
fect their environment, and the incen-
tives of human actors. For example, if 
the bar (for example, college admis-
sion) is lowered for a group of indi-
viduals, this might increase the aver-
age qualifications for this group over 
time because of at least two effects: 
a larger proportion of children in the 
next generation grow up in house-
holds with college educated parents 
(and the opportunities this provides), 
and the fact that a college education 
is achievable can incentivize effort to 
prepare academically. These kinds 
of effects are not considered when 
considering either statistical or indi-
vidual notions of fairness in one-shot 
learning settings. 

The economics literature on af-
firmative action has long considered 
such effects—although not with the 
specifics of machine learning in mind: 
see, for example, Becker,3 Coat,16 Fos-
ter.26 More recently, there have been 
some preliminary attempts to model 
these kinds of effects in machine 
learning settings—for example, by 
modeling the environment as a Mar-
kov decision process,32 considering 
the equilibrium effects of imposing 
statistical definitions of fairness in a 
model of a labor market,31 specifying 
the functional relationship between 
classification outcomes and quality,49 
or by considering the effect of a clas-
sifier on a downstream Bayesian de-
cision maker.39 However, the specific 
predictions of most of the models 
of this sort are brittle to the specific 
modeling assumptions made—they 
point to the need to consider long 
term dynamics, but do not provide 
robust guidance for how to navigate 
them. More work is needed here.

Finally, decision making is often 
distributed between a large number 
of actors who share different goals 
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ases. For instance, it might result in 
male applicants being ranked more 
highly than equally qualified female 
applicants in queries related to jobs 
that the embedding identifies as 
male-associated.

Similar risks arise whenever there 
is potential for feedback loops. These 
are situations where the trained ma-
chine learning model informs deci-
sions that then affect the data collect-
ed for future iterations of the training 
process. Lum51 demonstrate how feed-
back loops might arise in predictive 
policing if arrest data were used to 
train the model.b In a nutshell, since 
police are likely to make more arrests 
in more heavily policed areas, using 
arrest data to predict crime hotspots 
will disproportionately concentrate 
policing efforts on already over-po-
liced communities. Expanding on this 
analysis, Ensign24 finds that incorpo-
rating community-driven data, such 
as crime reporting, helps to attenu-
ate the biasing feedback effects. The 
authors also propose a strategy for 
accounting for feedback by adjusting 
arrest counts for policing intensity. 
The success of the mitigation strat-
egy, of course, depends on how well 
the simple theoretical model reflects 
the true relationships between crime 
intensity, policing, and arrests. Prob-
lematically, such relationships are of-
ten unknown, and are very difficult to 
infer from data. This situation is by no 
means specific to predictive policing.

Correcting for data bias generally 
seems to require knowledge of how 
the measurement process is biased, 
or judgments about properties the 
data would satisfy in an “unbiased” 
world. Friedler27 formalize this as 
a disconnect between the observed 
space—features that are observed in 
the data, such as SAT scores—and 
the unobservable construct space—
features that form the desired basis 
for decision making, such as intel-
ligence. Within this framework, data 
correction efforts attempt to undo the 
effects of biasing mechanisms that 
drive discrepancies between these 
spaces. To the extent that the biasing 

b	 Predictive policing models are generally pro-
prietary, and so it is not clear whether arrest 
data is used to train the model in any de-
ployed system.

mechanism cannot be inferred em-
pirically, any correction effort must 
make explicit its underlying assump-
tions about this mechanism. What 
precisely is being assumed about the 
construct space? When can the map-
ping between the construct space and 
the observed space be learned and 
inverted? What form of fairness does 
the correction promote, and at what 
cost? The costs are often immediately 
realized, whereas the benefits are less 
tangible. We will directly observe re-
ductions in prediction accuracy, but 
any gains hinge on a belief that the 
observed world is not one we should 
seek to replicate accurately in the 
first place. This is an area where tools 
from causality may offer a principled 
approach for drawing valid inference 
with respect to unobserved counter-
factually ‘fair’ worlds.

Fair representations. Fair repre-
sentation learning is a data debiasing 
process that produces transforma-
tions (intermediate representations) 
of the original data that retain as 
much of the task-relevant informa-
tion as possible while removing infor-
mation about sensitive or protected 
attributes. This is one approach to 
transforming biased observational 
data in which group membership may 
be inferred from other features, to a 
construct space where protected attri-
butes are statistically independent of 
other features.

First introduced in the work of 
Zemel64 fair representation learning 
produces a debiased data set that 
may in principle be used by other par-
ties without any risk of disparate out-
comes. Feldman25 and McNamara54 
formalize this idea by showing how 
the disparate impact of a decision rule 
is bounded in terms of its balanced er-
ror rate as a predictor of the sensitive 
attribute.

Several recent papers have intro-
duced new approaches for construct-
ing fair representations. Feldman25 
propose rank-preserving procedures 
for repairing features to reduce or re-
move pairwise dependence with the 
protected attribute. Johndrow33 build 
upon this work, introducing a likeli-
hood-based approach that can addi-
tionally handle continuous protected 
attributes, discrete features, and 
which promotes joint independence 

Fairness  
concerns typically 
surface precisely  
in settings where  
the available 
training data 
is already 
contaminated  
by bias. 
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tions that appear to be sub-optimal so 
as to gather more data. But in settings 
in which decisions correspond to in-
dividuals, this means sacrificing the 
well-being of a particular person for 
the potential benefit of future individ-
uals. This can sometimes be unethi-
cal, and a source of unfairness.6 Sever-
al recent papers explore this issue. For 
example, Bastani2 and Kannan38 give 
conditions under which linear learn-
ers need not explore at all in bandit 
settings, thereby allowing for best-ef-
fort service to each arriving individual, 
obviating the tension between ethical 
treatment of individuals and learn-
ing. Raghavan57 show the costs associ-
ated with exploration can be unfairly 
bourn by a structured sub-population, 
and that counter-intuitively, those 
costs can actually increase when they 
are included with a majority popula-
tion, even though more data increases 
the rate of learning overall. However, 
these results are all preliminary: they 
are restricted to settings in which the 
learner is learning a linear policy, and 
the data really is governed by a linear 
model. While illustrative, more work 
is needed to understand real-world 
learning in online settings, and the 
ethics of exploration.

There is also some work on fair-
ness in machine learning in other 
settings—for example, ranking,12 se-
lection,42,47 personalization,13 bandit 
learning,34,50 human-classifier hybrid 
decision systems,53 and reinforce-
ment learning.18,32 But outside of clas-
sification, the literature is relatively 
sparse. This should be rectified, be-
cause there are interesting and im-
portant fairness issues that arise in 
other settings—especially when there 
are combinatorial constraints on the 
set of individuals that can be selected 
for a task, or when there is a temporal 
aspect to learning.
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between the transformed features 
and the protected attributes. There 
is also a growing literature on using 
adversarial learning to achieve group 
fairness in the form of statistical par-
ity or false positive/false negative rate 
balance.5,23,52,65

Existing theory shows the fairness-
promoting benefits of fair-represen-
tation learning rely critically on the 
extent to which existing associations 
between the transformed features 
and the protected characteristics are 
removed. Adversarial downstream us-
ers may be able to recover protected 
attribute information if their models 
are more powerful than those used 
initially to obfuscate the data. This 
presents a challenge both to the gen-
erators of fair representations as well 
as to auditors and regulators tasked 
with certifying that the resulting data 
is fair for use. More work is needed to 
understand the implications of fair 
representation learning for promot-
ing fairness in the real world.

Beyond classification. Although 
the majority of the work on fairness 
in machine learning focuses on batch 
classification, it is but one aspect of 
how machine learning is used. Much 
of machine learning—for example, 
online learning, bandit learning, and 
reinforcement learning—focuses 
on dynamic settings in which the ac-
tions of the algorithm feed back into 
the data it observes. These dynamic 
settings capture many problems for 
which fairness is a concern. For ex-
ample, lending, criminal recidivism 
prediction, and sequential drug trials 
are so-called bandit learning prob-
lems, in which the algorithm cannot 
observe data corresponding to coun-
terfactuals. We cannot see whether 
someone not granted a loan would 
have paid it back. We cannot see 
whether an inmate not released on 
parole would have gone on to commit 
another crime. We cannot see how a 
patient would have responded to a dif-
ferent drug.

The theory of learning in bandit 
settings is well understood, and it is 
characterized by a need to trade-off 
exploration with exploitation. Rather 
than always making a myopically op-
timal decision, when counterfactuals 
cannot be observed, it is necessary 
for algorithms to sometimes take ac-

Much of machine 
learning focuses  
on dynamic settings 
in which the actions 
of the algorithm 
feed back into  
the data it observes. 
These dynamic 
settings capture 
many problems  
for which fairness  
is a concern.
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Bias in Computer Systems
BATYA FRIEDMAN
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and
HELEN NISSENBAUM
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From an analysis of actual cases, three categories of bias in computer systems have been
developed: preexisting, technical, and emergent. Preexisting bias has its roots in social
institutions, practices, and attitudes. Technical bias arises from technical constraints or
considerations. Emergent bias arises in a context of use. Although others have pointed to bias
in particular computer systems and have noted the general problem, we know of no com-
parable work that examines this phenomenon comprehensively and which offers a framework
for understanding and remedying it. We conclude by suggesting that freedom from bias should
be counted among the select set of criteria—including reliability, accuracy, and efficiency—
according to which the quality of systems in use in society should be judged.

Categories and Subject Descriptors: D.2.0 [Software]: Software Engineering; H.1.2 [Informa-
tion Systems]: User/Machine Systems; K.4.0 [Computers and Society]: General

General Terms: Design, Human Factors

Additional Key Words and Phrases: Bias, computer ethics, computers and society, design
methods, ethics, human values, standards, social computing, social impact, system design,
universal design, values

INTRODUCTION

To introduce what bias in computer systems might look like, consider the
case of computerized airline reservation systems, which are used widely by
travel agents to identify and reserve airline flights for their customers.
These reservation systems seem straightforward. When a travel agent
types in a customer’s travel requirements, the reservation system searches
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a database of flights and retrieves all reasonable flight options that meet or
come close to the customer’s requirements. These options then are ranked
according to various criteria, giving priority to nonstop flights, more direct
routes, and minimal total travel time. The ranked flight options are
displayed for the travel agent. In the 1980s, however, most of the airlines
brought before the Antitrust Division of the United States Justice Depart-
ment allegations of anticompetitive practices by American and United
Airlines whose reservation systems—Sabre and Apollo, respectively—dom-
inated the field. It was claimed, among other things, that the two reserva-
tions systems are biased [Schrifin 1985].

One source of this alleged bias lies in Sabre’s and Apollo’s algorithms for
controlling search and display functions. In the algorithms, preference is
given to “on-line” flights, that is, flights with all segments on a single
carrier. Imagine, then, a traveler who originates in Phoenix and flies the
first segment of a round-trip overseas journey to London on American
Airlines, changing planes in New York. All other things being equal, the
British Airlines’ flight from New York to London would be ranked lower
than the American Airlines’ flight from New York to London even though in
both cases a traveler is similarly inconvenienced by changing planes and
checking through customs. Thus, the computer systems systematically
downgrade and, hence, are biased against international carriers who fly
few, if any, internal U.S. flights, and against internal carriers who do not
fly international flights [Fotos 1988; Ott 1988].

Critics also have been concerned with two other problems. One is that the
interface design compounds the bias in the reservation systems. Lists of
ranked flight options are displayed screen by screen. Each screen displays
only two to five options. The advantage to a carrier of having its flights
shown on the first screen is enormous since 90% of the tickets booked by
travel agents are booked by the first screen display [Taib 1990]. Even if the
biased algorithm and interface give only a small percent advantage overall
to one airline, it can make the difference to its competitors between
survival and bankruptcy. A second problem arises from the travelers’
perspective. When travelers contract with an independent third party—a
travel agent—to determine travel plans, travelers have good reason to
assume they are being informed accurately of their travel options; in many
situations, that does not happen.

As Sabre and Apollo illustrate, biases in computer systems can be
difficult to identify let alone remedy because of the way the technology
engages and extenuates them. Computer systems, for instance, are compar-
atively inexpensive to disseminate, and thus, once developed, a biased
system has the potential for widespread impact. If the system becomes a
standard in the field, the bias becomes pervasive. If the system is complex,
and most are, biases can remain hidden in the code, difficult to pinpoint or
explicate, and not necessarily disclosed to users or their clients. Further-
more, unlike in our dealings with biased individuals with whom a potential
victim can negotiate, biased systems offer no equivalent means for appeal.
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Although others have pointed to bias in particular computer systems and
have noted the general problem [Johnson and Mulvey 1993; Moor 1985], we
know of no comparable work that focuses exclusively on this phenomenon
and examines it comprehensively.

In this article, we provide a framework for understanding bias in
computer systems. From an analysis of actual computer systems, we have
developed three categories: preexisting bias, technical bias, and emergent
bias. Preexisting bias has its roots in social institutions, practices, and
attitudes. Technical bias arises from technical constraints or consider-
ations. Emergent bias arises in a context of use. We begin by defining bias
and explicating each category and then move to case studies. We conclude
with remarks about how bias in computer systems can be remedied.

1. WHAT IS A BIASED COMPUTER SYSTEM?

In its most general sense, the term bias means simply “slant.” Given this
undifferentiated usage, at times the term is applied with relatively neutral
content. A grocery shopper, for example, can be “biased” by not buying
damaged fruit. At other times, the term bias is applied with significant
moral meaning. An employer, for example, can be “biased” by refusing to
hire minorities. In this article we focus on instances of the latter, for if one
wants to develop criteria for judging the quality of systems in use—which
we do—then criteria must be delineated in ways that speak robustly yet
precisely to relevant social matters. Focusing on bias of moral import does
just that.

Accordingly, we use the term bias to refer to computer systems that
systematically and unfairly discriminate against certain individuals or
groups of individuals in favor of others. A system discriminates unfairly if
it denies an opportunity or a good or if it assigns an undesirable outcome to
an individual or group of individuals on grounds that are unreasonable or
inappropriate. Consider, for example, an automated credit advisor that
assists in the decision of whether or not to extend credit to a particular
applicant. If the advisor denies credit to individuals with consistently poor
payment records we do not judge the system to be biased because it is
reasonable and appropriate for a credit company to want to avoid extending
credit privileges to people who consistently do not pay their bills. In
contrast, a credit advisor that systematically assigns poor credit ratings to
individuals with ethnic surnames discriminates on grounds that are not
relevant to credit assessments and, hence, discriminates unfairly.

Two points follow. First, unfair discrimination alone does not give rise to
bias unless it occurs systematically. Consider again the automated credit
advisor. Imagine a random glitch in the system which changes in an
isolated case information in a copy of the credit record for an applicant who
happens to have an ethnic surname. The change in information causes a
downgrading of this applicant’s rating. While this applicant experiences
unfair discrimination resulting from this random glitch, the applicant could
have been anybody. In a repeat incident, the same applicant or others with
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similar ethnicity would not be in a special position to be singled out. Thus,
while the system is prone to random error, it is not biased.

Second, systematic discrimination does not establish bias unless it is
joined with an unfair outcome. A case in point is the Persian Gulf War,
where United States Patriot missiles were used to detect and intercept
Iraqi Scud missiles. At least one software error identified during the war
contributed to systematically poor performance by the Patriots [Gao 1992].
Calculations used to predict the location of a Scud depended in complex
ways on the Patriots’ internal clock. The longer the Patriot’s continuous
running time, the greater the imprecision in the calculation. The deaths of
at least 28 Americans in Dhahran can be traced to this software error,
which systematically degraded the accuracy of Patriot missiles. While we
are not minimizing the serious consequence of this systematic computer
error, it falls outside of our analysis because it does not involve unfairness.

2. FRAMEWORK FOR ANALYZING BIAS IN COMPUTER SYSTEMS

We derived our framework by examining actual computer systems for bias.
Instances of bias were identified and characterized according to their
source, and then the characterizations were generalized to more abstract
categories. These categories were further refined by their application to
other instances of bias in the same or additional computer systems. In most
cases, our knowledge of particular systems came from the published
literature. In total, we examined 17 computer systems from diverse fields
including banking, commerce, computer science, education, medicine, and
law.

The framework that emerged from this methodology is comprised of three
overarching categories—preexisting bias, technical bias, and emergent
bias. Table I contains a detailed description of each category. In more
general terms, they can be described as follows.

2.1 Preexisting Bias

Preexisting bias has its roots in social institutions, practices, and attitudes.
When computer systems embody biases that exist independently, and
usually prior to the creation of the system, then we say that the system
embodies preexisting bias. Preexisting biases may originate in society at
large, in subcultures, and in formal or informal, private or public organiza-
tions and institutions. They can also reflect the personal biases of individ-
uals who have significant input into the design of the system, such as the
client or system designer. This type of bias can enter a system either
through the explicit and conscious efforts of individuals or institutions, or
implicitly and unconsciously, even in spite of the best of intentions. For
example, imagine an expert system that advises on loan applications. In
determining an applicant’s credit risk, the automated loan advisor nega-
tively weights applicants who live in “undesirable” locations, such as
low-income or high-crime neighborhoods, as indicated by their home ad-
dresses (a practice referred to as “red-lining”). To the extent the program
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Table I. Categories of Bias in Computer System Design

These categories describe ways in which bias can arise in the design of computer systems. The
illustrative examples portray plausible cases of bias.

1. Preexisting Bias
Preexisting bias has its roots in social institutions, practices, and attitudes.
When computer systems embody biases that exist independently, and usually prior to the
creation of the system, then the system exemplifies preexisting bias. Preexisting bias can
enter a system either through the explicit and conscious efforts of individuals or institutions,
or implicitly and unconsciously, even in spite of the best of intentions.

1.1. Individual
Bias that originates from individuals who have significant input into the design of the
system, such as the client commissioning the design or the system designer (e.g., a client
embeds personal racial biases into the specifications for loan approval software).

1.2 Societal
Bias that originates from society at large, such as from organizations (e.g., industry),
institutions (e.g., legal systems), or culture at large (e.g., gender biases present in the
larger society that lead to the development of educational software that overall appeals
more to boys than girls).

2. Technical Bias
Technical bias arises from technical constraints or technical considerations.

2.1 Computer Tools
Bias that originates from a limitation of the computer technology including hardware,
software, and peripherals (e.g., in a database for matching organ donors with potential
transplant recipients certain individuals retrieved and displayed on initial screens are
favored systematically for a match over individuals displayed on later screens).

2.2 Decontextualized Algorithms
Bias that originates from the use of an algorithm that fails to treat all groups fairly under
all significant conditions (e.g., a scheduling algorithm that schedules airplanes for take-off
relies on the alphabetic listing of the airlines to rank order flights ready within a given
period of time).

2.3 Random Number Generation
Bias that originates from imperfections in pseudorandom number generation or in the
misuse of pseudorandom numbers (e.g., an imperfection in a random-number generator
used to select recipients for a scarce drug leads systematically to favoring individuals
toward the end of the database).

2.4 Formalization of Human Constructs
Bias that originates from attempts to make human constructs such as discourse,
judgments, or intuitions amenable to computers: when we quantify the qualitative,
discretize the continuous, or formalize the nonformal (e.g., a legal expert system advises
defendants on whether or not to plea bargain by assuming that law can be spelled out in
an unambiguous manner that is not subject to human and humane interpretations in
context).

334 • Batya Friedman and Helen Nissenbaum

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.



embeds the biases of clients or designers who seek to avoid certain
applicants on the basis of group stereotypes, the automated loan advisor’s
bias is preexisting.

2.2 Technical Bias

In contrast to preexisting bias, technical bias arises from the resolution of
issues in the technical design. Sources of technical bias can be found in
several aspects of the design process, including limitations of computer
tools such as hardware, software, and peripherals; the process of ascribing
social meaning to algorithms developed out of context; imperfections in
pseudorandom number generation; and the attempt to make human con-
structs amenable to computers, when we quantify the qualitative, dis-
cretize the continuous, or formalize the nonformal. As an illustration,
consider again the case of Sabre and Apollo described above. A technical
constraint imposed by the size of the monitor screen forces a piecemeal
presentation of flight options and, thus, makes the algorithm chosen to

Table I. Continued

These categories describe ways in which bias can arise in the design of computer systems. The
illustrative examples portray plausible cases of bias.

3. Emergent Bias
Emergent bias arises in a context of use with real users. This bias typically emerges some
time after a design is completed, as a result of changing societal knowledge, population, or
cultural values. User interfaces are likely to be particularly prone to emergent bias because
interfaces by design seek to reflect the capacities, character, and habits of prospective users.
Thus, a shift in context of use may well create difficulties for a new set of users.

3.1 New Societal Knowledge
Bias that originates from the emergence of new knowledge in society that cannot be or is
not incorporated into the system design (e.g., a medical expert system for AIDS patients
has no mechanism for incorporating cutting-edge medical discoveries that affect how
individuals with certain symptoms should be treated).

3.2 Mismatch between Users and System Design
Bias that originates when the population using the system differs on some significant
dimension from the population assumed as users in the design.

3.2.1 Different Expertise
Bias that originates when the system is used by a population with a different knowledge
base from that assumed in the design (e.g., an ATM with an interface that makes
extensive use of written instructions—“place the card, magnetic tape side down, in the
slot to your left”—is installed in a neighborhood with primarily a nonliterate
population).

3.2.2 Different Values
Bias that originates when the system is used by a population with different values than
those assumed in the design (e.g., educational software to teach mathematics concepts is
embedded in a game situation that rewards individualistic and competitive strategies,
but is used by students with a cultural background that largely eschews competition
and instead promotes cooperative endeavors).
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rank flight options critically important. Whatever ranking algorithm is
used, if it systematically places certain airlines’ flights on initial screens
and other airlines’ flights on later screens, the system will exhibit technical
bias.

2.3 Emergent Bias

While it is almost always possible to identify preexisting bias and technical
bias in a system design at the time of creation or implementation, emergent
bias arises only in a context of use. This bias typically emerges some time
after a design is completed, as a result of changing societal knowledge,
population, or cultural values. Using the example of an automated airline
reservation system, envision a hypothetical system designed for a group of
airlines all of whom serve national routes. Consider what might occur if
that system was extended to include international airlines. A flight-
ranking algorithm that favors on-line flights when applied in the original
context with national airlines leads to no systematic unfairness. However,
in the new context with international airlines, the automated system would
place these airlines at a disadvantage and, thus, comprise a case of
emergent bias. User interfaces are likely to be particularly prone to
emergent bias because interfaces by design seek to reflect the capacities,
character, and habits of prospective users. Thus, a shift in context of use
may well create difficulties for a new set of users.

3. APPLICATIONS OF THE FRAMEWORK

We now analyze actual computer systems in terms of the framework
introduced above. It should be understood that the systems we analyze are
by and large good ones, and our intention is not to undermine their
integrity. Rather, our intention is to develop the framework, show how it
can identify and clarify our understanding of bias in computer systems, and
establish its robustness through real-world cases.

3.1 The National Resident Match Program (NRMP)

The NRMP implements a centralized method for assigning medical school
graduates their first employment following graduation. The centralized
method of assigning medical students to hospital programs arose in the
1950s in response to the chaotic job placement process and on-going failure
of hospitals and students to arrive at optimal placements. During this early
period the matching was carried out by a mechanical card-sorting process,
but in 1974 electronic data processing was introduced to handle the entire
matching process. (For a history of the NRMP, see Graettinger and Peran-
son [1981a].) After reviewing applications and interviewing students, hos-
pital programs submit to the centralized program their ranked list of
students. Students do the same for hospital programs. Hospitals and
students are not permitted to make other arrangements with one another
or to attempt to directly influence each others’ rankings prior to the match.
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Inherent Trade-Offs in the Fair Determination of Risk Scores

Jon Kleinberg ∗ Sendhil Mullainathan † Manish Raghavan ‡

Abstract

Recent discussion in the public sphere about algorithmic classification has involved tension between
competing notions of what it means for a probabilistic classification to be fair to different groups. We
formalize three fairness conditions that lie at the heart of these debates, and we prove that except in highly
constrained special cases, there is no method that can satisfy these three conditions simultaneously.
Moreover, even satisfying all three conditions approximately requires that the data lie in an approximate
version of one of the constrained special cases identified by our theorem. These results suggest some
of the ways in which key notions of fairness are incompatible with each other, and hence provide a
framework for thinking about the trade-offs between them.

1 Introduction

There are many settings in which a sequence of people comes before a decision-maker, who must make a
judgment about each based on some observable set of features. Across a range of applications, these judg-
ments are being carried out by an increasingly wide spectrum of approaches ranging from human expertise
to algorithmic and statistical frameworks, as well as various combinations of these approaches.

Along with these developments, a growing line of work has asked how we should reason about issues of bias
and discrimination in settings where these algorithmic and statistical techniques, trained on large datasets
of past instances, play a significant role in the outcome. Let us consider three examples where such issues
arise, both to illustrate the range of relevant contexts, and to surface some of the challenges.

A set of example domains. First, at various points in the criminal justice system, including decisions
about bail, sentencing, or parole, an officer of the court may use quantitative risk tools to assess a defendant’s
probability of recidivism — future arrest — based on their past history and other attributes. Several recent
analyses have asked whether such tools are mitigating or exacerbating the sources of bias in the criminal
justice system; in one widely-publicized report, Angwin et al. analyzed a commonly used statistical method
for assigning risk scores in the criminal justice system — the COMPAS risk tool — and argued that it was
biased against African-American defendants [2, 23]. One of their main contentions was that the tool’s errors
were asymmetric: African-American defendants were more likely to be incorrectly labeled as higher-risk
than they actually were, while white defendants were more likely to be incorrectly labeled as lower-risk than
they actually were. Subsequent analyses raised methodological objections to this report, and also observed
that despite the COMPAS risk tool’s errors, its estimates of the probability of recidivism are equally well
calibrated to the true outcomes for both African-American and white defendants [1, 10, 13, 17].

∗Cornell University
†Harvard University
‡Cornell University
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Second, in a very different domain, researchers have begun to analyze the ways in which different genders
and racial groups experience advertising and commercial content on the Internet differently [9, 26]. We
could ask, for example: if a male user and female user are equally interested in a particular product, does
it follow that they’re equally likely to be shown an ad for it? Sometimes this concern may have broader
implications, for example if women in aggregate are shown ads for lower-paying jobs. Other times, it may
represent a clash with a user’s leisure interests: if a female user interacting with an advertising platform is
interested in an activity that tends to have a male-dominated viewership, like professional football, is the
platform as likely to show her an ad for football as it is to show such an ad to an interested male user?

A third domain, again quite different from the previous two, is medical testing and diagnosis. Doctors
making decisions about a patient’s treatment may rely on tests providing probability estimates for different
diseases and conditions. Here too we can ask whether such decision-making is being applied uniformly
across different groups of patients [16, 27], and in particular how medical tests may play a differential role
for conditions that vary widely in frequency between these groups.

Providing guarantees for decision procedures. One can raise analogous questions in many other do-
mains of fundamental importance, including decisions about hiring, lending, or school admissions [24], but
we will focus on the three examples above for the purposes of this discussion. In these three example do-
mains, a few structural commonalities stand out. First, the algorithmic estimates are often being used as
“input” to a larger framework that makes the overall decision — a risk score provided to a human expert in
the legal and medical instances, and the output of a machine-learning algorithm provided to a larger adver-
tising platform in the case of Internet ads. Second, the underlying task is generally about classifying whether
people possess some relevant property: recidivism, a medical condition, or interest in a product. We will
refer to people as being positive instances if they truly possess the property, and negative instances if they
do not. Finally, the algorithmic estimates being provided for these questions are generally not pure yes-no
decisions, but instead probability estimates about whether people constitute positive or negative instances.

Let us suppose that we are concerned about how our decision procedure might operate differentially between
two groups of interest (such as African-American and white defendants, or male and female users of an
advertising system). What sorts of guarantees should we ask for as protection against potential bias?

A first basic goal in this literature is that the probability estimates provided by the algorithm should be
well-calibrated: if the algorithm identifies a set of people as having a probability z of constituting positive
instances, then approximately a z fraction of this set should indeed be positive instances [8, 14]. Moreover,
this condition should hold when applied separately in each group as well [13]. For example, if we are
thinking in terms of potential differences between outcomes for men and women, this means requiring that a
z fraction of men and a z fraction of women assigned a probability z should possess the property in question.

A second goal focuses on the people who constitute positive instances (even if the algorithm can only
imperfectly recognize them): the average score received by people constituting positive instances should
be the same in each group. We could think of this as balance for the positive class, since a violation of it
would mean that people constituting positive instances in one group receive consistently lower probability
estimates than people constituting positive instances in another group. In our initial criminal justice example,
for instance, one of the concerns raised was that white defendants who went on to commit future crimes
were assigned risk scores corresponding to lower probability estimates in aggregate; this is a violation of
the condition here. There is a completely analogous property with respect to negative instances, which we
could call balance for the negative class. These balance conditions can be viewed as generalizations of the
notions that both groups should have equal false negative and false positive rates.

It is important to note that balance for the positive and negative classes, as defined here, is distinct in
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crucial ways from the requirement that the average probability estimate globally over all members of the
two groups be equal. This latter global requirement is a version of statistical parity [12, 4, 21, 22]. In some
cases statistical parity is a central goal (and in some it is legally mandated), but the examples considered
so far suggest that classification and risk assessment are much broader activities where statistical parity is
often neither feasible nor desirable. Balance for the positive and negative classes, however, is a goal that can
be discussed independently of statistical parity, since these two balance conditions simply ask that once we
condition on the “correct” answer for a person, the chance of making a mistake on them should not depend
on which group they belong to.

The present work: Trade-offs among the guarantees. Despite their different formulations, the calibra-
tion condition and the balance conditions for the positive and negative classes intuitively all seem to be
asking for variants of the same general goal — that our probability estimates should have the same effec-
tiveness regardless of group membership. One might therefore hope that it would be feasible to achieve all
of them simultaneously.

Our main result, however, is that these conditions are in general incompatible with each other; they can only
be simultaneously satisfied in certain highly constrained cases. Moreover, this incompatibility applies to
approximate versions of the conditions as well.

In the remainder of this section we formulate this main result precisely, as a theorem building on a model
that makes the discussion thus far more concrete.

1.1 Formulating the Goal

Let’s start with some basic definitions. As above, we have a collection of people each of whom constitutes
either a positive instance or a negative instance of the classification problem. We’ll say that the positive
class consists of the people who constitute positive instances, and the negative class consists of the people
who constitute negative instances. For example, for criminal defendants, the positive class could consist of
those defendants who will be arrested again within some fixed time window, and the negative class could
consist of those who will not. The positive and negative classes thus represent the “correct” answer to the
classification problem; our decision procedure does not know them, but is trying to estimate them.

Feature vectors. Each person has an associated feature vector σ, representing the data that we know
about them. Let pσ denote the fraction of people with feature vector σ who belong to the positive class.
Conceptually, we will picture that while there is variation within the set of people who have feature vector
σ, this variation is invisible to whatever decision procedure we apply; all people with feature vector σ are
indistinguishable to the procedure. Our model will assume that the value pσ for each σ is known to the
procedure.1

Groups. Each person also belongs to one of two groups, labeled 1 or 2, and we would like our decisions
to be unbiased with respect to the members of these two groups.2 In our examples, the two groups could
correspond to different races or genders, or other cases where we want to look for the possibility of bias
between them. The two groups have different distributions over feature vectors: a person of group t has a
probability atσ of exhibiting the feature vector σ. However, people of each group have the same probability

1Clearly the case in which the value of pσ is unknown is an important version of the problem as well; however, since our main
results establish strong limitations on what is achievable, these limitations are only stronger because they apply even to the case of
known pσ.

2We focus on the case of two groups for simplicity of exposition, but it is straightforward to extend all of our definitions to the
case of more than two groups.
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pσ of belonging to the positive class provided their feature vector is σ. In this respect, σ contains all the
relevant information available to us about the person’s future behavior; once we know σ, we do not get any
additional information from knowing their group as well.3

Risk Assignments. We say that an instance of our problem is specified by the parameters above: a feature
vector and a group for each person, with a value pσ for each feature vector, and distributions {atσ} giving
the frequency of the feature vectors in each group.

Informally, risk assessments are ways of dividing people up into sets based on their feature vectors σ (po-
tentially using randomization), and then assigning each set a probability estimate that the people in this set
belong to the positive class. Thus, we define a risk assignment to consist of a set of “bins” (the sets), where
each bin is labeled with a score vb that we intend to use as the probability for everyone assigned to bin b.
We then create a rule for assigning people to bins based on their feature vector σ; we allow the rule to di-
vide people with a fixed feature vector σ across multiple bins (reflecting the possible use of randomization).
Thus, the rule is specified by values Xσb: a fraction Xσb of all people with feature vector σ are assigned
to bin b. Note that the rule does not have access to the group t of the person being considered, only their
feature vector σ. (As we will see, this does not mean that the rule is incapable of exhibiting bias between
the two groups.) In summary, a risk assignment is specified by a set of bins, a score for each bin, and values
Xσb that define a mapping from people with feature vectors to bins.

Fairness Properties for Risk Assignments. Within the model, we now express the three conditions dis-
cussed at the outset, each reflecting a potentially different notion of what it means for the risk assignment to
be “fair.”

(A) Calibration within groups requires that for each group t, and each bin b with associated score vb, the
expected number of people from group t in b who belong to the positive class should be a vb fraction
of the expected number of people from group t assigned to b.

(B) Balance for the negative class requires that the average score assigned to people of group 1 who
belong to the negative class should be the same as the average score assigned to people of group 2
who belong to the negative class. In other words, the assignment of scores shouldn’t be systematically
more inaccurate for negative instances in one group than the other.

(C) Balance for the positive class symmetrically requires that the average score assigned to people of
group 1 who belong to the positive class should be the same as the average score assigned to people
of group 2 who belong to the positive class.

Why Do These Conditions Correspond to Notions of Fairness?. All of these are natural conditions to
impose on a risk assignment; and as indicated by the discussion above, all of them have been proposed as
versions of fairness. The first one essentially asks that the scores mean what they claim to mean, even when
considered separately in each group. In particular, suppose a set of scores lack the first property for some
bin b, and these scores are given to a decision-maker; then if people of two different groups both belong to
bin b, the decision-maker has a clear incentive to treat them differently, since the lack of calibration within
groups on bin b means that these people have different aggregate probabilities of belonging to the positive
class. Another way of stating the property of calibration within groups is to say that, conditioned on the
bin to which an individual is assigned, the likelihood that the individual is a member of the positive class
is independent of the group to which the individual belongs. This means we are justified in treating people

3As we will discuss in more detail below, the assumption that the group provides no additional information beyond σ does not
restrict the generality of the model, since we can always consider instances in which people of different groups never have the same
feature vector σ, and hence σ implicitly conveys perfect information about a person’s group.

4



with the same score comparably with respect to the outcome, rather than treating people with the same score
differently based on the group they belong to.

The second and third ask that if two individuals in different groups exhibit comparable future behavior
(negative or positive), they should be treated comparably by the procedure. In other words, a violation of,
say, the second condition would correspond to the members of the negative class in one group receiving
consistently higher scores than the members of the negative class in the other group, despite the fact that the
members of the negative class in the higher-scoring group have done nothing to warrant these higher scores.

We can also interpret some of the prior work around our earlier examples through the lens of these condi-
tions. For example, in the analysis of the COMPAS risk tool for criminal defendants, the critique by Angwin
et al. focused on the risk tool’s violation of conditions (B) and (C); the counter-arguments established that
it satisfies condition (A). While it is clearly crucial for a risk tool to satisfy (A), it may still be important to
know that it violates (B) and (C). Similarly, to think in terms of the example of Internet advertising, with
male and female users as the two groups, condition (A) as before requires that our estimates of ad-click
probability mean the same thing in aggregate for men and women. Conditions (B) and (C) are distinct; con-
dition (C), for example, says that a female user who genuinely wants to see a given ad should be assigned
the same probability as a male user who wants to see the ad.

1.2 Determining What is Achievable: A Characterization Theorem

When can conditions (A), (B), and (C) be simultaneously achieved? We begin with two simple cases where
it’s possible.

• Perfect prediction. Suppose that for each feature vector σ, we have either pσ = 0 or pσ = 1. This
means that we can achieve perfect prediction, since we know each person’s class label (positive or
negative) for certain. In this case, we can assign all feature vectors σ with pσ = 0 to a bin b with score
vb = 0, and all σ with pσ = 1 to a bin b′ with score vb′ = 1. It is easy to check that all three of the
conditions (A), (B), and (C) are satisfied by this risk assignment.

• Equal base rates. Suppose, alternately, that the two groups have the same fraction of members in the
positive class; that is, the average value of pσ is the same for the members of group 1 and group 2. (We
can refer to this as the base rate of the group with respect to the classification problem.) In this case,
we can create a single bin b with score equal to this average value of pσ, and we can assign everyone
to bin b. While this is not a particularly informative risk assignment, it is again easy to check that it
satisfies fairness conditions (A), (B), and (C).

Our first main result establishes that these are in fact the only two cases in which a risk assignment can
achieve all three fairness guarantees simultaneously.

Theorem 1.1 Consider an instance of the problem in which there is a risk assignment satisfying fairness
conditions (A), (B), and (C). Then the instance must either allow for perfect prediction (with pσ equal to 0
or 1 for all σ) or have equal base rates.

Thus, in every instance that is more complex than the two cases noted above, there will be some natural
fairness condition that is violated by any risk assignment. Moreover, note that this result applies regardless
of how the risk assignment is computed; since our framework considers risk assignments to be arbitrary
functions from feature vectors to bins labeled with probability estimates, it applies independently of the
method — algorithmic or otherwise — that is used to construct the risk assignment.
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The conclusions of the first theorem can be relaxed in a continuous fashion when the fairness conditions are
only approximate. In particular, for any ε > 0 we can define ε-approximate versions of each of conditions
(A), (B), and (C) (specified precisely in the next section), each of which requires that the corresponding
equalities between groups hold only to within an error of ε. For any δ > 0, we can also define a δ-
approximate version of the equal base rates condition (requiring that the base rates of the two groups be
within an additive δ of each other) and a δ-approximate version of the perfect prediction condition (requiring
that in each group, the average of the expected scores assigned to members of the positive class is at least
1 − δ; by the calibration condition, this can be shown to imply a complementary bound on the average of
the expected scores assigned to members of the negative class).

In these terms, our approximate version of Theorem 1.1 is the following.

Theorem 1.2 There is a continuous function f , with f(x) going to 0 as x goes to 0, so that the following
holds. For all ε > 0, and any instance of the problem with a risk assignment satisfying the ε-approximate
versions of fairness conditions (A), (B), and (C), the instance must satisfy either the f(ε)-approximate
version of perfect prediction or the f(ε)-approximate version of equal base rates.

Thus, anything that approximately satisfies the fairness constraints must approximately look like one of the
two simple cases identified above.

Finally, in connection to Theorem 1.1, we note that when the two groups have equal base rates, then one
can ask for the most accurate risk assignment that satisfies all three fairness conditions (A), (B), and (C)
simultaneously. Since the risk assignment that gives the same score to everyone satisfies the three conditions,
we know that at least one such risk assignment exists; hence, it is natural to seek to optimize over the set of
all such assignments. We consider this algorithmic question in the final technical section of the paper.

To reflect a bit further on our main theorems and what they suggest, we note that our intention in the present
work isn’t to make a recommendation on how conflicts between different definitions of fairness should be
handled. Nor is our intention to analyze which definitions of fairness are violated in particular applications
or datasets. Rather, our point is to establish certain unavoidable trade-offs between the definitions, regardless
of the specific context and regardless of the method used to compute risk scores. Since each of the definitions
reflect (and have been proposed as) natural notions of what it should mean for a risk score to be fair, these
trade-offs suggest a striking implication: that outside of narrowly delineated cases, any assignment of risk
scores can in principle be subject to natural criticisms on the grounds of bias. This is equally true whether
the risk score is determined by an algorithm or by a system of human decision-makers.

Special Cases of the Model. Our main results, which place strong restrictions on when the three fairness
conditions can be simultaneously satisfied, have more power when the underlying model of the input is more
general, since it means that the restrictions implied by the theorems apply in greater generality. However,
it is also useful to note certain special cases of our model, obtained by limiting the flexibility of certain
parameters in intuitive ways. The point is that our results apply a fortiori to these more limited special
cases.

First, we have already observed one natural special case of our model: cases in which, for each feature
vector σ, only members of one group (but not the other) can exhibit σ. This means that σ contains perfect
information about group membership, and so it corresponds to instances in which risk assignments would
have the potential to use knowledge of an individual’s group membership. Note that we can convert any
instance of our problem into a new instance that belongs to this special case as follows. For each feature
vector σ, we create two new feature vectors σ(1) and σ(2); then, for each member of group 1 who had feature
vector σ, we assign them σ(1), and for each member of group 2 who had feature vector σ, we assign them
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σ(2). The resulting instance has the property that each feature vector is associated with members of only one
group, but it preserves the essential aspects of the original instance in other respects.

Second, we allow risk assignments in our model to split people with a given feature vector σ over several
bins. Our results also therefore apply to the natural special case of the model with integral risk assignments,
in which all people with a given feature σ must go to the same bin.

Third, our model is a generalization of binary classification, which only allows for 2 bins. Note that although
binary classification does not explicitly assign scores, we can consider the probability that an individual
belongs to the positive class given that they were assigned to a specific bin to be the score for that bin. Thus,
our results hold in the traditional binary classification setting as well.

Data-Generating Processes. Finally, there is the question of where the data in an instance of our problem
comes from. Our results do not assume any particular process for generating the positive/negative class
labels, feature vectors, and group memberships; we simply assume that we are given such a collection of
values (regardless of where they came from), and then our results address the existence or non-existence of
certain risk assignments for these values.

This increases the generality of our results, since it means that they apply to any process that produces data
of the form described by our model. To give an example of a natural generative model that would produce
instances with the structure that we need, one could assume that each individual starts with a “hidden” class
label (positive or negative), and a feature vector σ is then probabilistically generated for this individual from
a distribution that can depend on their class label and their group membership. (If feature vectors produced
for the two groups are disjoint from one another, then the requirement that the value of pσ is independent of
group membership given σ necessarily holds.) Since a process with this structure produces instances from
our model, our results apply to data that arises from such a generative process.

It is also interesting to note that the basic set-up of our model, with the population divided across a set
of feature vectors for which race provides no additional information, is in fact a very close match to the
information one gets from the output of a well-calibrated risk tool. In this sense, one setting for our model
would be the problem of applying post-processing to the output of such a risk tool to ensure additional
fairness guarantees. Indeed, since much of the recent controversy about fair risk scores has involved risk
tools that are well-calibrated but lack the other fairness conditions we consider, such an interpretation of the
model could be a useful way to think about how one might work with these tools in the context of a broader
system.

1.3 Further Related Work

Mounting concern over discrimination in machine learning has led to a large body of new work seeking
to better understand and prevent it. Barocas and Selbst survey a range of ways in which data-analysis
algorithms can lead to discriminatory outcomes [3], and review articles by Romei and Ruggieri [25] and
Zliobaite [30] survey data-analytic and algorithmic methods for measuring discrimination.

Kamiran and Calders [21] and Hajian and Domingo-Ferrer [18] seek to modify datasets to remove any
information that might permit discrimination. Similarly, Zemel et al. look to learn fair intermediate repre-
sentations of data while preserving information needed for classification [29]. Joseph et al. consider how
fairness issues can arise during the process of learning, modeling this using a multi-armed bandit framework
[20].
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Abstract

Recidivism prediction instruments (RPI’s) provide decision makers with an assessment of the
likelihood that a criminal defendant will reoffend at a future point in time. While such instru-
ments are gaining increasing popularity across the country, their use is attracting tremendous
controversy. Much of the controversy concerns potential discriminatory bias in the risk assess-
ments that are produced. This paper discusses several fairness criteria that have recently been
applied to assess the fairness of recidivism prediction instruments. We demonstrate that the
criteria cannot all be simultaneously satisfied when recidivism prevalence differs across groups.
We then show how disparate impact can arise when a recidivism prediction instrument fails to
satisfy the criterion of error rate balance.

Keywords: disparate impact; bias; recidivism prediction; risk assessment; fair machine learn-
ing

1 Introduction

Risk assessment instruments are gaining increasing popularity within the criminal justice system,
with versions of such instruments being used or considered for use in pre-trial decision-making,
parole decisions, and in some states even sentencing1,2,3. In each of these cases, a high-risk
classification—particularly a high-risk misclassification—may have a direct adverse impact on a
criminal defendant’s outcome. If the use of RPI’s is to become commonplace, it is especially im-
portant to ensure that the instruments are free from discriminatory biases that could result in
unethical practices and inequitable outcomes for different groups.

In a recent widely popularized investigation conducted by a team at ProPublica, Angwin et al. 4

studied an RPI called COMPASa, concluding that it is biased against black defendants. The authors

∗Heinz College, Carnegie Mellon University

aCOMPAS5 is a risk assessment instrument developed by Northpointe Inc.. Of the 22 scales that COMPAS
provides, the Recidivism risk and Violent Recidivism risk scales are the most widely used. The empirical results in
this paper are based on decile scores coming from the COMPAS Recidivism risk scale.
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found that the likelihood of a non-recidivating black defendant being assessed as high risk is nearly
twice that of white defendants. Similarly, the likelihood of a recidivating black defendant being
assessed as low risk is nearly half that of white defendants. In technical terms, these findings
indicate that the COMPAS instrument has considerably higher false positive rates and lower false
negative rates for black defendants than for white defendants.

ProPublica’s analysis has met with much criticism from both the academic community and
from the Northpointe corporation. Much of the criticism has focussed on the particular choice of
fairness criteria selected for the investigation. Flores et al. 6 argue that the correct approach for
assessing RPI bias is instead to check for calibration, a fairness criterion that they show COMPAS
satisfies. Northpointe in their response7 argue for a still different approach that checks for a
fairness criterion termed predictive parity, which they demonstrate COMPAS also satisfies. We
provide precise definitions and a more in-depth discussion of these and other fairness criteria in
Section 2.1.

In this paper we show that the differences in false positive and false negative rates cited as
evidence of racial bias by Angwin et al. 4 are a direct consequence of applying an RPI that that
satisfies predictive parity to a population in which recidivism prevalencea differs across groups.
Our main contribution is twofold. (1) First, we make precise the connection between the predictive
parity criterion and error rates in classification. (2) Next, we demonstrate how using an RPI that
has different false postive and false negative rates between groups can lead to disparate impact when
individuals assessed as high risk receive stricter penalties. Throughout our discussion we use the
term disparate impact to refer to settings where a penalty policy has unintended disproportionate
adverse impact on a particular group.

It is important to bear in mind that fairness itself—along with the notion of disparate impact—
is a social and ethical concept, not a statistical one. A risk prediction instrument that is fair with
respect to particular fairness criteria may nevertheless result in disparate impact depending on how
and where it is used. In this paper we consider hypothetical use cases in which we are able to
directly connect particular fairness properties of an RPI to a measure of disparate impact. We
present both theoretical and empirical results to illustrate how disparate impact can arise.

1.1 Outline of paper

We begin in Section 2 by providing some background on several of the different fairness criteria
that have appeared in recent literature. We then proceed to demonstrate that an instrument that
satisfies predictive parity cannot have equal false positive and negative rates across groups when the
recidivism prevalence differs across those groups. In Section 3 we analyse a simple risk assessment-
based sentencing policy and show how differences in false positive and false negative rates can
result in disparate impact under this policy. In Section 3.3 we back up our theoretical analysis by
presenting some empirical results based on the data made available by the ProPublica investigators.
We conclude with a discussion of the issues that biased data presents for the arguments put forth
in this paper.

aPrevalence, also termed the base rate, is the proportion of individuals who recidivate in a given population.
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1.2 Data description and setup

The empirical results in this paper are based on the Broward County data made publicly available
by ProPublica8. This data set contains COMPAS recidivism risk decile scores, 2-year recidivism
outcomes, and a number of demographic and crime-related variables on individuals who were scored
in 2013 and 2014. We restrict our attention to the subset of defendants whose race is recorded as
African-American (b) or Caucasian (w).a After applying the same data pre-processing and filtering
as reported in the ProPublica analysis, we are left with a data set on n = 6150 individuals, of
whom nb = 3696 are African-American and nc = 2454 are Caucasian.

2 Assessing fairness

2.1 Background

We begin by with some notation. Let S = S(x) denote the risk score based on covariates
X = x ∈ Rp, with higher values of S corresponding to higher levels of assessed risk. We will
interchangeably refer to S as a score or an instrument. For simplicity, our discussion of fairness
criteria will focus on a setting where there exist just two groups. We let R ∈ {b, w} denote the
group to which an individual belongs, and do not preclude R from being one of the elements of
X. We denote the outcome indicator by Y ∈ {0, 1}, with Y = 1 indicating that the given indi-
vidual goes on to recidivate. Lastly, we introduce the quantity sHR, which denotes the high-risk
score threshold. Defendants whose score S exceeds sHR will be referred to as high-risk, while the
remaining defendants will be referred to as low-risk.

With this notation in hand, we now proceed to define and discuss several fairness criteria
that commonly appear in the literature, beginning with those mentioned in the introduction. We
indicate cases where a given criterion is known to us to also commonly appear under some other
name. All of the criteria presented below can also be assessed conditionally by further conditioning
on some covariates in X. We discuss this point in greater detail in Section 3.1.

Definition 1 (Calibration). A score S = S(x) is said to be well-calibrated if it reflects the same
likelihood of recidivism irrespective of the individuals’ group membership. That is, if for all values
of s,

P(Y = 1 | S = s, R = b) = P(Y = 1 | S = s, R = w). (2.1)

Within the educational and psychological testing and assessment literature, the notion of calibra-
tion features among the widely accepted and adopted standards for empirical fairness assessment.
In this literature, an instrument that is well-calibrated is referred to as being free from predic-
tive bias. This criterion has recently been applied to the PCRAb instrument, with initial findings
suggesting that calibration is satisfied with respect race10,11, but not with respect to gender12. In

aThere are 6 racial groups represented in the data. 85% of individuals are either African-American or Caucasian.

bThe Post Conviction Risk Assessment (PCRA) tool was developed by the Administrative Office of the United
States Courts for the purpose of improving “the effectiveness and efficiency of post-conviction supervision” 9
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their response to the ProPublica investigation, Flores et al. 6 verify that COMPAS is well-calibrated
using logistic regression modeling.

Definition 2 (Predictive parity). A score S = S(x) satisfies predictive parity at a threshold sHR if
the likelihood of recidivism among high-risk offenders is the same regardless of group membership.
That is, if,

P(Y = 1 | S > sHR, R = b) = P(Y = 1 | S > sHR, R = w). (2.2)

Predictive parity at a given threshold sHR amounts to requiring that the positive predictive
value (PPV) of the classifier Ŷ = 1S>sHR

be the same across groups. While predictive parity
and calibration look like very similar criteria, well-calibrated scores can fail to satisfy predictive
parity at a given threshold. This is because the relationship between (2.2) and (2.1) depends on
the conditional distribution of S | R = r, which can differ across groups in ways that result in
PPV imbalance. In the simple case where S itself is binary, a score that is well-calibrated will also
satisfy predictive parity. Northpointe’s refutation7 of the ProPublica analysis shows that COMPAS
satisfies predictive parity for threshold choices of interest.

Definition 3 (Error rate balance). A score S = S(x) satisfies error rate balance at a threshold
sHR if the false positive and false negative error rates are equal across groups. That is, if,

P(S > sHR | Y = 0, R = b) = P(S > sHR | Y = 0, R = w) , and (2.3)

P(S ≤ sHR | Y = 1, R = b) = P(S ≤ sHR | Y = 1, R = w), (2.4)

where the expressions in the first line are the group-specific false positive rates, and those in the
second line are the group-specific false negative rates.

ProPublica’s analysis considered a threshold of sHR = 4, which they showed leads to considerable
imbalance in both false positive and false negative rates. While this choice of cutoff met with some
criticism, we will see later in this section that error rate imbalance persists—indeed, must persist—
for any choice of cutoff at which the score satisfies the predictive parity criterion. Error rate balance
is also closely connected to the notions of equalized odds and equal opportunity as introduced in the
recent work of Hardt et al. 13 .

Definition 4 (Statistical parity). A score S = S(x) satisfies statistical parity at a threshold sHR

if the proportion of individuals classified as high-risk is the same for each group. That is, if,

P(S > sHR | R = b) = P(S > sHR | R = w) (2.5)

Statistical parity also goes by the name of equal acceptance rates 14 or group fairness 15, though
it should be noted that these terms are in many cases not used synonymously. While our discussion
focusses primarily on first three fairness criteria, statistical parity is widely used within the machine
learning community and may be the criterion with which many readers are most familiar16,17.
Statistical parity is well-suited to contexts such as employment or admissions, where it may be
desirable or required by law or regulation to employ or admit individuals in equal proportion
across racial, gender, or geographical groups. It is, however, a difficult criterion to motivate in the
recidivism prediction setting, and thus will not be further considered in this work.
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2.2 Further related work

Though the study of discrimination in decision making and predictive modeling is rapidly evolving,
it also has a long and rich multidisciplinary history. Romei and Ruggieri 18 provide an excellent
overview of some of the work in this broad subject area. The recent work of Barocas and Selbst 19

offers a broad examination of algorithmic fairness framed within the context of anti-discrimination
laws governing employment practices. Hannah-Moffat 20 , Skeem 21 , and Monahan and Skeem 22

examine legal and ethical issues relating specifically to the use of risk assessment instruments in
sentencing, citing the potential for race and gender discrimination as a major concern.

In work concurrent with our own, several other researchers have also investigated the compat-
ibility of different notions of fairness. Kleinberg et al. 23 show that calibration cannot be satisfied
simultaneously with the fairness criteria of balance for the negative class and balance for the positive
class. Translated into the present context, the latter criteria require that the average score assigned
to non-recidivists (the negative class) should be the same for both groups, and that the same should
hold among recidivists (the positive class). The work of Corbett-Davies et al. 24 closely parallels the
results that we present in Section 2.3, reaching the same conclusion regarding the incompatibility
of predictive parity and error rate balance in the setting of unequal prevalence.

2.3 Predictive parity, false positive rates, and false negative rates

In this section we present our first main result, which establishes that predictive parity is incompati-
ble with error rate balance when prevalence differs across groups. To better motivate the discussion,
we begin by presenting an empirical fairness assessment of the COMPAS RPI. Figure 1 shows plots
of the observed recidivism rates and error rates corresponding to the fairness notions of calibra-
tion, predictive parity, and error rate balance. We see that the COMPAS RPI is (approximately)
well-calibrated, and also satisfies predictive parity provided that the high-risk cutoff sHR is 4 or
greater. However, COMPAS fails on both false positive and false negative error rate balance across
the range of high-risk cutoffs.

Angwin et al. 4 focussed on a high-risk cutoff of sHR = 4 for their analysis, which some critics
have argued is too low, suggesting that sHR = 7 is more suitable. As can be seen from Figures 1c
and 1d, significant error rate imbalance persists at this cut-off as well. Moreover, the error rates
achieved at so high a cutoff are at odds with evidence suggesting that the use of RPI’s is of interest
in settings where false negatives have a higher cost than false positives, with relative cost estimates
ranging from 2.6 to upwards of 15.25,26

As we now proceed to show, the error rate imbalance exhibited by COMPAS is not a coincidence,
nor can it be remedied in the present context. When the recidivism prevalence–i.e., the base rate
P(Y = 1 | R = r)—differs across groups, any instrument that satisfies predictive parity at a given
threshold sHR must have imbalanced false positive or false negative errors rates at that threshold.
To understand why predictive parity and error rate balance are mutually exclusive in the setting
of unequal recidivism prevalence, it is instructive to think of how these quantities are all related.

Given a particular choice of sHR, we can summarize an instrument’s performance in terms of a
confusion matrix, as shown in Table 1 below.
All of the fairness metrics presented in Section 2.1 can be thought of as imposing constraints on
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the values (or the distribution of values) in this table. Another constraint—one that we have no
direct control over—is imposed by the recidivism prevalence within groups. It is not difficult to
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(a) Bars represent empirical estimates of the expres-
sions in (2.1): P(Y = 1 | S = s, R = r) for decile
scores s ∈ {1, . . . , 10}.
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(b) Bars represent empirical estimates of the expres-
sions in (2.2): P(Y = 1 | S > sHR, R = r) for values
of the high-risk cutoff sHR ∈ {0, . . . , 9}
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(c) Bars represent observed false positive rates,
which are empirical estimates of the expressions in
(2.3): P(S > sHR | Y = 0, R = r) for values of the
high-risk cutoff sHR ∈ {0, . . . , 9}
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(d) Bars represent observed false negative rates,
which are empirical estimates of the expressions in
(2.4): P(S ≤ sHR | Y = 1, R = r) for values of the
high-risk cutoff sHR ∈ {0, . . . , 9}

Figure 1: Empirical assessment of the COMPAS RPI according to three of the fairness criteria
presented in Section 2.1. Error bars represent 95% confidence intervals. These Figures confirm
that COMPAS is (approximately) well-calibrated, satisfies predictive parity for high-risk cutoff
values of 4 or higher, but fails to have error rate balance.

6



Low-Risk High-Risk

Y = 0 TN FP
Y = 1 FN TP

Table 1: T/F denote True/False and N/P denote Negative/Positive. For instance, FP is the number
of false positives: individuals who are classified as high-risk but who do not reoffend.

show that the prevalence (p), positive predictive value (PPV), and false positive and negative error
rates (FPR, FNR) are related via the equation

FPR =
p

1 − p

1 − PPV

PPV
(1 − FNR). (2.6)

From this simple expression we can see that if an instrument satisfies predictive parity—that is,
if the PPV is the same across groups—but the prevalence differs between groups, the instrument
cannot achieve equal false positive and false negative rates across those groups.

This observation enables us to better understand why we observe such large discrepancies in
FPR and FNR between black and white defendants in Figure 1. The recidivism rate among black
defendants in the data is 51%, compared to 39% for White defendants. Thus at any threshold
sHR where the COMPAS RPI satisfies predictive parity, equation (2.6) tells us that some level of
imbalance in the error rates must exist. Since not all of the fairness criteria can be satisfied at the
same time, it becomes important to understand the potential impact of failing to satisfy particular
criteria. This question is explored in the context of a hypothetical risk-based sentencing framework
in the next section.

3 Assessing impact

In this section we show how differences in false positive and false negative rates can result in
disparate impact under policies where a high-risk assessment results in a stricter penalty for the
defendant. Such situations may arise when risk assessments are used to inform bail, parole, or
sentencing decisions. In Pennsylvania and Virginia, for instance, statutes permit the use of RPI’s
in sentencing, provided that the sentence ultimately falls within accepted guidelines1. We use the
term “penalty” somewhat loosely in this discussion to refer to outcomes both in the pre-trial and
post-conviction phase of legal proceedings. For instance, even though pre-trial outcomes such as
the amount at which bail is set are not punitive in a legal sense, we nevertheless refer to bail amount
as a “penalty” for the purpose of our discussion.

There are notable cases where RPI’s are used for the express purpose of informing risk reduction
efforts. In such settings, individuals assessed as high risk receive what may be viewed as a benefit
rather than a penalty. The PCRA score, for instance, is intended to support precisely this type of
decision-making at the federal courts level11. Our analysis in this section specifically addresses use
cases where high-risk individuals receive stricter penalties.

To begin, consider a setting in which guidelines indicate that a defendant is to receive a penalty
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