Responsible Data Science Association rule mining data profiling continued

Prof. Julia Stoyanovich

Center for Data Science \&
Computer Science and Engineering
New York University

Classification of data profiling tasks

[Abedjan, Golab, Naumann; SIGMOD 2017]

	A	B	c	D	E	F	G	H
1	UID	sex	race	MarriageSta	DateOfBirth	age	juv_fel_cour	le_score
2	1	0	1	1	4/18/47	69	0	1
3	2	0	2	1	1/22/82	34	0	3
4	3	0	2	1	5/14/91	24	0	4
5	4	0	2	1	1/21/93	23	0	8
6	5	0	1	2	1/22/73	43	0	1
7	6	0	1	3	8/22/71	44	0	1
8	7	0	3	1	7/23/74	41	0	6
9	8	0	1	2	2/25/73	43	0	4
10	9	0	3	1	6/10/94	21	0	3
11	10	0	3	1	6/1/88	27	0	4
12	11	1	3	2	8/22/78	37	0	1
13	12	0	2	1	12/2/74	41	0	4
14	13	1	3	1	6/14/68	47	0	1
15	14	0	2	1	3/25/85	31	0	3
16	15	0	4	4	1/25/79	37	0	1
17	16	0	2	1	6/22/90	25	0	10
18	17	0	3	1	12/24/84	31	0	5
19	18	0	3	1	1/8/85	31	0	3
20	19	0	2	3	6/28/51	64	0	6
21	20	0	2	1	11/29/94	21	0	9
22	21	0	3	1	8/6/88	27	0	2
23	22	1	3	1	3/22/95	21	0	4
24	23	0	4	1	1/23/92	24	0	4
25	24	0	3	3	1/10/73	43	0	1
26	25	0	1	1	8/24/83	32	0	3
27	26	0	2	1	2/8/89	27	0	3
28	27	1	3	1	9/3/79	36	0	3
30					4/27/on	\cdots		7

relational data (here: just one table)

Discovering uniques

Given a relation schema $\boldsymbol{R}(A, B, C, D)$ and a relation instance \boldsymbol{r}, a unique column combination (or a "unique" for short) is a set of attributes \boldsymbol{X} whose projection contains no duplicates in \boldsymbol{r}

Episodes(season,num,title, viewers)			
season	num	title	viewers
1	1	Winter is Coming	2.2 M
1	2	The Kingsroad	2.2 M
2	1	The North Remembers	3.9 M

Projection is a relational algebra operation that takes as input relation \boldsymbol{R} and returns a new relation \boldsymbol{R} ' with a subset of the columns of \boldsymbol{R}.
$\pi_{\text {title }}$ (Episodes)
title
Winter is Coming
The Kingsroad unique
The North Remembers

Discovering uniques

Given a relation schema $\boldsymbol{R}(A, B, C, D)$ and a relation instance \boldsymbol{r}, a unique column combination (or a "unique" for short) is a set of attributes \boldsymbol{X} whose projection contains no duplicates in \boldsymbol{r}

Episodes(season, num, title, viewers)			
season	num	title	viewers
1	1	Winter is Coming	2.2 M
1	2	The Kingsroad	2.2 M
2	1	The North Remembers	3.9 M

Projection is a relational algebra operation that takes as input relation \boldsymbol{R} and returns a new relation \boldsymbol{R} ' with a subset of the columns of \boldsymbol{R}.

- Recall that more than one set of attributes \mathbf{X} may be unique
- It may be the case that \mathbf{X} and \mathbf{Y} are both unique, and that they are not disjoint. When is this interesting?

Discovering uniques

$R(A, B, C, D)$ attribute lattice of \boldsymbol{R}

$$
\begin{aligned}
& \binom{4}{4}=1 \\
& \binom{4}{3}=4 \\
& \binom{4}{2}=6 \\
& \binom{4}{1}=4
\end{aligned}
$$

What's the size of the attribute lattice of \boldsymbol{R} ?
Look at all attribute combinations?

Discovering uniques

R (A, B, C, D) attribute lattice of R

- If \mathbf{X} is unique, then what can we say about its superset \mathbf{Y} ?
- If \mathbf{X} is non-unique, then what can we say about its subset \mathbf{Z} ?

Discovering uniques

Given a relation schema $\boldsymbol{R}(A, B, C, D)$ and a relation instance \boldsymbol{r}, a unique column combination (or a "unique" for short) is a set of attributes \boldsymbol{X} whose projection contains no duplicates in \boldsymbol{r}

Given a relation schema $\boldsymbol{R}(A, B, C, D)$ and a relation instance \boldsymbol{r}, a set of attributes \boldsymbol{Y} is non-unique if its projection contains duplicates in \boldsymbol{r}
\boldsymbol{X} is minimal unique if every subset \boldsymbol{Y} of \boldsymbol{X} is non-unique
\boldsymbol{Y} is maximal non-unique if every superset \boldsymbol{X} of \boldsymbol{Y} is unique

From uniques to candidate keys

Given a relation schema $\boldsymbol{R}(A, B, C, D)$ and a relation instance \boldsymbol{r}, a unique column combination is a set of attributes \boldsymbol{X} whose projection contains no duplicates in \boldsymbol{r}

Episodes(season, num, title, viewers)			
season	num	title	viewers
1	1	Winter is Coming	2.2 M
1	2	The Kingsroad	2.2 M
2	1	The North Remembers	3.9 M

> A set of attributes is a candidate key for a relation if:
> (1) no two distinct tuples can have the same values for all key attributes (candidate key uniquely identifies a tuple), and
> (2) this is not true for any subset of the key attributes (candidate key is minimal)

A minimal unique of a relation instance is a (possible) candidate key of the relation schema. To find all possible candidate keys, find all minimal uniques in a relation instance.

association rule mining

The early days of data mining

- Problem formulation due to Agrawal, Imielinski, Swami, SIGMOD 1993
- Solution: the Apriori algorithm by Agrawal \& Srikant, VLDB 1994
- Initially for market-basket data analysis, has many other applications, we'll see one today
- We wish to answer two related questions:
- Frequent itemsets: Which items are often purchased together, e.g., milk and cookies are often bought together
- Association rules: Which items will likely be purchased, based on other purchased items, e.g., if diapers are bought in a transaction, beer is also likely bought in the same transaction

Market-basket data

- $\boldsymbol{I}=\left\{\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \ldots, \boldsymbol{i}_{\boldsymbol{m}}\right\}$ is the set of available items, e.g., a product catalog of a store
- $\boldsymbol{X} \subseteq I$ is an itemset, e.g., $\{$ milk, bread, cereal\}
- Transaction \boldsymbol{t} is a set of items purchased together, $\boldsymbol{t} \subseteq \boldsymbol{I}$, has a transaction id (TID)

$$
\boldsymbol{t}_{\boldsymbol{1}}:\{\text { bread, cheese, milk }\}
$$

\boldsymbol{t}_{2} : \{apple, eggs, salt, yogurt\}
\boldsymbol{t}_{3} : \{biscuit, cheese, eggs, milk\}

- Database \boldsymbol{T} is a set of transactions $\left\{\boldsymbol{t}_{1}, \boldsymbol{t}_{\boldsymbol{2}}, \ldots, \boldsymbol{t}_{n}\right\}$
- A transaction \boldsymbol{t} supports an itemset \boldsymbol{X} if $\boldsymbol{X} \subseteq \boldsymbol{t}$
- Itemsets supported by at least minSupp transactions are called frequent itemsets
minSupp, which can be a number or a percentage, is specified by the user

Itemsets

TID	Items
1	A
2	A C
3	A B D
4	A C
5	A B C
6	A B C

minSupp $=2$ transactions

How many possible itemsets are there (excluding the empty itemset)?

$$
2^{4}-1=15
$$

itemset	support
+ A	6
+ B	3
* C	4
D	1
* $A B$	3
- $A C$	4
AD	1
+ BC	2
B D	1
$C D$	0
* ABC	2
ABD	1
B C D	0
ACD	0
ABCD	0

Association rules

An association rule is an implication $X \rightarrow Y$, where $X, Y \subset I$, and $X \cap Y=$ example: $\{$ milk, bread $\} \rightarrow\{$ cereal $\}$
"A customer who purchased X is also likely to have purchased Y in the same transaction"
we are interested in rules with a single item in Y
can we represent \{milk, bread\} \rightarrow \{cereal, cheese $\}$?

Rule $X \rightarrow Y$ holds with support supp in T if supp of transactions contain $X \cup Y$

Rule $X \rightarrow Y$ holds with confidence conf in T if conf \% of transactions that contain X also contain Y

$$
\begin{aligned}
& \operatorname{conf} \approx \operatorname{Pr}(Y \mid X) \\
& \operatorname{conf}(X \rightarrow Y)=\operatorname{supp}(X \cup Y) / \operatorname{supp}(X)
\end{aligned}
$$

Association rules

minSupp $=2$ transactions $\boldsymbol{m i n C o n f}=0.75$
itemset

$$
\text { supp }=3
$$

$$
A \rightarrow B \quad \operatorname{conf}=3 / 6=0.5
$$

$$
B \rightarrow A \quad \text { conf }=3 / 3=1.0 \text { t }
$$

$$
\text { supp = } 2
$$

$$
B \rightarrow C \quad \text { conf }=2 / 3=0.67
$$

$$
C \rightarrow B \quad \text { conf }=2 / 4=0.5
$$

$$
\text { supp }=4
$$

$$
A \rightarrow C \quad \operatorname{conf}=4 / 6=0.67
$$

$$
C \rightarrow A \quad \operatorname{conf}=4 / 4=1.0\rangle
$$

$$
\text { supp }=2
$$

$$
A B \rightarrow C \quad \text { conf }=2 / 3=0.67
$$

$$
A C \rightarrow B \quad \operatorname{conf}=2 / 4=0.5
$$

$$
B C \rightarrow A \quad \operatorname{conf}=2 / 2=1.0
$$

itemset	support
* A	6
+ B	3
* C	4
D	1
* $A B$	3
* AC	4
AD	1
- BC	2
B D	1
$C D$	0
* $A B C$	2
ABD	1
B C D	0
ACD	0
$\rightarrow Y) \stackrel{\mathrm{ABCD}}{=} \text { supp }$	$\text { Y) } 1 / \text { sup }$

Association rule mining

- Goal: find all association rules that satisfy the userspecified minimum support and minimum confidence
- Algorithm outline
- Step 1: find all frequent itemsets
- Step 2: find association rules
- Take 1: naïve algorithm for frequent itemset mining
- Enumerate all subsets of \boldsymbol{I}, check their support in \boldsymbol{T}
- What is the complexity?

Key idea: downward closure

itemset	support
A A	6
B	3
C A B	4
A C	1
A D	3
B C	1
C D	2
A B C	1
A B D	0
B C D	2
A C D	1
A B C D	0

All subsets of a frequent itemset \boldsymbol{X} are themselves frequent

So, if some subset of X is infrequent, then X cannot be frequent, we know this apriori

The converse is not true! If all subsets of \boldsymbol{X} are frequent, \boldsymbol{X} is not guaranteed to be frequent

The Apriori algorithm

Algorithm Apriori(T, minSupp)

$$
\begin{aligned}
& F_{1}=\{\text { frequent 1-itemsets }\} ; \\
& \text { for }\left(k=2 ; F_{\mathrm{k}-1} \neq \varnothing ; k++\right) \text { do } \\
& \quad C_{k} \leftarrow \text { candidate-gen }\left(F_{k-1}\right) ; \\
& \text { for each transaction } t \in T \text { do } \\
& \text { for each candidate } c \in C_{k} \text { do } \\
& \text { if } c \text { is contained in } t \text { then } \\
& \quad c . \text { count }++; \\
& \text { end } \\
& \text { end } \\
& F_{k} \leftarrow\left\{c \in C_{k} \mid c . c o u n t \geq \text { minSupp }\right\} \\
& \text { end }
\end{aligned}
$$

itemset	support
* A	6
+ ${ }^{\text {B }}$	3
* C	4
D	1
* AB	3
* $A C$	4
A D	1
* $B C$	2
B D	1
$C D$	0
\star ABC	2
ABD	1
$B C D$	0
ACD	0
A B C D	0

itemset
A
B 3
C 4
*
\star
-
return $F \leftarrow \bigcup_{k} F_{k}$;

Candidate generation

The candidate-gen function takes $\mathrm{F}_{\mathrm{k}-1}$ and returns a superset (called the candidates) of the set of all frequent k-itemsets. It has two steps:

Join: generate all possible candidate itemsets C_{k} of length k
Prune: optionally remove those candidates in C_{k} that have infrequent subsets

Candidate generation: join

Insert into C_{k} C
select p.item, p.item ${ }_{2}$,..., p.item m_{k-1}, q. item $_{k-1}$

from	$F_{k-1} \mathrm{p}, \mathrm{F}_{\mathrm{k}-1} \mathrm{q}$
where	p. item $_{1}=\mathrm{q} \cdot$ item $_{1}$
and	p. item $=$ q.item
and	\ldots
and	p.item

F_{1} as p

\mathbf{A}
\mathbf{B}
\mathbf{C}

F_{1} as q
A B C

C_{2}	
\mathbf{A}	\mathbf{B}
\mathbf{A}	\mathbf{C}
\mathbf{B}	\mathbf{C}

itemset
A

\star AC 4
AD 1

\star ABC	2
ABD	1
BCD	0
ACD	0
ABCD	0

Candidate generation: join

Candidate generation

Assume a lexicographic ordering of the items
Join
Insert into C_{k} (
select p.item, p.item, ..., p.item ${ }_{k-1}$, q.item ${ }_{k-1}$
from $\quad F_{k-1} p, F_{k-1} q$
where p.item ${ }_{1}=$ q. item $_{1}$
and \quad p. item $_{2}=$ q. item $_{2}$
and
and \quad p. item $_{k-1}<$ q. item $_{k-1}$) why not p.item ${ }_{k-1} \neq$ q.item ${ }_{k-1}$?

Prune

for each c in C_{k} do
for each ($k-1$) subset s of c do if (s not in F_{k-1}) then delete c from C_{k}

Generating association rules

Rules $=\varnothing$
for each frequent k-itemset X do
for each 1-itemset $A \subset X$ do
compute $\operatorname{conf}(X / A \rightarrow A)=\operatorname{supp}(X) / \sup (X / A)$
if conf $(X / A \rightarrow A) \geq$ minConf then Rules $\leftarrow " X / A \rightarrow A$ "
end
end
end
return Rules

Performance of Apriori

- The possible number of frequent itemsets is exponential, $\mathrm{O}\left(\mathbf{2}^{\boldsymbol{m}}\right)$, where \boldsymbol{m} is the number of items
- Apriori exploits sparseness and locality of data
- Still, it may produce a large number of rules: thousands, tens of thousands,
- So, thresholds should be set carefully. What are some good heuristics?

Back to data profiling: Discovering uniques

Given a relation schema $\boldsymbol{R}(A, B, C, D)$ and a relation instance \boldsymbol{r}, a unique column combination (or a "unique" for short) is a set of attributes \boldsymbol{X} whose projection contains no duplicates in \boldsymbol{r}

Given a relation schema $\boldsymbol{R}(A, B, C, D)$ and a relation instance \boldsymbol{r}, a set of attributes \boldsymbol{Y} is non-unique if its projection contains duplicates in \boldsymbol{r}
\boldsymbol{X} is minimal unique if every subset \boldsymbol{Y} of \boldsymbol{X} is non-unique
\boldsymbol{Y} is maximal non-unique if every superset \boldsymbol{X} of \boldsymbol{Y} is unique

[Abedjan, Golab, Naumann; SIGMOD 2017]

Output

From uniques to candidate keys

Given a relation schema $\boldsymbol{R}(A, B, C, D)$ and a relation instance \boldsymbol{r}, a unique column combination is a set of attributes \boldsymbol{X} whose projection contains no duplicates in \boldsymbol{r}

Episodes (season, num,title, viewers)			
season	num	title	viewers
1	1	Winter is Coming	2.2 M
1	2	The Kingsroad	2.2 M
2	1	The North Remembers	3.9 M

A set of attributes is a candidate key for a relation if:
(1) no two distinct tuples can have the value values for all key attributes
(candidate key uniquely identifies a tuple), and
(2) this is not true for any subset of the key attributes (candidate key is minimal)

A minimal unique of a relation instance is a (possible) candidate key of the relation schema. To find such possible candidate keys, find all minimal uniques in a given relation instance.

Apriori-style uniques discovery

[Abedjan, Golab, Naumann; SIGMOD 2017]
A minimal unique of a relation instance is a (possible) candidate key of the relation schema.
Algorithm Uniques // sketch, similar to HCA

$$
\begin{aligned}
& \begin{array}{l}
U_{1}=\{1 \text {-uniques }\} \quad N_{1}=\{1 \text {-non-uniques }\} \\
\text { for }\left(k=2 ; N_{\mathrm{k}-1} \neq \varnothing ; k++\right) \text { do } \\
C_{k}
\end{array} \leftarrow \text { candidate-gen }\left(N_{k-1}\right) \\
& U_{k} \leftarrow \text { prune-then-check }\left(C_{k}\right) \\
& \\
& \quad / / \text { prune candidates with unique sub-sets, and with value distributions } \\
& \text { that cannot be unique } \\
& \quad / / \text { check each candidate in pruned set for uniqueness } \\
& \\
& \qquad \begin{array}{l}
N_{k} \quad C_{k} \backslash U_{k}
\end{array} \\
& \text { end } \quad \text { return } U \leftarrow U_{k} U_{k} ; \quad \text { breadth-first bottom-up strategy for attribute lattice traver }
\end{aligned}
$$

