Responsible Data Science

Association rule mining data profiling continued

Prof. Julia Stoyanovich

Center for Data Science & Computer Science and Engineering New York University

Classification of data profiling tasks

[Abedjan, Golab, Naumann; SIGMOD 2017]

	A	B	C	D	E	F	G	Н
1	UID	sex	race	MarriageSta	DateOfBirth	age	juv_fel_cour	decile_score
2	1	0	1	1	4/18/47	69	0	1
3	2	0	2	1	1/22/82	34	0	3
4	3	0	2	1	5/14/91	24	0	4
5	4	0	2	1	1/21/93	23	0	8
6	5	0	1	2	1/22/73	43	0	1
7	6	0	1	3	8/22/71	44	0	1
8	7	0	3	1	7/23/74	41	0	6
9	8	0	1	2	2/25/73	43	0	4
10	9	0	3	1	6/10/94	21	0	3
11	10	0	3	1	6/1/88	27	0	4
12	11	1	3	2	8/22/78	37	0	1
13	12	0	2	1	12/2/74	41	0	4
14	13	1	3	1	6/14/68	47	0	1
15	14	0	2	1	3/25/85	31	0	3
16	15	0	4	4	1/25/79	37	0	1
17	16	0	2	1	6/22/90	25	0	10
18	17	0	3	1	12/24/84	31	0	5
19	18	0	3	1	1/8/85	31	0	3
20	19	0	2	3	6/28/51	64	0	6
21	20	0	2	1	11/29/94	21	0	9
22	21	0	3	1	8/6/88	27	0	2
23	22	1	3	1	3/22/95	21	0	4
24	23	0	4	1	1/23/92	24	0	4
25	24	0	3	3	1/10/73	43	0	1
26	25	0	1	1	8/24/83	32	0	3
27	26	0	2	1	2/8/89	27	0	3
28	27	1	3	1	9/3/79	36	0	3
20	20	0	2		4/27/90	26	0	7

relational data (here: just one table)

Given a relation schema *R* (*A*, *B*, *C*, *D*) and a relation instance *r*, a **unique column combination** (or a **"unique"** for short) is a set of attributes *X* whose **projection** contains no duplicates in *r*

Episodes(season,num,title,viewers)

season	num	title	viewers
1	1	Winter is Coming	2.2 M
1	2	The Kingsroad	2.2 M
2	1	The North Remembers	3.9 M

Projection is a relational algebra operation that takes as input relation **R** and returns a new relation **R'** with a subset of the columns of **R**.

$\pi_{season}(Episodes)$		$\pi_{season,num}(Episodes)$			$\pi_{title}(Episodes)$		
season		season	num			title	
1		1	1			Winter is Coming	
1	non-unique	1	2 L	unique		The Kingsroad	unique
2		2	1			The North Remem	nbers

Julia Stoyanovich

Given a relation schema *R* (*A*, *B*, *C*, *D*) and a relation instance *r*, a **unique column combination** (or a **"unique"** for short) is a set of attributes *X* whose **projection** contains no duplicates in *r*

Episodes(season,num,title,viewers)

season	num	title	viewers
1	1	Winter is Coming	2.2 M
1	2	The Kingsroad	2.2 M
2	1	The North Remembers	3.9 M

Projection is a relational algebra operation that takes as input relation **R** and returns a new relation **R'** with a subset of the columns of **R**.

- Recall that more than one set of attributes **X** may be unique
- It may be the case that X and Y are both unique, and that they are not disjoint. When is this interesting?

R (A, B, C, D) attribute lattice of **R**

What's the size of the attribute lattice of *R*?

Look at all attribute combinations?

R (A, B, C, D) attribute lattice of R

- If **X** is unique, then what can we say about its **superset Y**?
- If **X** is non-unique, then what can we say about its **subset Z**?

Given a relation schema *R* (*A*, *B*, *C*, *D*) and a relation instance *r*, a **unique column combination** (or a **"unique"** for short) is a set of attributes *X* whose **projection** contains no duplicates in *r*

Given a relation schema *R* (*A*, *B*, *C*, *D*) and a relation instance *r*, a set of attributes *Y* is **non-unique** if its projection contains duplicates in *r*

X is **minimal unique** if every subset **Y** of **X** is non-unique

Y is maximal non-unique if every superset **X** of **Y** is unique

From uniques to candidate keys

Given a relation schema *R* (*A*, *B*, *C*, *D*) and a relation instance *r*, a **unique column combination** is a set of attributes *X* whose **projection** contains no duplicates in *r*

Episodes(season,num,title,viewers)

season	num	title	viewers
1	1	Winter is Coming	2.2 M
1	2	The Kingsroad	2.2 M
2	1	The North Remembers	3.9 M

A set of attributes is a **candidate key** for a relation if: (1) no two distinct tuples can have the same values for all key attributes (candidate key **uniquely identifies** a tuple), *and* (2) this is not true for any subset of the key attributes (candidate key **is minimal**)

A minimal unique of a relation instance is a (possible) candidate key of the relation schema. To find all possible candidate keys, find all minimal uniques in a relation instance.

association rule mining

The early days of data mining

- Problem formulation due to Agrawal, Imielinski, Swami, SIGMOD 1993
- Solution: the Apriori algorithm by Agrawal & Srikant, VLDB 1994
- Initially for market-basket data analysis, has many other applications, we'll see one today
- We wish to answer two related questions:
 - Frequent itemsets: Which items are often purchased together, e.g., milk and cookies are often bought together
 - Association rules: Which items will likely be purchased, based on other purchased items, e.g., if diapers are bought in a transaction, beer is also likely bought in the same transaction

Market-basket data

- $I = \{i_1, i_2, \dots, i_m\}$ is the set of available items, e.g., a product catalog of a store
- **X** ⊂ **I** is an **itemset**, e.g., {milk, bread, cereal}
- Transaction t is a set of items purchased together, t ⊆ I, has a transaction id (TID)
 - t1: {bread, cheese, milk}
 - t₂: {apple, eggs, salt, yogurt}
 - t₃: {biscuit, cheese, eggs, milk}
- Database T is a set of transactions $\{t_1, t_2, ..., t_n\}$
- A transaction t supports an itemset X if X ⊆ t
- Itemsets supported by at least *minSupp* transactions are called frequent itemsets

minSupp, which can be a number or a percentage, is specified by the user

Itemsets

TID	Items
1	А
2	AC
3	ABD
4	AC
5	ABC
6	ABC

minSupp = 2 transactions

How many possible itemsets are there (excluding the empty itemset)?

itemset	support
★ A	6
★ В	3
★ С	4
D	1
★ AB	3
★ AC	4
AD	1
★ ВС	2
ВD	1
<u> </u>	0
\star ABC	2
ABD	1
BCD	0
ACD	0
ABCD	0

Association rules

An **association rule** is an implication $X \rightarrow Y$, where $X, Y \subset I$, and $X \cap Y =$

example: {milk, bread} \rightarrow {cereal}

"A customer who purchased X is also likely to have purchased Y in the same transaction"

we are interested in rules with a single item in Y

can we represent {milk, bread} \rightarrow {cereal, cheese}?

Rule $X \rightarrow Y$ holds with **support** supp in T if supp of transactions contain $X \cup Y$

Rule $X \rightarrow Y$ holds with confidence *conf* in T if *conf* % of transactions that contain X also contain Y

 $conf \approx \Pr(Y \mid X)$ $conf(X \rightarrow Y) = supp(X \cup Y) / supp(X)$

Association rules

<i>minSupp</i> = 2 transactions			itemset		support
<i>minConf</i> = 0.75			📩 A		6
				В	3
$\Lambda \rightarrow R$	supp = 3			С	4
$A \rightarrow D$ $R \rightarrow \Delta$	conf = 3/3 = 1.0			D	1
D 7 A				ΑB	3
	supp = 2			AC	4
$B \rightarrow C$	conf = 2 / 3 = 0.67			ΑD	1
$C \rightarrow B$	conf = 2 / 4 = 0.5			ВС	2
	supp = 4			ΒD	1
$A \rightarrow C$	conf = 4 / 6 = 0.67			CD	0
$C \rightarrow A$	conf = 4 / 4 = 1.0 ★			ABC	2
		-		ABD	1
	supp = 2			BCD	0
$AB \rightarrow C$	conf = 2 / 3 = 0.67			ACD	0
$AC \rightarrow B$	conf = 2 / 4 = 0.5		4	ABCD	\cap
$BC \rightarrow A$	conf = 2 / 2 = 1.0	$conf(X \rightarrow$	· Y)	= supp ((X U Y)

Julia Stoyanovich

Association rule mining

- Goal: find all association rules that satisfy the userspecified minimum support and minimum confidence
- Algorithm outline
 - Step 1: find all frequent itemsets
 - Step 2: find association rules
- Take 1: naïve algorithm for frequent itemset mining
 - Enumerate all subsets of **I**, check their support in **T**
 - What is the complexity?

Key idea: downward closure

itemset	support
📩 A	6
★ В	3
* C	4
D	1
★ AB	3
🛧 AC	4
AD	1
★ BC	2
ВD	1
C D	0
ABC	2
ABD	1
BCD	0
ACD	0
ABCD	0

All subsets of a frequent itemset **X** are themselves frequent

So, if some subset of X is infrequent, then X cannot be frequent, we know this **apriori**

The converse is not true! If all subsets of **X** are frequent, **X** is not guaranteed to be frequent

The Apriori algorithm

Algorithm Apriori(T, minSupp) $F_1 = \{ frequent \ 1 - itemsets \}; \}$ **for** (k = 2; $F_{k-1} \neq \emptyset$; k++) **do** $C_k \leftarrow \text{candidate-gen}(F_{k-1});$ **for** each transaction $t \in T$ **do** for each candidate $c \in C_k$ do if c is contained in t then c.count++; end end $F_k \leftarrow \{c \in C_k \mid c.count \ge minSupp\}$ end return $F \leftarrow \bigcup_{k} F_{k}$;

itemset	support
📩 A	6
★ В	3
📩 С	4
D	1
📩 AB	3
★ AC	4
AD	1
★ BC	2
ΒD	1
C D	0
★ АВС	2
ABD	1
BCD	0
ACD	0
ABCD	0

Candidate generation

The **candidate-gen** function takes F_{k-1} and returns a superset (called the candidates) of the set of all frequent k-itemsets. It has two steps:

Join: generate all possible candidate itemsets C_k of length k

Prune: optionally remove those candidates in C_k that have infrequent subsets

Julia Stoyanovich

Candidate generation: join

					itemset	support
Insert in	to C _k (A 🖈	6
select	p.item₁, p.	item ₂ ,,	p.item _{k-1} ,	q.item _{k-1}	★ В	3
from	$F_{1,1}$ p. $F_{1,1}$	a			C	4
whore	$\cdot K-1 P$, $\cdot K-1$	i Lom			D	1
where	$p.ttem_1 = q$. L tem ₁			★ AB	3
and	p.item ₂ =	$= q.item_2$		🛨 AC	4	
and	•••				AD	1
and	p.item _{k-1} <	q.item _{k-1})			★ BC	2
					ΒD	1
					<u> </u>	0
Each	Eaca	C			★ АВС	2
r ₁ us p	r ₁ us q	C ₂		_	ABD	1
Α	А	Α	В		BCD	0
D	в	Δ	С		ACD	0
D	P		C		ABCD	0
С	C		C			

NYU

Candidate generation: join

							itemset	support
Insert ir	nto C_k (*	А	6
select	p.item ₁ ,	p.item ₂ ,	, p.it	em _{k-1} , q.	.item _k	-1	В	3
from	F _{k-1} p, F	_{k-1} q					С	4
where	n_item₁	= a.item₄					D	1
and	p.reem ₁	m = a i +					ΑB	3
ana	p.rte	$m_2 = q.10$.em ₂			\star	AC	4
and	•••						ΑD	1
and	p.item _{k-1} < q.item _{k-1})					*	ВС	2
							ВD	1
							CD	0
						\star	ABC	2
F_2 as	þ	F_2 as	q				ABD	1
		_		1			BCD	0
A	В	A	В	C			ACD	0
А	С	Α	С	C 3			ABCD	0
D	C	D	C	A	В	С		
D	U	D	U					

Julia Stoyanovich

NYU

I

Candidate generation

Assume a lexicographic ordering of the items

Join

[nsert int	o C _k (
select	p.item ₁ , p.item ₂ , …, p.item _{k-1} , q.item _{k-1}	
from	$F_{k-1} p, F_{k-1} q$	
where	$p.item_1 = q.item_1$	
and	$p.item_2 = q.item_2$	
and	•••	
and	p.item _{k-1} < q.item _{k-1}) why not p.item _{k-1} \neq q.item _{k-}	1 ?

Prune

for each c in C_k do
 for each (k-1) subset s of c do
 if (s not in F_{k-1}) then
 delete c from C_k

Generating association rules

Rules = \emptyset for each frequent k-itemset X do for each 1-itemset A ⊂ X do compute conf (X / A \rightarrow A) = supp(X) / sup (X / A) if conf (X / A \rightarrow A) \geq minConf then $Rules \leftarrow "X / A \rightarrow A"$ end end end return Rules

Performance of Apriori

- The possible number of frequent itemsets is exponential, O(2^m), where m is the number of items
- Apriori exploits sparseness and locality of data
 - Still, it may produce a large number of rules: thousands, tens of thousands,
 - So, thresholds should be set carefully. What are some good heuristics?

Back to data profiling: Discovering uniques

Given a relation schema *R* (*A*, *B*, *C*, *D*) and a relation instance *r*, a **unique column combination** (or a **"unique"** for short) is a set of attributes *X* whose **projection** contains no duplicates in *r*

Given a relation schema *R* (*A*, *B*, *C*, *D*) and a relation instance *r*, a set of attributes *Y* is **non-unique** if its projection contains duplicates in *r*

X is **minimal unique** if every subset **Y** of **X** is non-unique

Y is maximal non-unique if every superset **X** of **Y** is unique

[Abedjan, Golab, Naumann; *SIGMOD 2017*]

Output

From uniques to candidate keys

Given a relation schema *R* (*A*, *B*, *C*, *D*) and a relation instance *r*, a **unique column combination** is a set of attributes *X* whose **projection** contains no duplicates in *r*

Episodes(season,num,title,viewers)

season	num	title	viewers
1	1	Winter is Coming	2.2 M
1	2	The Kingsroad	2.2 M
2	1	The North Remembers	3.9 M

A set of attributes is a **candidate key** for a relation if: (1) no two distinct tuples can have the value values for all key attributes (candidate key **uniquely identifies** a tuple), *and* (2) this is not true for any subset of the key attributes (candidate key **is minimal**)

A minimal unique of a relation instance is a (possible) candidate key of the relation schema. To find such possible candidate keys, find all minimal uniques in a given relation instance.

Apriori-style uniques discovery

[Abedjan, Golab, Naumann; SIGMOD 2017]

A minimal unique of a relation instance is a (possible) candidate key of the relation schema.

Algorithm Uniques // sketch, similar to HCA

 $U_1 = \{1 \text{-uniques}\}$ $N_1 = \{1 \text{-non-uniques}\}$

for (k = 2; $N_{k-1} \neq \emptyset$; k++) **do**

 $C_k \leftarrow \text{candidate-gen}(N_{k-1})$

 $U_k \leftarrow \text{prune-then-check}(C_k)$

// prune candidates with unique sub-sets, and with value distributions
that cannot be unique

// check each candidate in pruned set for uniqueness

 $N_k \leftarrow C_k \setminus U_k$

end

return $U \leftarrow \bigcup_{k} U_{k};$

breadth-first bottom-up strategy for attribute lattice traversal