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Bias in Computer Systems
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Colby College and The Mina Institute
and
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From an analysis of actual cases, three categories of bias in computer systems have been
developed: preexisting, technical, and emergent. Preexisting bias has its roots in social
institutions, practices, and attitudes. Technical bias arises from technical constraints or
considerations. Emergent bias arises in a context of use. Although others have pointed to bias
in particular computer systems and have noted the general problem, we know of no com-
parable work that examines this phenomenon comprehensively and which offers a framework
for understanding and remedying it. We conclude by suggesting that freedom from bias should
be counted among the select set of criteria—including reliability, accuracy, and efficiency—
according to which the quality of systems in use in society should be judged.

Categories and Subject Descriptors: D.2.0 [Software]: Software Engineering; H.1.2 [Informa-
tion Systems]: User/Machine Systems; K.4.0 [Computers and Society]: General

General Terms: Design, Human Factors

Additional Key Words and Phrases: Bias, computer ethics, computers and society, design
methods, ethics, human values, standards, social computing, social impact, system design,
universal design, values

INTRODUCTION

To introduce what bias in computer systems might look like, consider the
case of computerized airline reservation systems, which are used widely by
travel agents to identify and reserve airline flights for their customers.
These reservation systems seem straightforward. When a travel agent
types in a customer’s travel requirements, the reservation system searches
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Earlier aspects of this work were presented at the 4S/EASST Conference, Goteborg, Sweden,
August 1992, and at InterCHI ’93, Amsterdam, April 1993. An earlier version of this article
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Values, Marx Hall, Princeton University, Princeton, NJ 08544; email: helen@phoenix.princeton.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1996 ACM 1046-8188/96/0700–0330 $03.50
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a database of flights and retrieves all reasonable flight options that meet or
come close to the customer’s requirements. These options then are ranked
according to various criteria, giving priority to nonstop flights, more direct
routes, and minimal total travel time. The ranked flight options are
displayed for the travel agent. In the 1980s, however, most of the airlines
brought before the Antitrust Division of the United States Justice Depart-
ment allegations of anticompetitive practices by American and United
Airlines whose reservation systems—Sabre and Apollo, respectively—dom-
inated the field. It was claimed, among other things, that the two reserva-
tions systems are biased [Schrifin 1985].

One source of this alleged bias lies in Sabre’s and Apollo’s algorithms for
controlling search and display functions. In the algorithms, preference is
given to “on-line” flights, that is, flights with all segments on a single
carrier. Imagine, then, a traveler who originates in Phoenix and flies the
first segment of a round-trip overseas journey to London on American
Airlines, changing planes in New York. All other things being equal, the
British Airlines’ flight from New York to London would be ranked lower
than the American Airlines’ flight from New York to London even though in
both cases a traveler is similarly inconvenienced by changing planes and
checking through customs. Thus, the computer systems systematically
downgrade and, hence, are biased against international carriers who fly
few, if any, internal U.S. flights, and against internal carriers who do not
fly international flights [Fotos 1988; Ott 1988].

Critics also have been concerned with two other problems. One is that the
interface design compounds the bias in the reservation systems. Lists of
ranked flight options are displayed screen by screen. Each screen displays
only two to five options. The advantage to a carrier of having its flights
shown on the first screen is enormous since 90% of the tickets booked by
travel agents are booked by the first screen display [Taib 1990]. Even if the
biased algorithm and interface give only a small percent advantage overall
to one airline, it can make the difference to its competitors between
survival and bankruptcy. A second problem arises from the travelers’
perspective. When travelers contract with an independent third party—a
travel agent—to determine travel plans, travelers have good reason to
assume they are being informed accurately of their travel options; in many
situations, that does not happen.

As Sabre and Apollo illustrate, biases in computer systems can be
difficult to identify let alone remedy because of the way the technology
engages and extenuates them. Computer systems, for instance, are compar-
atively inexpensive to disseminate, and thus, once developed, a biased
system has the potential for widespread impact. If the system becomes a
standard in the field, the bias becomes pervasive. If the system is complex,
and most are, biases can remain hidden in the code, difficult to pinpoint or
explicate, and not necessarily disclosed to users or their clients. Further-
more, unlike in our dealings with biased individuals with whom a potential
victim can negotiate, biased systems offer no equivalent means for appeal.
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Although others have pointed to bias in particular computer systems and
have noted the general problem [Johnson and Mulvey 1993; Moor 1985], we
know of no comparable work that focuses exclusively on this phenomenon
and examines it comprehensively.

In this article, we provide a framework for understanding bias in
computer systems. From an analysis of actual computer systems, we have
developed three categories: preexisting bias, technical bias, and emergent
bias. Preexisting bias has its roots in social institutions, practices, and
attitudes. Technical bias arises from technical constraints or consider-
ations. Emergent bias arises in a context of use. We begin by defining bias
and explicating each category and then move to case studies. We conclude
with remarks about how bias in computer systems can be remedied.

1. WHAT IS A BIASED COMPUTER SYSTEM?

In its most general sense, the term bias means simply “slant.” Given this
undifferentiated usage, at times the term is applied with relatively neutral
content. A grocery shopper, for example, can be “biased” by not buying
damaged fruit. At other times, the term bias is applied with significant
moral meaning. An employer, for example, can be “biased” by refusing to
hire minorities. In this article we focus on instances of the latter, for if one
wants to develop criteria for judging the quality of systems in use—which
we do—then criteria must be delineated in ways that speak robustly yet
precisely to relevant social matters. Focusing on bias of moral import does
just that.

Accordingly, we use the term bias to refer to computer systems that
systematically and unfairly discriminate against certain individuals or
groups of individuals in favor of others. A system discriminates unfairly if
it denies an opportunity or a good or if it assigns an undesirable outcome to
an individual or group of individuals on grounds that are unreasonable or
inappropriate. Consider, for example, an automated credit advisor that
assists in the decision of whether or not to extend credit to a particular
applicant. If the advisor denies credit to individuals with consistently poor
payment records we do not judge the system to be biased because it is
reasonable and appropriate for a credit company to want to avoid extending
credit privileges to people who consistently do not pay their bills. In
contrast, a credit advisor that systematically assigns poor credit ratings to
individuals with ethnic surnames discriminates on grounds that are not
relevant to credit assessments and, hence, discriminates unfairly.

Two points follow. First, unfair discrimination alone does not give rise to
bias unless it occurs systematically. Consider again the automated credit
advisor. Imagine a random glitch in the system which changes in an
isolated case information in a copy of the credit record for an applicant who
happens to have an ethnic surname. The change in information causes a
downgrading of this applicant’s rating. While this applicant experiences
unfair discrimination resulting from this random glitch, the applicant could
have been anybody. In a repeat incident, the same applicant or others with
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similar ethnicity would not be in a special position to be singled out. Thus,
while the system is prone to random error, it is not biased.

Second, systematic discrimination does not establish bias unless it is
joined with an unfair outcome. A case in point is the Persian Gulf War,
where United States Patriot missiles were used to detect and intercept
Iraqi Scud missiles. At least one software error identified during the war
contributed to systematically poor performance by the Patriots [Gao 1992].
Calculations used to predict the location of a Scud depended in complex
ways on the Patriots’ internal clock. The longer the Patriot’s continuous
running time, the greater the imprecision in the calculation. The deaths of
at least 28 Americans in Dhahran can be traced to this software error,
which systematically degraded the accuracy of Patriot missiles. While we
are not minimizing the serious consequence of this systematic computer
error, it falls outside of our analysis because it does not involve unfairness.

2. FRAMEWORK FOR ANALYZING BIAS IN COMPUTER SYSTEMS

We derived our framework by examining actual computer systems for bias.
Instances of bias were identified and characterized according to their
source, and then the characterizations were generalized to more abstract
categories. These categories were further refined by their application to
other instances of bias in the same or additional computer systems. In most
cases, our knowledge of particular systems came from the published
literature. In total, we examined 17 computer systems from diverse fields
including banking, commerce, computer science, education, medicine, and
law.

The framework that emerged from this methodology is comprised of three
overarching categories—preexisting bias, technical bias, and emergent
bias. Table I contains a detailed description of each category. In more
general terms, they can be described as follows.

2.1 Preexisting Bias

Preexisting bias has its roots in social institutions, practices, and attitudes.
When computer systems embody biases that exist independently, and
usually prior to the creation of the system, then we say that the system
embodies preexisting bias. Preexisting biases may originate in society at
large, in subcultures, and in formal or informal, private or public organiza-
tions and institutions. They can also reflect the personal biases of individ-
uals who have significant input into the design of the system, such as the
client or system designer. This type of bias can enter a system either
through the explicit and conscious efforts of individuals or institutions, or
implicitly and unconsciously, even in spite of the best of intentions. For
example, imagine an expert system that advises on loan applications. In
determining an applicant’s credit risk, the automated loan advisor nega-
tively weights applicants who live in “undesirable” locations, such as
low-income or high-crime neighborhoods, as indicated by their home ad-
dresses (a practice referred to as “red-lining”). To the extent the program
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Table I. Categories of Bias in Computer System Design

These categories describe ways in which bias can arise in the design of computer systems. The
illustrative examples portray plausible cases of bias.

1. Preexisting Bias
Preexisting bias has its roots in social institutions, practices, and attitudes.
When computer systems embody biases that exist independently, and usually prior to the
creation of the system, then the system exemplifies preexisting bias. Preexisting bias can
enter a system either through the explicit and conscious efforts of individuals or institutions,
or implicitly and unconsciously, even in spite of the best of intentions.

1.1. Individual
Bias that originates from individuals who have significant input into the design of the
system, such as the client commissioning the design or the system designer (e.g., a client
embeds personal racial biases into the specifications for loan approval software).

1.2 Societal
Bias that originates from society at large, such as from organizations (e.g., industry),
institutions (e.g., legal systems), or culture at large (e.g., gender biases present in the
larger society that lead to the development of educational software that overall appeals
more to boys than girls).

2. Technical Bias
Technical bias arises from technical constraints or technical considerations.

2.1 Computer Tools
Bias that originates from a limitation of the computer technology including hardware,
software, and peripherals (e.g., in a database for matching organ donors with potential
transplant recipients certain individuals retrieved and displayed on initial screens are
favored systematically for a match over individuals displayed on later screens).

2.2 Decontextualized Algorithms
Bias that originates from the use of an algorithm that fails to treat all groups fairly under
all significant conditions (e.g., a scheduling algorithm that schedules airplanes for take-off
relies on the alphabetic listing of the airlines to rank order flights ready within a given
period of time).

2.3 Random Number Generation
Bias that originates from imperfections in pseudorandom number generation or in the
misuse of pseudorandom numbers (e.g., an imperfection in a random-number generator
used to select recipients for a scarce drug leads systematically to favoring individuals
toward the end of the database).

2.4 Formalization of Human Constructs
Bias that originates from attempts to make human constructs such as discourse,
judgments, or intuitions amenable to computers: when we quantify the qualitative,
discretize the continuous, or formalize the nonformal (e.g., a legal expert system advises
defendants on whether or not to plea bargain by assuming that law can be spelled out in
an unambiguous manner that is not subject to human and humane interpretations in
context).
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embeds the biases of clients or designers who seek to avoid certain
applicants on the basis of group stereotypes, the automated loan advisor’s
bias is preexisting.

2.2 Technical Bias

In contrast to preexisting bias, technical bias arises from the resolution of
issues in the technical design. Sources of technical bias can be found in
several aspects of the design process, including limitations of computer
tools such as hardware, software, and peripherals; the process of ascribing
social meaning to algorithms developed out of context; imperfections in
pseudorandom number generation; and the attempt to make human con-
structs amenable to computers, when we quantify the qualitative, dis-
cretize the continuous, or formalize the nonformal. As an illustration,
consider again the case of Sabre and Apollo described above. A technical
constraint imposed by the size of the monitor screen forces a piecemeal
presentation of flight options and, thus, makes the algorithm chosen to

Table I. Continued

These categories describe ways in which bias can arise in the design of computer systems. The
illustrative examples portray plausible cases of bias.

3. Emergent Bias
Emergent bias arises in a context of use with real users. This bias typically emerges some
time after a design is completed, as a result of changing societal knowledge, population, or
cultural values. User interfaces are likely to be particularly prone to emergent bias because
interfaces by design seek to reflect the capacities, character, and habits of prospective users.
Thus, a shift in context of use may well create difficulties for a new set of users.

3.1 New Societal Knowledge
Bias that originates from the emergence of new knowledge in society that cannot be or is
not incorporated into the system design (e.g., a medical expert system for AIDS patients
has no mechanism for incorporating cutting-edge medical discoveries that affect how
individuals with certain symptoms should be treated).

3.2 Mismatch between Users and System Design
Bias that originates when the population using the system differs on some significant
dimension from the population assumed as users in the design.

3.2.1 Different Expertise
Bias that originates when the system is used by a population with a different knowledge
base from that assumed in the design (e.g., an ATM with an interface that makes
extensive use of written instructions—“place the card, magnetic tape side down, in the
slot to your left”—is installed in a neighborhood with primarily a nonliterate
population).

3.2.2 Different Values
Bias that originates when the system is used by a population with different values than
those assumed in the design (e.g., educational software to teach mathematics concepts is
embedded in a game situation that rewards individualistic and competitive strategies,
but is used by students with a cultural background that largely eschews competition
and instead promotes cooperative endeavors).

Bias in Computer Systems • 335

ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.



rank flight options critically important. Whatever ranking algorithm is
used, if it systematically places certain airlines’ flights on initial screens
and other airlines’ flights on later screens, the system will exhibit technical
bias.

2.3 Emergent Bias

While it is almost always possible to identify preexisting bias and technical
bias in a system design at the time of creation or implementation, emergent
bias arises only in a context of use. This bias typically emerges some time
after a design is completed, as a result of changing societal knowledge,
population, or cultural values. Using the example of an automated airline
reservation system, envision a hypothetical system designed for a group of
airlines all of whom serve national routes. Consider what might occur if
that system was extended to include international airlines. A flight-
ranking algorithm that favors on-line flights when applied in the original
context with national airlines leads to no systematic unfairness. However,
in the new context with international airlines, the automated system would
place these airlines at a disadvantage and, thus, comprise a case of
emergent bias. User interfaces are likely to be particularly prone to
emergent bias because interfaces by design seek to reflect the capacities,
character, and habits of prospective users. Thus, a shift in context of use
may well create difficulties for a new set of users.

3. APPLICATIONS OF THE FRAMEWORK

We now analyze actual computer systems in terms of the framework
introduced above. It should be understood that the systems we analyze are
by and large good ones, and our intention is not to undermine their
integrity. Rather, our intention is to develop the framework, show how it
can identify and clarify our understanding of bias in computer systems, and
establish its robustness through real-world cases.

3.1 The National Resident Match Program (NRMP)

The NRMP implements a centralized method for assigning medical school
graduates their first employment following graduation. The centralized
method of assigning medical students to hospital programs arose in the
1950s in response to the chaotic job placement process and on-going failure
of hospitals and students to arrive at optimal placements. During this early
period the matching was carried out by a mechanical card-sorting process,
but in 1974 electronic data processing was introduced to handle the entire
matching process. (For a history of the NRMP, see Graettinger and Peran-
son [1981a].) After reviewing applications and interviewing students, hos-
pital programs submit to the centralized program their ranked list of
students. Students do the same for hospital programs. Hospitals and
students are not permitted to make other arrangements with one another
or to attempt to directly influence each others’ rankings prior to the match.
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THE LAST DECADE has seen a vast increase both in the 
diversity of applications to which machine learning 
is applied, and to the import of those applications. 
Machine learning is no longer just the engine behind 
ad placements and spam filters; it is now used to filter 
loan applicants, deploy police officers, and inform 
bail and parole decisions, among other things. The 
result has been a major concern for the potential for 
data-driven methods to introduce and perpetuate 
discriminatory practices, and to otherwise be unfair. 
And this concern has not been without reason: a 
steady stream of empirical findings has shown that 
data-driven methods can unintentionally both encode 
existing human biases and introduce new ones.7,9,11,60

At the same time, the last two years 
have seen an unprecedented explo-
sion in interest from the academic 
community in studying fairness and 
machine learning. “Fairness and 
transparency” transformed from a 
niche topic with a trickle of papers 
produced every year (at least since the 
work of Pedresh56 to a major subfield 
of machine learning, complete with a 
dedicated archival conference—ACM 
FAT*). But despite the volume and 
velocity of published work, our un-
derstanding of the fundamental ques-
tions related to fairness and machine 
learning remain in its infancy. What 
should fairness mean? What are the 
causes that introduce unfairness in 
machine learning? How best should 
we modify our algorithms to avoid 
unfairness? And what are the corre-
sponding trade offs with which we 
must grapple?

In March 2018, we convened a 
group of about 50 experts in Philadel-
phia, drawn from academia, industry, 
and government, to assess the state of 
our understanding of the fundamen-
tals of the nascent science of fairness 
in machine learning, and to identify 
the unanswered questions that seem 
the most pressing. By necessity, the 
aim of the workshop was not to com-
prehensively cover the vast growing 
field, much of which is empirical. In-
stead, the focus was on theoretical 
work aimed at providing a scientific 
foundation for understanding algo-

A Snapshot of 
the Frontiers 
of Fairness 
in Machine 
Learning

DOI:10.1145/3376898

A group of industry, academic, and 
government experts convene in Philadelphia  
to explore the roots of algorithmic bias.

BY ALEXANDRA CHOULDECHOVA AND AARON ROTH

 key insights
 ˽ The algorithmic fairness literature  

is enormous and growing quickly, but  
our understanding of basic questions 
remains nascent.

 ˽ Researchers have yet to find entirely 
compelling definitions, and current work 
focuses mostly on supervised learning  
in static settings.

 ˽ There are many compelling open 
questions related to robustly accounting 
for the effects of interventions in  
dynamic settings, learning in  
the presence of data contaminated  
with human bias, and finding definitions 
of fairness that guarantee individual-level 
semantics while remaining actionable.
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the minority population. This leads to 
a different (and higher) distribution 
of errors in the minority population. 
This effect can be quantified and can 
be partially alleviated via concerted 
data gathering effort.14

3. The need to explore. In many im-
portant problems, including recidi-
vism prediction and drug trials, the 
data fed into the prediction algorithm 
depends on the actions that algorithm 
has taken in the past. We only observe 
whether an inmate will recidivate if we 
release him. We only observe the effi-
cacy of a drug on patients to whom it is 
assigned. Learning theory tells us that 
in order to effectively learn in such 
scenarios, we need to explore—that 
is, sometimes take actions we believe 
to be sub-optimal in order to gather 
more data. This leads to at least two 
distinct ethical questions. First, when 
are the individual costs of exploration 
borne disproportionately by a certain 
sub-population? Second, if in certain 
(for example, medical) scenarios, we 
view it as immoral to take actions we 
believe to be sub-optimal for any par-
ticular patient, how much does this 
slow learning, and does this lead to 
other sorts of unfairness?

Definitions of fairness. With a few 
exceptions, the vast majority of work 
to date on fairness in machine learn-
ing has focused on the task of batch 
classification. At a high level, this lit-
erature has focused on two main fami-
lies of definitions:a statistical notions 
of fairness and individual notions 
of fairness. We briefly review what 
is known about these approaches to 
fairness, their advantages, and their 
shortcomings.

Statistical definitions of fairness. 
Most of the literature on fair classifica-
tion focuses on statistical definitions 
of fairness. This family of definitions 
fixes a small number of protected 
demographic groups G (such as ra-
cial groups), and then ask for (ap-
proximate) parity of some statistical 
measure across all of these groups. 
Popular measures include raw posi-
tive classification rate, considered in 

a There is also an emerging line of work that 
considers causal notions of fairness (for exam-
ple, see Kilbertus,43 Kusner,48 Nabi55). We in-
tentionally avoided discussions of this poten-
tially important direction because it will be the 
subject of its own CCC visioning workshop.

rithmic bias. This document captures 
several of the key ideas and directions 
discussed. It is not an exhaustive ac-
count of work in the area.

What We Know
Even before we precisely specify what 
we mean by “fairness,” we can iden-
tify common distortions that can lead 
off-the-shelf machine learning tech-
niques to produce behavior that is in-
tuitively unfair. These include:

1. Bias encoded in data. Often, the 
training data we have on hand already 
includes human biases. For example, 
in the problem of recidivism predic-
tion used to inform bail and parole de-
cisions, the goal is to predict whether 
an inmate, if released, will go on to 
commit another crime within a fixed 
period of time. But we do not have 
data on who commits crimes—we 
have data on who is arrested. There is 
reason to believe that arrest data—es-
pecially for drug crimes—is skewed 
toward minority populations that are 
policed at a higher rate.59 Of course, 
machine learning techniques are de-
signed to fit the data, and so will natu-
rally replicate any bias already present 
in the data. There is no reason to ex-
pect them to remove existing bias.

2. Minimizing average error fits ma-
jority populations. Different popula-
tions of people have different distribu-
tions over features, and those features 
have different relationships to the 
label that we are trying to predict. As 
an example, consider the task of pre-
dicting college performance based 
on high school data. Suppose there 
is a majority population and a minor-
ity population. The majority popula-
tion employs SAT tutors and takes the 
exam multiple times, reporting only 
the highest score. The minority popu-
lation does not. We should naturally 
expect both that SAT scores are high-
er among the majority population, 
and that their relationship to college 
performance is differently calibrated 
compared to the minority population. 
But if we train a group-blind classi-
fier to minimize overall error, if it can-
not simultaneously fit both popula-
tions optimally, it will fit the majority 
population. This is because—simply 
by virtue of their numbers—the fit to 
the majority population is more im-
portant to overall error than the fit to 

Given the limitations 
of extant notions  
of fairness,  
is there a way  
to get some  
of the “best of  
both worlds?”
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work such as Calders,10 Dwork,19 Feld-
man,25 Kamishima,36 (also sometimes 
known as statistical parity,19 false pos-
itive and false negative rates15,29,46,63 
(also sometimes known as equal-
ized odds29), and positive predictive 
value15,46 (closely related to equalized 
calibration when working with real 
valued risk scores). There are others—
see, for example, Berk4 for a more ex-
haustive enumeration. 

This family of fairness definitions 
is attractive because it is simple, and 
definitions from this family can be 
achieved without making any assump-
tions on the data and can be easily ver-
ified. However, statistical definitions 
of fairness do not on their own give 
meaningful guarantees to individuals 
or structured subgroups of the pro-
tected demographic groups. Instead 
they give guarantees to “average” 
members of the protected groups. 
(See Dwork19 for a litany of ways in 
which statistical parity and similar 
notions can fail to provide meaning-
ful guarantees, and Kearns40 for exam-
ples of how some of these weaknesses 
carry over to definitions that equalize 
false positive and negative rates.) Dif-
ferent statistical measures of fairness 
can be at odds with one another. For 
example, Chouldechova15 and Klein-
berg46 prove a fundamental impossi-
bility result: except in trivial settings, 
it is impossible to simultaneously 
equalize false positive rates, false 
negative rates, and positive predictive 
value across protected groups. Learn-
ing subject to statistical fairness con-
straints can also be computationally 
hard,61 although practical algorithms 
of various sorts are known.1,29,63

Individual definitions of fairness. 
Individual notions of fairness, on the 
other hand, ask for constraints that 
bind on specific pairs of individu-
als, rather than on a quantity that is 
averaged over groups. For example, 
Dwork19 gives a definition which 
roughly corresponds to the constraint 
that “similar individuals should be 
treated similarly,” where similarity is 
defined with respect to a task-specific 
metric that must be determined on a 
case by case basis. Joseph35 suggests a 
definition that corresponds approxi-
mately to “less qualified individuals 
should not be favored over more qual-
ified individuals,” where quality is de-

fined with respect to the true underly-
ing label (unknown to the algorithm). 
However, although the semantics of 
these kinds of definitions can be more 
meaningful than statistical approach-
es to fairness, the major stumbling 
block is that they seem to require 
making significant assumptions. For 
example, the approach of Dwork19 pre-
supposes the existence of an agreed 
upon similarity metric, whose defini-
tion would itself seemingly require 
solving a non-trivial problem in fair-
ness, and the approach of Joseph35 
seems to require strong assumptions 
on the functional form of the relation-
ship between features and labels in 
order to be usefully put into practice. 
These obstacles are serious enough 
that it remains unclear whether in-
dividual notions of fairness can be 
made practical—although attempting 
to bridge this gap is an important and 
ongoing research agenda.

Questions at the Research Frontier
Given the limitations of extant no-
tions of fairness, is there a way to get 
some of the “best of both worlds?” 
In other words, constraints that are 
practically implementable without 
the need for making strong assump-
tions on the data or the knowledge 
of the algorithm designer, but which 
nevertheless provide more meaning-
ful guarantees to individuals? Two 
recent papers, Kearns40 and Hèbert-
Johnson30 (see also Kearns42 and 
Kim44 for empirical evaluations of 
the algorithms proposed in these pa-
pers), attempt to do this by asking for 
statistical fairness definitions to hold 
not just on a small number of pro-
tected groups, but on an exponential 
or infinite class of groups defined by 
some class of functions of bounded 
complexity. This approach seems 
promising—because, ultimately, they 
are asking for statistical notions of 
fairness—the approaches proposed 
by these papers enjoy the benefits of 
statistical fairness: that no assump-
tions need be made about the data, 
nor is any external knowledge (like a 
fairness metric) needed. It also bet-
ter addresses concerns about “inter-
sectionality,” a term used to describe 
how different kinds of discrimination 
can compound and interact for indi-
viduals who fall at the intersection of 

several protected classes. 
At the same time, the approach 

raises a number of additional ques-
tions: What function classes are rea-
sonable, and once one is decided 
upon (for example, conjunctions of 
protected attributes), what features 
should be “protected?” Should these 
only be attributes that are sensitive 
on their own, like race and gender, or 
might attributes that are innocuous 
on their own correspond to groups we 
wish to protect once we consider their 
intersection with protected attributes 
(for example clothing styles inter-
sected with race or gender)? Finally, 
this family of approaches significantly 
mitigates some of the weaknesses of 
statistical notions of fairness by ask-
ing for the constraints to hold on av-
erage not just over a small number 
of coarsely defined groups, but over 
very finely defined groups as well. Ulti-
mately, however, it inherits the weak-
nesses of statistical fairness as well, 
just on a more limited scale.

Another recent line of work aims 
to weaken the strongest assumption 
needed for the notion of individual 
fairness from Dwork:19 namely the al-
gorithm designer has perfect knowl-
edge of a “fairness metric.” Kim45 as-
sumes the algorithm has access to an 
oracle which can return an unbiased 
estimator for the distance between 
two randomly drawn individuals ac-
cording to an unknown fairness met-
ric, and show how to use this to ensure 
a statistical notion of fairness related 
to Hèbert-Johnson30 and Kearns,40 
which informally state that “on aver-
age, individuals in two groups should 
be treated similarly if on average the 
individuals in the two groups are simi-
lar” and this can be achieved with re-
spect to an exponentially or infinitely 
large set of groups. Similarly, Gillen28 
assumes the existence of an oracle, 
which can identify fairness violations 
when they are made in an online set-
ting but cannot quantify the extent of 
the violation (with respect to the un-
known metric). It is shown that when 
the metric is from a specific learn-
able family, this kind of feedback is 
sufficient to obtain an optimal regret 
bound to the best fair classifier while 
having only a bounded number of vio-
lations of the fairness metric. Roth-
blum58 considers the case in which 
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and do not necessarily coordinate. In 
settings like this, in which we do not 
have direct control over the decision-
making process, it is important to 
think about how to incentivize ratio-
nal agents to behave in a way that we 
view as fair. Kannan37 takes a prelimi-
nary stab at this task, showing how to 
incentivize a particular notion of in-
dividual fairness in a simple, stylized 
setting, using small monetary pay-
ments. But how should this work for 
other notions of fairness, and in more 
complex settings? Can this be done by 
controlling the flow of information, 
rather than by making monetary pay-
ments (monetary payments might be 
distasteful in various fairness-rele-
vant settings)? More work is needed 
here as well. Finally, Corbett-Davies17 
take a welfare maximization view of 
fairness in classification and charac-
terize the cost of imposing additional 
statistical fairness constraints as well. 
But this is done in a static environ-
ment. How would the conclusions 
change under a dynamic model?

Modeling and correcting bias in 
the data. Fairness concerns typically 
surface precisely in settings where 
the available training data is already 
contaminated by bias. The data itself 
is often a product of social and his-
torical process that operated to the 
disadvantage of certain groups. When 
trained in such data, off-the-shelf ma-
chine learning techniques may repro-
duce, reinforce, and potentially exac-
erbate existing biases. Understanding 
how bias arises in the data, and how 
to correct for it, are fundamental chal-
lenges in the study of fairness in ma-
chine learning.

Bolukbasi7 demonstrate how ma-
chine learning can reproduce biases 
in their analysis of the popular word-
2vec embedding trained on a corpus 
of Google News texts (parallel effects 
were independently discovered by Ca-
liskan11). The authors show that the 
trained embedding exhibit female/
male gender stereotypes, learning 
that “doctor” is more similar to man 
than to woman, along with analogies 
such as “man is to computer program-
mer as woman is to homemaker.” 
Even if such learned associations ac-
curately reflect patterns in the source 
text corpus, their use in automated 
systems may exacerbate existing bi-

the metric is known and show that 
a PAC-inspired approximate variant 
of metric fairness generalizes to new 
data drawn from the same underly-
ing distribution. Ultimately, however, 
these approaches all assume fairness 
is perfectly defined with respect to 
some metric, and that there is some 
sort of direct access to it. Can these 
approaches be generalized to a more 
“agnostic” setting, in which fairness 
feedback is given by human beings 
who may not be responding in a way 
that is consistent with any metric?

Data evolution and dynamics of 
fairness. The vast majority of work 
in computer science on algorithmic 
fairness has focused on one-shot clas-
sification tasks. But real algorithmic 
systems consist of many different 
components combined together, and 
operate in complex environments 
that are dynamically changing, some-
times because of the actions of the 
learning algorithm itself. For the field 
to progress, we need to understand 
the dynamics of fairness in more com-
plex systems.

Perhaps the simplest aspect of dy-
namics that remains poorly under-
stood is how and when components 
that may individually satisfy notions 
of fairness compose into larger con-
structs that still satisfy fairness guar-
antees. For example, if the bidders in 
an advertising auction individually 
are fair with respect to their bidding 
decisions, when will the allocation of 
advertisements be fair, and when will 
it not? Bower8 and Dwork20 have made 
a preliminary foray in this direction. 
These papers embark on a systematic 
study of fairness under composition 
and find that often the composition 
of multiple fair components will not 
satisfy any fairness constraint at all. 
Similarly, the individual components 
of a fair system may appear to be un-
fair in isolation. There are certain 
special settings, for example, the “fil-
tering pipeline” scenario of Bower8—
modeling a scenario in which a job 
applicant is selected only if she is se-
lected at every stage of the pipeline—
in which (multiplicative approxima-
tions of) statistical fairness notions 
compose in a well behaved way. But 
the high-level message from these 
works is that our current notions of 
fairness compose poorly. Experience 

from differential privacy21,22 suggests 
that graceful degradation under com-
position is key to designing compli-
cated algorithms satisfying desirabl  
e statistical properties, because it al-
lows algorithm design and analysis to 
be modular. Thus, it seems important 
to find satisfying fairness definitions 
and richer frameworks that behave 
well under composition.

In dealing with socio-technical 
systems, it is also important to under-
stand how algorithms dynamically ef-
fect their environment, and the incen-
tives of human actors. For example, if 
the bar (for example, college admis-
sion) is lowered for a group of indi-
viduals, this might increase the aver-
age qualifications for this group over 
time because of at least two effects: 
a larger proportion of children in the 
next generation grow up in house-
holds with college educated parents 
(and the opportunities this provides), 
and the fact that a college education 
is achievable can incentivize effort to 
prepare academically. These kinds 
of effects are not considered when 
considering either statistical or indi-
vidual notions of fairness in one-shot 
learning settings. 

The economics literature on af-
firmative action has long considered 
such effects—although not with the 
specifics of machine learning in mind: 
see, for example, Becker,3 Coat,16 Fos-
ter.26 More recently, there have been 
some preliminary attempts to model 
these kinds of effects in machine 
learning settings—for example, by 
modeling the environment as a Mar-
kov decision process,32 considering 
the equilibrium effects of imposing 
statistical definitions of fairness in a 
model of a labor market,31 specifying 
the functional relationship between 
classification outcomes and quality,49 
or by considering the effect of a clas-
sifier on a downstream Bayesian de-
cision maker.39 However, the specific 
predictions of most of the models 
of this sort are brittle to the specific 
modeling assumptions made—they 
point to the need to consider long 
term dynamics, but do not provide 
robust guidance for how to navigate 
them. More work is needed here.

Finally, decision making is often 
distributed between a large number 
of actors who share different goals 
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ases. For instance, it might result in 
male applicants being ranked more 
highly than equally qualified female 
applicants in queries related to jobs 
that the embedding identifies as 
male-associated.

Similar risks arise whenever there 
is potential for feedback loops. These 
are situations where the trained ma-
chine learning model informs deci-
sions that then affect the data collect-
ed for future iterations of the training 
process. Lum51 demonstrate how feed-
back loops might arise in predictive 
policing if arrest data were used to 
train the model.b In a nutshell, since 
police are likely to make more arrests 
in more heavily policed areas, using 
arrest data to predict crime hotspots 
will disproportionately concentrate 
policing efforts on already over-po-
liced communities. Expanding on this 
analysis, Ensign24 finds that incorpo-
rating community-driven data, such 
as crime reporting, helps to attenu-
ate the biasing feedback effects. The 
authors also propose a strategy for 
accounting for feedback by adjusting 
arrest counts for policing intensity. 
The success of the mitigation strat-
egy, of course, depends on how well 
the simple theoretical model reflects 
the true relationships between crime 
intensity, policing, and arrests. Prob-
lematically, such relationships are of-
ten unknown, and are very difficult to 
infer from data. This situation is by no 
means specific to predictive policing.

Correcting for data bias generally 
seems to require knowledge of how 
the measurement process is biased, 
or judgments about properties the 
data would satisfy in an “unbiased” 
world. Friedler27 formalize this as 
a disconnect between the observed 
space—features that are observed in 
the data, such as SAT scores—and 
the unobservable construct space—
features that form the desired basis 
for decision making, such as intel-
ligence. Within this framework, data 
correction efforts attempt to undo the 
effects of biasing mechanisms that 
drive discrepancies between these 
spaces. To the extent that the biasing 

b Predictive policing models are generally pro-
prietary, and so it is not clear whether arrest 
data is used to train the model in any de-
ployed system.

mechanism cannot be inferred em-
pirically, any correction effort must 
make explicit its underlying assump-
tions about this mechanism. What 
precisely is being assumed about the 
construct space? When can the map-
ping between the construct space and 
the observed space be learned and 
inverted? What form of fairness does 
the correction promote, and at what 
cost? The costs are often immediately 
realized, whereas the benefits are less 
tangible. We will directly observe re-
ductions in prediction accuracy, but 
any gains hinge on a belief that the 
observed world is not one we should 
seek to replicate accurately in the 
first place. This is an area where tools 
from causality may offer a principled 
approach for drawing valid inference 
with respect to unobserved counter-
factually ‘fair’ worlds.

Fair representations. Fair repre-
sentation learning is a data debiasing 
process that produces transforma-
tions (intermediate representations) 
of the original data that retain as 
much of the task-relevant informa-
tion as possible while removing infor-
mation about sensitive or protected 
attributes. This is one approach to 
transforming biased observational 
data in which group membership may 
be inferred from other features, to a 
construct space where protected attri-
butes are statistically independent of 
other features.

First introduced in the work of 
Zemel64 fair representation learning 
produces a debiased data set that 
may in principle be used by other par-
ties without any risk of disparate out-
comes. Feldman25 and McNamara54 
formalize this idea by showing how 
the disparate impact of a decision rule 
is bounded in terms of its balanced er-
ror rate as a predictor of the sensitive 
attribute.

Several recent papers have intro-
duced new approaches for construct-
ing fair representations. Feldman25 
propose rank-preserving procedures 
for repairing features to reduce or re-
move pairwise dependence with the 
protected attribute. Johndrow33 build 
upon this work, introducing a likeli-
hood-based approach that can addi-
tionally handle continuous protected 
attributes, discrete features, and 
which promotes joint independence 

Fairness  
concerns typically 
surface precisely  
in settings where  
the available 
training data 
is already 
contaminated  
by bias. 
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tions that appear to be sub-optimal so 
as to gather more data. But in settings 
in which decisions correspond to in-
dividuals, this means sacrificing the 
well-being of a particular person for 
the potential benefit of future individ-
uals. This can sometimes be unethi-
cal, and a source of unfairness.6 Sever-
al recent papers explore this issue. For 
example, Bastani2 and Kannan38 give 
conditions under which linear learn-
ers need not explore at all in bandit 
settings, thereby allowing for best-ef-
fort service to each arriving individual, 
obviating the tension between ethical 
treatment of individuals and learn-
ing. Raghavan57 show the costs associ-
ated with exploration can be unfairly 
bourn by a structured sub-population, 
and that counter-intuitively, those 
costs can actually increase when they 
are included with a majority popula-
tion, even though more data increases 
the rate of learning overall. However, 
these results are all preliminary: they 
are restricted to settings in which the 
learner is learning a linear policy, and 
the data really is governed by a linear 
model. While illustrative, more work 
is needed to understand real-world 
learning in online settings, and the 
ethics of exploration.

There is also some work on fair-
ness in machine learning in other 
settings—for example, ranking,12 se-
lection,42,47 personalization,13 bandit 
learning,34,50 human-classifier hybrid 
decision systems,53 and reinforce-
ment learning.18,32 But outside of clas-
sification, the literature is relatively 
sparse. This should be rectified, be-
cause there are interesting and im-
portant fairness issues that arise in 
other settings—especially when there 
are combinatorial constraints on the 
set of individuals that can be selected 
for a task, or when there is a temporal 
aspect to learning.
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between the transformed features 
and the protected attributes. There 
is also a growing literature on using 
adversarial learning to achieve group 
fairness in the form of statistical par-
ity or false positive/false negative rate 
balance.5,23,52,65

Existing theory shows the fairness-
promoting benefits of fair-represen-
tation learning rely critically on the 
extent to which existing associations 
between the transformed features 
and the protected characteristics are 
removed. Adversarial downstream us-
ers may be able to recover protected 
attribute information if their models 
are more powerful than those used 
initially to obfuscate the data. This 
presents a challenge both to the gen-
erators of fair representations as well 
as to auditors and regulators tasked 
with certifying that the resulting data 
is fair for use. More work is needed to 
understand the implications of fair 
representation learning for promot-
ing fairness in the real world.

Beyond classification. Although 
the majority of the work on fairness 
in machine learning focuses on batch 
classification, it is but one aspect of 
how machine learning is used. Much 
of machine learning—for example, 
online learning, bandit learning, and 
reinforcement learning—focuses 
on dynamic settings in which the ac-
tions of the algorithm feed back into 
the data it observes. These dynamic 
settings capture many problems for 
which fairness is a concern. For ex-
ample, lending, criminal recidivism 
prediction, and sequential drug trials 
are so-called bandit learning prob-
lems, in which the algorithm cannot 
observe data corresponding to coun-
terfactuals. We cannot see whether 
someone not granted a loan would 
have paid it back. We cannot see 
whether an inmate not released on 
parole would have gone on to commit 
another crime. We cannot see how a 
patient would have responded to a dif-
ferent drug.

The theory of learning in bandit 
settings is well understood, and it is 
characterized by a need to trade-off 
exploration with exploitation. Rather 
than always making a myopically op-
timal decision, when counterfactuals 
cannot be observed, it is necessary 
for algorithms to sometimes take ac-

Much of machine 
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in which the actions 
of the algorithm 
feed back into  
the data it observes. 
These dynamic 
settings capture 
many problems  
for which fairness  
is a concern.
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Algorithmic Fairness
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An increasing number of decisions regarding the daily lives of human beings are being controlled by arti�cial
intelligence (AI) algorithms in spheres ranging from healthcare, transportation, and education to college
admissions, recruitment, provision of loans and many more realms. Since they now touch on many aspects of
our lives, it is crucial to develop AI algorithms that are not only accurate but also objective and fair. Recent
studies have shown that algorithmic decision-making may be inherently prone to unfairness, even when
there is no intention for it. This paper presents an overview of the main concepts of identifying, measuring
and improving algorithmic fairness when using AI algorithms. The paper begins by discussing the causes of
algorithmic bias and unfairness and the common de�nitions and measures for fairness. Fairness-enhancing
mechanisms are then reviewed and divided into pre-process, in-process and post-process mechanisms. A
comprehensive comparison of the mechanisms is then conducted, towards a better understanding of which
mechanisms should be used in di�erent scenarios. The paper then describes the most commonly used fairness-
related datasets in this �eld. Finally, the paper ends by reviewing several emerging research sub-�elds of
algorithmic fairness.

Keywords: Algorithmic Bias, Algorithmic Fairness, Fairness-Aware Machine Learning.

1 INTRODUCTION
Nowadays, an increasing number of decisions are being controlled by arti�cial intelligence (AI)
algorithms, with increased implementation of automated decision-making systems in business and
government applications. The motivation for an automated learning model is clear – we expect
algorithms to perform better than human beings for several reasons: First, algorithms may integrate
much more data than a human may grasp and take many more considerations into account. Second,
algorithms can perform complex computations much faster than human beings. Third, human
decisions are subjective, and they often include biases.

Hence, it is a common belief that using an automated algorithm makes decisions more objective
or fair. However, this is unfortunately not the case since AI algorithms are not always as objective
as we would expect. The idea that AI algorithms are free from biases is wrong since the assumption
that the data injected into the models are unbiased is wrong. More speci�cally, a prediction model
may actually be inherently biased since it learns and preserves historical biases [85].

Since many automated decisions (including which individuals will receive jobs, loans, medication,
bail or parole) can signi�cantly impact people’s lives, there is great importance in assessing and
improving the ethics of the decisions made by these automated systems. Indeed, in recent years, the
concern for algorithm fairness has made headlines. One of the most common examples was in the
�eld of criminal justice, where recent revelations have shown that an algorithm used by the United
States criminal justice system had falsely predicted future criminality among African-Americans at
twice the rate as it predicted for white people [6, 36]. In another case of a hiring application, it was
recently exposed that Amazon discovered that their AI hiring system was discriminating against
female candidates, particularly for software development and technical positions. One suspected
reason for this is that most recorded historical data were for male software developers [40]. In a
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di�erent scenario in advertising, it was shown that Google’s ad-targeting algorithm had proposed
higher-paying executive jobs more for men than for women [41, 125].

These lines of evidence and concerns about algorithmic fairness have led to growing interest in
the literature on de�ning, evaluating and improving fairness in AI algorithms (see, for example,
[15, 37, 57, 68]). It is important to note, however, that the task of improving fairness of AI algorithms
is not trivial since there exists an inherent trade-o� between accuracy and fairness. That is, as we
pursue a higher degree of fairness, we may compromise accuracy (see, for example, [85]).

In contrast to other recent surveys in this �eld [37, 57], our paper proposes a comprehensive and
up-to-date overview of the �eld, ranging from de�nitions and measures of fairness to state-of-the-
art fairness-enhancing mechanisms. Our survey also attempts to cover the pros and cons of the
various measures and mechanisms, and guide under which setting they should be used. Finally, a
major goal of this survey is to highlight and discuss emerging areas of research that are expected
to grow in the upcoming years. Overall, this survey provides the relevant knowledge to enable
new researchers to enter the �eld, inform current researchers on rapidly evolving sub-�elds, and
provide practitioners the necessary tools to apply the results.

The rest of this paper is structured as follows: Section 2 discusses the potential causes of algorith-
mic unfairness; Section 3 presents de�nitions and measures of fairness and their trade-o�s; Section
4 reviews fairness mechanisms and methods and a comparison of the mechanisms, focusing on
the pros and cons of each mechanism; Section 5 outlines commonly used fairness-related datasets;
Section 6 presents several emerging research sub-�elds of algorithmic fairness; and Section 7
provides concluding remarks and sketches several open challenges for future research.

2 POTENTIAL CAUSES OF UNFAIRNESS
The literature has indicated several causes that may lead to unfairness in machine learning [37, 99]:

• Biases already included in the datasets used for learning, which are based on biased device
measurements, historically biased human decisions, erroneous reports or other reasons. Machine
learning algorithms are essentially designed to replicate these biases.

• Biases caused by missing data, such as missing values or sample/selection biases, which result in
datasets that are not representative of the target population.

• Biases that stem from algorithmic objectives, which aim at minimizing overall aggregated predic-
tion errors and therefore bene�t majority groups over minorities.

• Biases caused by "proxy" attributes for sensitive attributes. Sensitive attributes di�erentiate
privileged and unprivileged groups, such as race, gender and age, and are typically not legitimate
for use in decision making. Proxy attributes are non-sensitive attributes that can be exploited to
derive sensitive attributes. In the case that the dataset contains proxy attributes, the machine
learning algorithm can implicitly make decisions based on the sensitive attributes under the
cover of using presumably legitimate attributes [11].

To illustrate the last cause mentioned above, consider the example depicted in Figure 1. The
�gure illustrates a case of SAT scores for two sub-populations: a privileged one and an unprivileged
one.
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Fig. 1. If the SAT scores were used for hiring, then unprivileged candidates with high potential would be
excluded, whereas lower potential candidates from the privileged group would be hired instead

In this illustration, SAT scores may be used to predict the probability of job success when
hiring candidates since the higher the SAT score is, the higher the probability of success. However,
unprivileged candidates with SAT scores of approximately 1100 perform just as well as privileged
candidates with SAT scores of 1400 since they may have encountered more challenging pathways to
achieve their scores. In other words, if the SAT scores were used for hiring, unprivileged candidates
with high potential would be excluded, whereas lower potential candidates from the privileged
group would be hired instead.

3 FAIRNESS DEFINITIONS AND MEASURES
This section presents some general legal notions for discrimination followed by a survey of the
most common measures for algorithmic fairness, and the inevitable trade-o�s between them.

3.1 Definitions of Discrimination in Legal Domains
The legal domain has introduced two main de�nitions of discrimination: i) disparate treatment
[11, 151]: intentionally treating an individual di�erently based on his/her membership in a protected
class (direct discrimination); ii) disparate impact [11, 119]: negatively a�ecting members of a
protected class more than others even if by a seemingly neutral policy (indirect discrimination).

Put in our context, it is important to note that algorithms trained with data that do not include
sensitive attributes (i.e., attributes that explicitly identify the protected and unprotected groups)
are unlikely to produce disparate treatment, but may still induce unintentional discrimination in
the form of disparate impact [85].

3.2 Measures of Algorithmic Bias
This section presents the most prominent measures of algorithmic fairness in machine learning
classi�cation tasks. We refer the readers to the Appendix and speci�cally to Table 4 for a review of
additional, less popular measures used in the literature.

(1) Disparate impact [54] – This measure was designed to mathematically represent the legal
notion of disparate impact. It requires a high ratio between the positive prediction rates of
both groups. This ensures that the proportion of the positive predictions is similar across
groups. For example, if a positive prediction represents acceptance for a job, the condition
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requires the proportion of accepted applicants to be similar across groups. Formally, this
measure is computed as follows:

P[Ŷ = 1|S , 1]
P[Ŷ = 1|S = 1]

� 1 � � (1)

where S represents the protected attribute (e.g., race or gender), S = 1 is the privileged group,
and S , 1 is the unprivileged group. Ŷ = 1 means that the prediction is positive. Let us note
that if Ŷ = 1 represents acceptance (e.g., for a job), then the condition requires the acceptance
rates to be similar across groups. A higher value of this measure represents more similar rates
across groups and therefore more fairness. Note that this notion relates to the "80 percent
rule" in disparate impact law [54], which requires that the acceptance rate for any race, sex,
or ethnic group be at least 80% of the rate for the group with the highest rate.

(2) Demographic parity – This measure is similar to disparate impact, but the di�erence is
taken instead of the ratio [28, 44]. This measure is also commonly referred to as statistical
parity. Formally, this measure is computed as follows:

��P[Ŷ = 1|S = 1] � P[Ŷ = 1|S , 1]
��  � (2)

A lower value of this measure indicates more similar acceptance rates and therefore better
fairness. Demographic parity (and disparate impact) ensure that the positive prediction is
assigned to the two groups at a similar rate.

One disadvantage of these two measures is that a fully accurate classi�er may be considered
unfair, when the base rates (i.e., the proportion of actual positive outcomes) of the various
groups are signi�cantly di�erent. Moreover, in order to satisfy demographic parity, two
similar individuals may be treated di�erently since they belong to two di�erent groups –
such treatment is prohibited by law in some cases (note that this notion also corresponds to
the practice of a�rmative action [58]).

(3) Equalized odds – This measure was designed by [65] to overcome the disadvantages of
measures such as disparate impact and demographic parity. The measure computes the
di�erence between the false positive rates (FPR), and the di�erence between the true positive
rates (TPR) of the two groups. Formally, this measure is computed as follows:

��P[Ŷ = 1|S = 1,Y = 0] � P[Ŷ = 1|S , 1,Y = 0]
��  � (3)

��P[Ŷ = 1|S = 1,Y = 1] � P[Ŷ = 1|S , 1,Y = 1]
��  � (4)

Where the upper formula requires the absolute di�erence in the FPR of the two groups to
be bounded by � , and the lower formula requires the absolute di�erence in the TPR of the
two groups to be bounded � . Smaller di�erences between groups indicate better fairness.
In contrast to demographic parity and disparate impact measures, a fully accurate classi�er
will necessarily satisfy the two equalized odds constraints. Nevertheless, since equalized odds
relies on the actual ground truth (i.e., Y ), it assumes that the base rates of the two groups are
representative and were not obtained in a biased manner.

One use case that demonstrates the e�ectiveness of this measure investigated the COMPAS
[1] algorithm used in the United States criminal justice system. For predicting recidivism,
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although its accuracy was similar for both groups (African-Americans and Caucasians), it
was discovered that the odds were di�erent. It was discovered that the system had falsely
predicted future criminality (FPR) among African-Americans at twice the rate predicted for
white people [6]; importantly, the algorithm also induced the opposite error, signi�cantly
underestimating future crimes among Caucasians (FNR).

(4) Equal opportunity – This requires true positive rates (TPRs) to be similar across groups
(meaning the probability of an individual with a positive outcome to have a positive prediction)
[65]. This measure is similar to equalized odds but focuses on the true positive rates only.
This measure is mathematically formulated as follows:

��P[Ŷ = 1|S , 1,Y = 1] � P[Ŷ = 1|S = 1,Y = 1]
��  � (5)

Let us note that following the equality in terms of only one type of error (e.g., true positives)
will increase the disparity in terms of the other error [112]. Moreover, according to [38], this
measure may be problematic when base rates di�er between groups.

Thus far, we have mapped the most common group notions of fairness, which require parity of
some statistical measure across groups. The literature has additionally indicated individual notions
of fairness. It is alternatively possible to match other measures such as accuracy, error rates or
calibration values between groups (see the Appendix and speci�cally Table 4). Group de�nitions of
fairness, such as demographic parity, disparate impact, equalized odds and equalized opportunity,
consider fairness with respect to the whole group, as opposed to individual notions of fairness.

(5) Individual fairness – This requires that similar individuals will be treated similarly. Simi-
larity may be de�ned with respect to a particular task [44, 73]. Individual fairness may be
described as follows:

���P(Ŷ (i) = � |X (i), S (i)) � P(Ŷ (j) = � |X (j), S (j))
���  � ; i f d(i, j) ⇡ 0 (6)

where i and j denote two individuals, S (·) refers to the individuals’ sensitive attributes andX (·)

refers to their associated features. d(i, j) is a distance metric between individuals that can be
de�ned depending on the domain such that similarity is measured according to an intended
task. This measure considers other individual attributes for de�ning fairness, rather than just
the sensitive attributes. However, note that in order to de�ne similarity between individuals,
a similarity metric needs to be de�ned, which is not trivial. This measure, in addition to
assuming a similarity metric, also requires some assumptions regarding the relationship
between features and labels (see, for example, [37]).

3.3 Trade-o�s
Determining the right measure to be used must take into account the proper legal, ethical, and social
context. As demonstrated above, di�erent measures exhibit di�erent advantages and disadvantages.
Next, we highlight the main trade-o�s that exist between di�erent notions of fairness, and the
inherent trade-o� between fairness and accuracy.

Fairness measures trade-o�s
Interestingly, several recent studies have shown that it is not possible to satisfy multiple notions of
fairness simultaneously [15, 36, 38, 39, 56, 85, 112]. For example, when base rates di�er between
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groups, it is not possible to have a classi�er that equalizes both calibration and odds (except for
trivial cases such as a classi�er that assigns all examples to a single class). Additionally, there is also
evidence for incompatibility between equalized accuracy and equalized odds, as in the COMPAS
criminal justice use case [6, 15].

[112] recommends that in light of the inherent incompatibility between equalized calibration
and equalized odds, practical implications requires choosing only one of these goals according to
the speci�c application’s requirements. We recommend that any selected measure of algorithmic
fairness be considered in the appropriate legal, social and ethical contexts.

Table 1. Measures and Definitions for Algorithmic Fairness

Measure Paper Description Type Uses Ac-
tual Out-
come

Uses
Sensitive
Attribute

Type of
Actual
Outcome

Type of
Sensitive
Attribute

Equivalent Notions

Disparate
Impact

[54] High ratio between
positive prediction
rates of both groups

Group 7 3 - Binary For � = 0.2 relates to the
"80 percent rule" in dis-
parate impact law [54]

Demographic
Parity

[28],
[44]

Similar positive
prediction rates
between groups

Group 7 3 - Binary • Statistical parity [44];
• Group fairness [44];
• Equal acceptance

rates [36, 136, 152];
• Discrimination score

[28]
Equal Op-
portunity

[65] Requires that TPRs
are similar across
groups

Group 3 3 Binary Binary • Equal true positive
rate (TPR);

• Mathematically equal
TPRs will induce
equal false negative
rates (FNRs) (see
[39, 136]);

• False negative error
rate balance [36, 136];

Equalized
Odds

[65] Requires that FPRs
(1-TNR) and TPRs
(1-FNR) are similar
across groups

Group 3 3 Binary Binary • Disparate mistreat-
ment [142];

• Error rate balance
[36];

• Conditional pro-
cedure accuracy
equality [15]

Fairness
through
Awareness

[44] Requires that similar
individuals will have
similar classi�ca-
tions. Similarity
can be de�ned with
respect to a speci�c
task

Individual 7 7 - - Individual fairness
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Fairness-accuracy trade-o�
The literature extensively discusses the inherent trade-o� between accuracy and fairness - as
we pursue a higher degree of fairness, we may compromise accuracy (see for example [85]). A
theoretical analysis of the trade-o� between fairness and accuracy was studies in [39] and [91].
Since then, many papers have empirically supported the existence of this trade-o� (for example,
[12, 57, 101]). Generally, the aspiration of a fairness-aware algorithm is to achieve a model that
allows for higher fairness without signi�cantly compromising the accuracy or other alternative
notions of utility.

Table 1 presents a summary of the measures presented in this section. For further reading about
algorithmic fairness measures, we refer the reader to [38], [85], and [136].

4 FAIRNESS-ENHANCING MECHANISMS
Numerous recent papers have proposed mechanisms to enhance fairness in machine learning
algorithms. These mechanisms are typically categorized into three types: pre-process, in-process,
and post-process. The following three subsections review studies in each one of these categories.
The fourth subsection is devoted for comparing the three mechanism types and providing guidelines
on when each type should be used.

4.1 Pre-Process Mechanisms
Mechanisms in this category involve changing the training data before feeding it into a machine
learning algorithm. Preliminary mechanisms, such as the ones proposed by [76] and [95] proposed
changing the labels of some instances or reweighing them before training to make the classi�cation
fairer. Typically, the labels that are changed are related to samples that are closer to the decision
boundary since these are the ones that are most likely to be discriminated. More recent mechanisms
suggest modifying feature representations, so that a subsequent classi�er will be fairer [30, 54, 94,
122, 144].

For example, [54] suggest modifying the features in the dataset so that the distributions for
both privileged and unprivileged groups become similar, and therefore, making it more di�cult
for the algorithm to di�erentiate between the two groups. A tuning parameter � was provided for
controlling the trade-o� between fairness and accuracy (�=0 indicates no fairness considerations,
while �=1 maximizes fairness). [8, 35] use the same notion of fair representation learning and
applies it for fair clustering, and [122] applies it for fair dimensionality reduction (PCA). For more
fair representation learning using adversarial learning, see section 6.2.

Note that this approach to achieving fairness is somewhat related to the �eld of data compression
[131, 144]. It is also very closely related to privacy research since both fairness and privacy can
be enhanced by removing or obfuscating the sensitive information, with the adversary goal of
minimal data distortion [47, 83].

4.2 In-Process Mechanisms
These mechanisms involve modifying the machine learning algorithms to account for fairness
during the training time [4, 12, 13, 28, 59, 79, 138, 142, 143].

For example, [79] suggest adding a regularization term to the objective function that penalizes the
mutual information between the sensitive feature and the classi�er predictions. A tuning parameter
� was provided to modulate the trade-o� between fairness and accuracy.

[142], [143] and [138] suggest adding constraints to the classi�cation model that require satisfying
a proxy for equalized odds [138, 142] or disparate impact [143]. [138] also show that there exist
di�cult computational challenges in learning a fair classi�er based on equalized odds.
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[12] and [13] suggest incorporating penalty terms into the objective function that enforce
matching proxies of FPR and FNR. [77] suggest adjusting a decision tree split criterion to maximize
information gain between the split attribute and the class label while minimizing information gain
with respect to the sensitive attribute. [144] combine fair representation learning with an in-process
model by applying a multi-objective loss function based on logistic regression, and [94] apply this
notion using a variational autoencoder.

[113] suggest using the notion of privileged learning1 for improving performance in cases where
the sensitive information is available at training time but not at testing time. They add constraints
and regularization components to the privileged learning support vector machine (SVM) model
proposed by [135]. They combine the sensitive attributes as privileged information that is known
only at training time, and they additionally use a maximum mean discrepancy (MMD) criterion
[62] to encourage the distributions to be similar across privileged and unprivileged groups.

[14] propose a convex in-process fairness mechanism for regression tasks and use three reg-
ularization terms that include variations of individual fairness, group fairness and a combined
hybrid fairness penalty term. [5] propose an in-process minimax optimization formulation for
enhancing fairness in regression tasks based on the suggested design of [4] for classi�cation tasks.
They use two fairness metrics adjusted for regression tasks. One is an adjusted demographic parity
measure, which requires the predictor to be independent of the sensitive attribute as measured
by the cumulative distribution function (CDF) of the protected group compared to the CDF of the
general population [5] using the Kolmogorov-Smirnov statistic [90]. The second measure is the
bounded group loss (BGL), which requires that the prediction error of all groups remain below a
prede�ned level [5].

4.3 Post-Process Mechanisms
These mechanisms perform post-processing of the output scores of the classi�er to make decisions
fairer [39, 46, 65, 101]. For example, [65] propose a technique for �ipping some decisions of a
classi�er to enhance equalized odds or equalized opportunity. [39] and [101] similarly suggest
selecting separate thresholds for each group separately, in a manner that maximizes accuracy and
minimizes demographic parity. [46] propose a decoupling technique to learn a di�erent classi�er
for each group. They additionally combine a transfer learning technique with their procedure to
learn from out-of-group samples (to read more about transfer learning, see [108]).

Table 2 presents a summary of the pre-process, in-process and post-process mechanisms for algo-
rithmic fairness discussed in this section. These methods were designed for the task of classi�cation.
Fairness mechanisms for other learning tasks are discussed in section 6.

1Privileged learning is designed to improve performance by using additional information, denoted as the âĂĲprivileged
information,âĂİ which is present only in the training stage and not in the testing stage [135].



Algorithmic Fairness 9

Table 2. Pre-Process, In-Process and Post-Process Mechanisms for Algorithmic Fairness

Paper Mechanism
Type

Base Al-
gorithm

Optimization Mea-
sure

Evaluation Measure Method Name Datasets

[79] In-Process Logistic re-
gression

Mutual information be-
tween prediction and
sensitive attribute

Normalized prejudice
index

Prejudice Remover Reg-
ularizer

Adult (test only)

[54] Pre-
Process

Any Earth moving distance Disparate impact Removing Disparate
Impact

• Adult
• German

[143] In-Process Decision
boundary-
based

Covariance (between
sensitive attributes and
distance to the decision
boundary)

Disparate impact Fairness Constraints ProPublica

[142] In-Process Decision
boundary-
based

Proxy for equalized
odds

Equalized odds Removing Disparate
Mistreatment

ProPublica

[13] In-Process Decision
boundary-
based

Proxy for equalized
odds

Equalized odds Penalizing Unfairness • ProPublica
• Adult
• Loans
• Admissions

[77] In-Process,
Post-
Process

In-Process
- decision
tree; Post-
Process
- any
algorithm

Information gain Demographic parity • Discrimination
Aware Tree Con-
struction (new split
criterion);

• Relabeling (post-
process)

• Adult
• Communities
• Dutch census

[76] Pre-
Process

Any score-
based

Acceptance probabil-
ities, distance from
boundary

Demographic parity • Massaging
• Reweighing
• Sampling
• Suppression

• German
• Adult
• Communities
• Dutch

[28] In-Process,
Post-
Process

Naive
Bayes

Acceptance probabili-
ties

Demographic parity • Modifying Naive
Bayes

• Two Naive Bayes
• Expectation Maxi-

mization

Adult (test only)

[95] Pre-
Process

Any Conditional statistical
parity

Conditional statistical
parity

Discrimination Preven-
tion with KNN

• Adult
• Communities
• German

[144] Pre-
Process +
In-Process

Logistic re-
gression

Demographic parity Demographic parity Learning Fair Represen-
tations

• Adult
• German
• Heritage health

[59] In-Process SVM Disparate impact, Equal
opportunity

Disparate impact Dataset Constraints Adult

[65] Post-
Process

Any score-
based

Equalized odds Equalized odds Equality of Oppor-
tunity in Supervised
Learning

FICO scores [65]

[39] Post-
Process

Any score-
based

• Demographic parity
• Conditional statisti-

cal parity
• Predictive parity

• Demographic parity
• Conditional statisti-

cal parity
• Predictive parity

Cost of Fairness ProPublica

[138] In-Process
+ Post-
Process

Convex lin-
ear

Equalized odds Equalized odds Learning Non-
Discriminatory Pre-
dictors

-

[113] In-Process SVM Maximum mean dis-
crepancy (MMD)

• Equalized odds
• Overall accuracy

equality

Recycling Privileged
Learning and Distribu-
tion Matching

• ProPublica
• Adult

[30] Pre-
Process

Any • Disparate impact
• Individual fairness

Disparate impact Optimized Pre-
processing for Dis-
crimination Prevention

• ProPublica
• Adult

[46] In-Process
+ Post-
Process

Any score-
based

• Demographic parity
• Equalized odds

• Demographic parity
• Equalized odds

Decoupled Classi�ers ImageNet [42]

[101] Post-
Process

Any score-
based

• Demographic parity
• Equal opportunity

• Demographic parity
• Equal opportunity

Plugin Approach -

[4] In-Process Any • Demographic parity
• Equalized odds

• Demographic parity
• Equalized odds

Reductions Approach • ProPublica
• Adult
• Dutch
• Admissions

[94] Pre-
Process +
In-Process

Any Maximum mean dis-
crepancy (MMD)

• Demographic parity
• Mean di�erence

Variational Fair Autoen-
coder

• Adult
• German
• Heritage health
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4.4 Which Mechanism to Use?
The di�erent mechanism types present respective advantages and disadvantages. Pre-process
mechanisms can be advantageous since they can be used with any classi�cation algorithm. However,
they may harm the explainability of the results. Moreover, since they are not tailored for a speci�c
classi�cation algorithm, there is high uncertainty with regard to the level of accuracy obtained at
the end of the process.

Similar to pre-process mechanisms, post-process mechanisms may be used with any classi�cation
algorithm. However, due to the relatively late stage in the learning process in which they are applied,
post-process mechanisms typically obtain inferior results [138]. In a post-process mechanism, it
may be easier to fully remove bias types such as disparate impact; however, this is not always the
desired measure, and it could be considered as discriminatory since it deliberately damages accuracy
for some individuals in order to compensate others (this is also related to the controversies in the
legal and economical �eld of a�rmative action, see [58]). Speci�cally, post-process mechanisms
may treat di�erently two individuals who are similar across all features except for the group to
which they belong. This approach requires the decision maker at the end of the loop to possess the
information of the group to which individuals belong (this information may be unavailable due to
legal or privacy reasons).

In-process mechanisms are bene�cial since they can explicitly impose the required trade-o�
between accuracy and fairness in the objective function [138]. However, such mechanisms are
tightly coupled with the machine algorithm itself.

Hence, we see that the selection of method depends on the availability of the ground truth, the
availability of the sensitive attributes at test time, and on the desired de�nition of fairness, which
can also vary from one application to another.

Several preliminary attempts were made in order to understand which methods are best for use.
The study in [64] was a �rst e�ort in comparing several fairness mechanisms previously proposed
in the literature [28, 54, 79, 143]. The analysis focuses on binary classi�cation with binary sensitive
attributes. The authors have demonstrated that the performances of the methods vary across
datasets, and there was no conclusively dominating method.

Another study by [116] has shown as a preliminary benchmark that in several cases, in-process
mechanisms perform better than pre-process mechanisms, and for other cases, they do not, leading
to the conclusion that there is a need for much more extensive experiments.

A recent empirical study [57] has provided a benchmark analysis of several fairness-aware
methods and compared the fairness-accuracy trade-o�s obtained by these methods. The authors
have tested the performances of these methods across di�erent measures of fairness and across
di�erent datasets. They have concluded that there was no single method that outperformed the
others in all cases and that the results depend on the fairness measure, on the dataset, and on
changes in the train-test splits.

More research is required for developing robust fairness mechanisms and metrics or, alternatively,
for �nding the adequate mechanism and metric for each scenario. For instance, the conclusions
reached when considering missing data might be very di�erent than those reached when all
information is available [74, 99]. [74] explore the limitations of measuring fairness when the
membership in a protected group is not available in the data. [99] have tested imputation strategies
to deal with the fairness of partially missing examples in the dataset. They have shown that
rows containing missing values may be more fair than the rest and therefore suggest imputation
rather than deletion of these data. [110] �nd that when there is an evident selection bias in the
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data, meaning that there is an extreme under-representation of unprivileged groups, pre-process
mechanisms can outperform in-process mechanisms.

5 FAIRNESS-RELATED DATASETS
In this section, we review the most commonly used datasets in the literature of algorithmic fairness.

ProPublica risk assessment dataset
The ProPublica dataset includes data from the COMPAS risk assessment system (see [1, 6, 88]).

This dataset was previously extensively used for fairness analysis in the �eld of criminal justice
risk [15]. The dataset includes 6,167 individuals, and the features in the dataset include number of
previous felonies, charge degree, age, race and gender. The target variable indicates whether an
inmate recidivated (was arrested again) within two years after release from prison.

As for the sensitive variable, this dataset was previously used with two variations – the �rst
when race was considered as the sensitive attribute and the second when gender was considered as
the sensitive attribute [13, 30, 52, 57, 99].

Adult income dataset
The Adult dataset is a publicly available dataset in the UCI repository [43] based on 1994 US census
data. The goal of this dataset is to successfully predict whether an individual earns more or less
than 50,000$ per year based on features such as occupation, marital status, and education. The
sensitive attributes in this dataset includes age [94], gender [144] and race [57, 99, 143].

This dataset is used with several di�erent preprocessing procedures. For example, the dataset of
[143] includes 45,222 individuals after preprocessing (48,842 before preprocessing).

German credit dataset
The German dataset is a publicly available dataset in the UCI repository [43] that includes informa-
tion of individuals from a German bank in 1994.

The goal of this dataset is to predict whether an individual should receive a good or bad credit
risk score based on features such as employment, housing, savings, and age. The sensitive attributes
in this dataset include gender [57, 94] and age [75, 144]. This dataset is signi�cantly smaller, with
only 1,000 individuals with 20 attributes.

Ricci promotion dataset
The Ricci dataset includes the results of an exam administered to 118 individuals to determine
which of them would receive a promotion. The dataset originated from a case that was brought
to the United States Supreme Court [102, 120]. The goal of this dataset is to successfully predict
whether an individual receives a promotion based on features that were tested in the exam, as well
as the current position of each individual. The sensitive attribute in this dataset is race.

Mexican poverty dataset
The Mexican poverty dataset includes poverty estimation for determining whether to match
households with social programs. The data originated from a survey of 70,305 households in 2016
[71]. The target feature is poverty level, and there are 183 features. This dataset was studied, for
example, in [106]. The authors studied two sensitive features: young and old families; urban and
rural areas.
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Inherent Trade-Offs in the Fair Determination of Risk Scores

Jon Kleinberg ∗ Sendhil Mullainathan † Manish Raghavan ‡

Abstract

Recent discussion in the public sphere about algorithmic classification has involved tension between
competing notions of what it means for a probabilistic classification to be fair to different groups. We
formalize three fairness conditions that lie at the heart of these debates, and we prove that except in highly
constrained special cases, there is no method that can satisfy these three conditions simultaneously.
Moreover, even satisfying all three conditions approximately requires that the data lie in an approximate
version of one of the constrained special cases identified by our theorem. These results suggest some
of the ways in which key notions of fairness are incompatible with each other, and hence provide a
framework for thinking about the trade-offs between them.

1 Introduction

There are many settings in which a sequence of people comes before a decision-maker, who must make a
judgment about each based on some observable set of features. Across a range of applications, these judg-
ments are being carried out by an increasingly wide spectrum of approaches ranging from human expertise
to algorithmic and statistical frameworks, as well as various combinations of these approaches.

Along with these developments, a growing line of work has asked how we should reason about issues of bias
and discrimination in settings where these algorithmic and statistical techniques, trained on large datasets
of past instances, play a significant role in the outcome. Let us consider three examples where such issues
arise, both to illustrate the range of relevant contexts, and to surface some of the challenges.

A set of example domains. First, at various points in the criminal justice system, including decisions
about bail, sentencing, or parole, an officer of the court may use quantitative risk tools to assess a defendant’s
probability of recidivism — future arrest — based on their past history and other attributes. Several recent
analyses have asked whether such tools are mitigating or exacerbating the sources of bias in the criminal
justice system; in one widely-publicized report, Angwin et al. analyzed a commonly used statistical method
for assigning risk scores in the criminal justice system — the COMPAS risk tool — and argued that it was
biased against African-American defendants [2, 23]. One of their main contentions was that the tool’s errors
were asymmetric: African-American defendants were more likely to be incorrectly labeled as higher-risk
than they actually were, while white defendants were more likely to be incorrectly labeled as lower-risk than
they actually were. Subsequent analyses raised methodological objections to this report, and also observed
that despite the COMPAS risk tool’s errors, its estimates of the probability of recidivism are equally well
calibrated to the true outcomes for both African-American and white defendants [1, 10, 13, 17].

∗Cornell University
†Harvard University
‡Cornell University
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Second, in a very different domain, researchers have begun to analyze the ways in which different genders
and racial groups experience advertising and commercial content on the Internet differently [9, 26]. We
could ask, for example: if a male user and female user are equally interested in a particular product, does
it follow that they’re equally likely to be shown an ad for it? Sometimes this concern may have broader
implications, for example if women in aggregate are shown ads for lower-paying jobs. Other times, it may
represent a clash with a user’s leisure interests: if a female user interacting with an advertising platform is
interested in an activity that tends to have a male-dominated viewership, like professional football, is the
platform as likely to show her an ad for football as it is to show such an ad to an interested male user?

A third domain, again quite different from the previous two, is medical testing and diagnosis. Doctors
making decisions about a patient’s treatment may rely on tests providing probability estimates for different
diseases and conditions. Here too we can ask whether such decision-making is being applied uniformly
across different groups of patients [16, 27], and in particular how medical tests may play a differential role
for conditions that vary widely in frequency between these groups.

Providing guarantees for decision procedures. One can raise analogous questions in many other do-
mains of fundamental importance, including decisions about hiring, lending, or school admissions [24], but
we will focus on the three examples above for the purposes of this discussion. In these three example do-
mains, a few structural commonalities stand out. First, the algorithmic estimates are often being used as
“input” to a larger framework that makes the overall decision — a risk score provided to a human expert in
the legal and medical instances, and the output of a machine-learning algorithm provided to a larger adver-
tising platform in the case of Internet ads. Second, the underlying task is generally about classifying whether
people possess some relevant property: recidivism, a medical condition, or interest in a product. We will
refer to people as being positive instances if they truly possess the property, and negative instances if they
do not. Finally, the algorithmic estimates being provided for these questions are generally not pure yes-no
decisions, but instead probability estimates about whether people constitute positive or negative instances.

Let us suppose that we are concerned about how our decision procedure might operate differentially between
two groups of interest (such as African-American and white defendants, or male and female users of an
advertising system). What sorts of guarantees should we ask for as protection against potential bias?

A first basic goal in this literature is that the probability estimates provided by the algorithm should be
well-calibrated: if the algorithm identifies a set of people as having a probability z of constituting positive
instances, then approximately a z fraction of this set should indeed be positive instances [8, 14]. Moreover,
this condition should hold when applied separately in each group as well [13]. For example, if we are
thinking in terms of potential differences between outcomes for men and women, this means requiring that a
z fraction of men and a z fraction of women assigned a probability z should possess the property in question.

A second goal focuses on the people who constitute positive instances (even if the algorithm can only
imperfectly recognize them): the average score received by people constituting positive instances should
be the same in each group. We could think of this as balance for the positive class, since a violation of it
would mean that people constituting positive instances in one group receive consistently lower probability
estimates than people constituting positive instances in another group. In our initial criminal justice example,
for instance, one of the concerns raised was that white defendants who went on to commit future crimes
were assigned risk scores corresponding to lower probability estimates in aggregate; this is a violation of
the condition here. There is a completely analogous property with respect to negative instances, which we
could call balance for the negative class. These balance conditions can be viewed as generalizations of the
notions that both groups should have equal false negative and false positive rates.

It is important to note that balance for the positive and negative classes, as defined here, is distinct in
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crucial ways from the requirement that the average probability estimate globally over all members of the
two groups be equal. This latter global requirement is a version of statistical parity [12, 4, 21, 22]. In some
cases statistical parity is a central goal (and in some it is legally mandated), but the examples considered
so far suggest that classification and risk assessment are much broader activities where statistical parity is
often neither feasible nor desirable. Balance for the positive and negative classes, however, is a goal that can
be discussed independently of statistical parity, since these two balance conditions simply ask that once we
condition on the “correct” answer for a person, the chance of making a mistake on them should not depend
on which group they belong to.

The present work: Trade-offs among the guarantees. Despite their different formulations, the calibra-
tion condition and the balance conditions for the positive and negative classes intuitively all seem to be
asking for variants of the same general goal — that our probability estimates should have the same effec-
tiveness regardless of group membership. One might therefore hope that it would be feasible to achieve all
of them simultaneously.

Our main result, however, is that these conditions are in general incompatible with each other; they can only
be simultaneously satisfied in certain highly constrained cases. Moreover, this incompatibility applies to
approximate versions of the conditions as well.

In the remainder of this section we formulate this main result precisely, as a theorem building on a model
that makes the discussion thus far more concrete.

1.1 Formulating the Goal

Let’s start with some basic definitions. As above, we have a collection of people each of whom constitutes
either a positive instance or a negative instance of the classification problem. We’ll say that the positive
class consists of the people who constitute positive instances, and the negative class consists of the people
who constitute negative instances. For example, for criminal defendants, the positive class could consist of
those defendants who will be arrested again within some fixed time window, and the negative class could
consist of those who will not. The positive and negative classes thus represent the “correct” answer to the
classification problem; our decision procedure does not know them, but is trying to estimate them.

Feature vectors. Each person has an associated feature vector σ, representing the data that we know
about them. Let pσ denote the fraction of people with feature vector σ who belong to the positive class.
Conceptually, we will picture that while there is variation within the set of people who have feature vector
σ, this variation is invisible to whatever decision procedure we apply; all people with feature vector σ are
indistinguishable to the procedure. Our model will assume that the value pσ for each σ is known to the
procedure.1

Groups. Each person also belongs to one of two groups, labeled 1 or 2, and we would like our decisions
to be unbiased with respect to the members of these two groups.2 In our examples, the two groups could
correspond to different races or genders, or other cases where we want to look for the possibility of bias
between them. The two groups have different distributions over feature vectors: a person of group t has a
probability atσ of exhibiting the feature vector σ. However, people of each group have the same probability

1Clearly the case in which the value of pσ is unknown is an important version of the problem as well; however, since our main
results establish strong limitations on what is achievable, these limitations are only stronger because they apply even to the case of
known pσ.

2We focus on the case of two groups for simplicity of exposition, but it is straightforward to extend all of our definitions to the
case of more than two groups.
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pσ of belonging to the positive class provided their feature vector is σ. In this respect, σ contains all the
relevant information available to us about the person’s future behavior; once we know σ, we do not get any
additional information from knowing their group as well.3

Risk Assignments. We say that an instance of our problem is specified by the parameters above: a feature
vector and a group for each person, with a value pσ for each feature vector, and distributions {atσ} giving
the frequency of the feature vectors in each group.

Informally, risk assessments are ways of dividing people up into sets based on their feature vectors σ (po-
tentially using randomization), and then assigning each set a probability estimate that the people in this set
belong to the positive class. Thus, we define a risk assignment to consist of a set of “bins” (the sets), where
each bin is labeled with a score vb that we intend to use as the probability for everyone assigned to bin b.
We then create a rule for assigning people to bins based on their feature vector σ; we allow the rule to di-
vide people with a fixed feature vector σ across multiple bins (reflecting the possible use of randomization).
Thus, the rule is specified by values Xσb: a fraction Xσb of all people with feature vector σ are assigned
to bin b. Note that the rule does not have access to the group t of the person being considered, only their
feature vector σ. (As we will see, this does not mean that the rule is incapable of exhibiting bias between
the two groups.) In summary, a risk assignment is specified by a set of bins, a score for each bin, and values
Xσb that define a mapping from people with feature vectors to bins.

Fairness Properties for Risk Assignments. Within the model, we now express the three conditions dis-
cussed at the outset, each reflecting a potentially different notion of what it means for the risk assignment to
be “fair.”

(A) Calibration within groups requires that for each group t, and each bin b with associated score vb, the
expected number of people from group t in b who belong to the positive class should be a vb fraction
of the expected number of people from group t assigned to b.

(B) Balance for the negative class requires that the average score assigned to people of group 1 who
belong to the negative class should be the same as the average score assigned to people of group 2
who belong to the negative class. In other words, the assignment of scores shouldn’t be systematically
more inaccurate for negative instances in one group than the other.

(C) Balance for the positive class symmetrically requires that the average score assigned to people of
group 1 who belong to the positive class should be the same as the average score assigned to people
of group 2 who belong to the positive class.

Why Do These Conditions Correspond to Notions of Fairness?. All of these are natural conditions to
impose on a risk assignment; and as indicated by the discussion above, all of them have been proposed as
versions of fairness. The first one essentially asks that the scores mean what they claim to mean, even when
considered separately in each group. In particular, suppose a set of scores lack the first property for some
bin b, and these scores are given to a decision-maker; then if people of two different groups both belong to
bin b, the decision-maker has a clear incentive to treat them differently, since the lack of calibration within
groups on bin b means that these people have different aggregate probabilities of belonging to the positive
class. Another way of stating the property of calibration within groups is to say that, conditioned on the
bin to which an individual is assigned, the likelihood that the individual is a member of the positive class
is independent of the group to which the individual belongs. This means we are justified in treating people

3As we will discuss in more detail below, the assumption that the group provides no additional information beyond σ does not
restrict the generality of the model, since we can always consider instances in which people of different groups never have the same
feature vector σ, and hence σ implicitly conveys perfect information about a person’s group.
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with the same score comparably with respect to the outcome, rather than treating people with the same score
differently based on the group they belong to.

The second and third ask that if two individuals in different groups exhibit comparable future behavior
(negative or positive), they should be treated comparably by the procedure. In other words, a violation of,
say, the second condition would correspond to the members of the negative class in one group receiving
consistently higher scores than the members of the negative class in the other group, despite the fact that the
members of the negative class in the higher-scoring group have done nothing to warrant these higher scores.

We can also interpret some of the prior work around our earlier examples through the lens of these condi-
tions. For example, in the analysis of the COMPAS risk tool for criminal defendants, the critique by Angwin
et al. focused on the risk tool’s violation of conditions (B) and (C); the counter-arguments established that
it satisfies condition (A). While it is clearly crucial for a risk tool to satisfy (A), it may still be important to
know that it violates (B) and (C). Similarly, to think in terms of the example of Internet advertising, with
male and female users as the two groups, condition (A) as before requires that our estimates of ad-click
probability mean the same thing in aggregate for men and women. Conditions (B) and (C) are distinct; con-
dition (C), for example, says that a female user who genuinely wants to see a given ad should be assigned
the same probability as a male user who wants to see the ad.

1.2 Determining What is Achievable: A Characterization Theorem

When can conditions (A), (B), and (C) be simultaneously achieved? We begin with two simple cases where
it’s possible.

• Perfect prediction. Suppose that for each feature vector σ, we have either pσ = 0 or pσ = 1. This
means that we can achieve perfect prediction, since we know each person’s class label (positive or
negative) for certain. In this case, we can assign all feature vectors σ with pσ = 0 to a bin b with score
vb = 0, and all σ with pσ = 1 to a bin b′ with score vb′ = 1. It is easy to check that all three of the
conditions (A), (B), and (C) are satisfied by this risk assignment.

• Equal base rates. Suppose, alternately, that the two groups have the same fraction of members in the
positive class; that is, the average value of pσ is the same for the members of group 1 and group 2. (We
can refer to this as the base rate of the group with respect to the classification problem.) In this case,
we can create a single bin b with score equal to this average value of pσ, and we can assign everyone
to bin b. While this is not a particularly informative risk assignment, it is again easy to check that it
satisfies fairness conditions (A), (B), and (C).

Our first main result establishes that these are in fact the only two cases in which a risk assignment can
achieve all three fairness guarantees simultaneously.

Theorem 1.1 Consider an instance of the problem in which there is a risk assignment satisfying fairness
conditions (A), (B), and (C). Then the instance must either allow for perfect prediction (with pσ equal to 0
or 1 for all σ) or have equal base rates.

Thus, in every instance that is more complex than the two cases noted above, there will be some natural
fairness condition that is violated by any risk assignment. Moreover, note that this result applies regardless
of how the risk assignment is computed; since our framework considers risk assignments to be arbitrary
functions from feature vectors to bins labeled with probability estimates, it applies independently of the
method — algorithmic or otherwise — that is used to construct the risk assignment.
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The conclusions of the first theorem can be relaxed in a continuous fashion when the fairness conditions are
only approximate. In particular, for any ε > 0 we can define ε-approximate versions of each of conditions
(A), (B), and (C) (specified precisely in the next section), each of which requires that the corresponding
equalities between groups hold only to within an error of ε. For any δ > 0, we can also define a δ-
approximate version of the equal base rates condition (requiring that the base rates of the two groups be
within an additive δ of each other) and a δ-approximate version of the perfect prediction condition (requiring
that in each group, the average of the expected scores assigned to members of the positive class is at least
1 − δ; by the calibration condition, this can be shown to imply a complementary bound on the average of
the expected scores assigned to members of the negative class).

In these terms, our approximate version of Theorem 1.1 is the following.

Theorem 1.2 There is a continuous function f , with f(x) going to 0 as x goes to 0, so that the following
holds. For all ε > 0, and any instance of the problem with a risk assignment satisfying the ε-approximate
versions of fairness conditions (A), (B), and (C), the instance must satisfy either the f(ε)-approximate
version of perfect prediction or the f(ε)-approximate version of equal base rates.

Thus, anything that approximately satisfies the fairness constraints must approximately look like one of the
two simple cases identified above.

Finally, in connection to Theorem 1.1, we note that when the two groups have equal base rates, then one
can ask for the most accurate risk assignment that satisfies all three fairness conditions (A), (B), and (C)
simultaneously. Since the risk assignment that gives the same score to everyone satisfies the three conditions,
we know that at least one such risk assignment exists; hence, it is natural to seek to optimize over the set of
all such assignments. We consider this algorithmic question in the final technical section of the paper.

To reflect a bit further on our main theorems and what they suggest, we note that our intention in the present
work isn’t to make a recommendation on how conflicts between different definitions of fairness should be
handled. Nor is our intention to analyze which definitions of fairness are violated in particular applications
or datasets. Rather, our point is to establish certain unavoidable trade-offs between the definitions, regardless
of the specific context and regardless of the method used to compute risk scores. Since each of the definitions
reflect (and have been proposed as) natural notions of what it should mean for a risk score to be fair, these
trade-offs suggest a striking implication: that outside of narrowly delineated cases, any assignment of risk
scores can in principle be subject to natural criticisms on the grounds of bias. This is equally true whether
the risk score is determined by an algorithm or by a system of human decision-makers.

Special Cases of the Model. Our main results, which place strong restrictions on when the three fairness
conditions can be simultaneously satisfied, have more power when the underlying model of the input is more
general, since it means that the restrictions implied by the theorems apply in greater generality. However,
it is also useful to note certain special cases of our model, obtained by limiting the flexibility of certain
parameters in intuitive ways. The point is that our results apply a fortiori to these more limited special
cases.

First, we have already observed one natural special case of our model: cases in which, for each feature
vector σ, only members of one group (but not the other) can exhibit σ. This means that σ contains perfect
information about group membership, and so it corresponds to instances in which risk assignments would
have the potential to use knowledge of an individual’s group membership. Note that we can convert any
instance of our problem into a new instance that belongs to this special case as follows. For each feature
vector σ, we create two new feature vectors σ(1) and σ(2); then, for each member of group 1 who had feature
vector σ, we assign them σ(1), and for each member of group 2 who had feature vector σ, we assign them
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σ(2). The resulting instance has the property that each feature vector is associated with members of only one
group, but it preserves the essential aspects of the original instance in other respects.

Second, we allow risk assignments in our model to split people with a given feature vector σ over several
bins. Our results also therefore apply to the natural special case of the model with integral risk assignments,
in which all people with a given feature σ must go to the same bin.

Third, our model is a generalization of binary classification, which only allows for 2 bins. Note that although
binary classification does not explicitly assign scores, we can consider the probability that an individual
belongs to the positive class given that they were assigned to a specific bin to be the score for that bin. Thus,
our results hold in the traditional binary classification setting as well.

Data-Generating Processes. Finally, there is the question of where the data in an instance of our problem
comes from. Our results do not assume any particular process for generating the positive/negative class
labels, feature vectors, and group memberships; we simply assume that we are given such a collection of
values (regardless of where they came from), and then our results address the existence or non-existence of
certain risk assignments for these values.

This increases the generality of our results, since it means that they apply to any process that produces data
of the form described by our model. To give an example of a natural generative model that would produce
instances with the structure that we need, one could assume that each individual starts with a “hidden” class
label (positive or negative), and a feature vector σ is then probabilistically generated for this individual from
a distribution that can depend on their class label and their group membership. (If feature vectors produced
for the two groups are disjoint from one another, then the requirement that the value of pσ is independent of
group membership given σ necessarily holds.) Since a process with this structure produces instances from
our model, our results apply to data that arises from such a generative process.

It is also interesting to note that the basic set-up of our model, with the population divided across a set
of feature vectors for which race provides no additional information, is in fact a very close match to the
information one gets from the output of a well-calibrated risk tool. In this sense, one setting for our model
would be the problem of applying post-processing to the output of such a risk tool to ensure additional
fairness guarantees. Indeed, since much of the recent controversy about fair risk scores has involved risk
tools that are well-calibrated but lack the other fairness conditions we consider, such an interpretation of the
model could be a useful way to think about how one might work with these tools in the context of a broader
system.

1.3 Further Related Work

Mounting concern over discrimination in machine learning has led to a large body of new work seeking
to better understand and prevent it. Barocas and Selbst survey a range of ways in which data-analysis
algorithms can lead to discriminatory outcomes [3], and review articles by Romei and Ruggieri [25] and
Zliobaite [30] survey data-analytic and algorithmic methods for measuring discrimination.

Kamiran and Calders [21] and Hajian and Domingo-Ferrer [18] seek to modify datasets to remove any
information that might permit discrimination. Similarly, Zemel et al. look to learn fair intermediate repre-
sentations of data while preserving information needed for classification [29]. Joseph et al. consider how
fairness issues can arise during the process of learning, modeling this using a multi-armed bandit framework
[20].
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Abstract

Recidivism prediction instruments (RPI’s) provide decision makers with an assessment of the
likelihood that a criminal defendant will reoffend at a future point in time. While such instru-
ments are gaining increasing popularity across the country, their use is attracting tremendous
controversy. Much of the controversy concerns potential discriminatory bias in the risk assess-
ments that are produced. This paper discusses several fairness criteria that have recently been
applied to assess the fairness of recidivism prediction instruments. We demonstrate that the
criteria cannot all be simultaneously satisfied when recidivism prevalence differs across groups.
We then show how disparate impact can arise when a recidivism prediction instrument fails to
satisfy the criterion of error rate balance.

Keywords: disparate impact; bias; recidivism prediction; risk assessment; fair machine learn-
ing

1 Introduction

Risk assessment instruments are gaining increasing popularity within the criminal justice system,
with versions of such instruments being used or considered for use in pre-trial decision-making,
parole decisions, and in some states even sentencing1,2,3. In each of these cases, a high-risk
classification—particularly a high-risk misclassification—may have a direct adverse impact on a
criminal defendant’s outcome. If the use of RPI’s is to become commonplace, it is especially im-
portant to ensure that the instruments are free from discriminatory biases that could result in
unethical practices and inequitable outcomes for different groups.

In a recent widely popularized investigation conducted by a team at ProPublica, Angwin et al. 4

studied an RPI called COMPASa, concluding that it is biased against black defendants. The authors

∗Heinz College, Carnegie Mellon University

aCOMPAS5 is a risk assessment instrument developed by Northpointe Inc.. Of the 22 scales that COMPAS
provides, the Recidivism risk and Violent Recidivism risk scales are the most widely used. The empirical results in
this paper are based on decile scores coming from the COMPAS Recidivism risk scale.
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found that the likelihood of a non-recidivating black defendant being assessed as high risk is nearly
twice that of white defendants. Similarly, the likelihood of a recidivating black defendant being
assessed as low risk is nearly half that of white defendants. In technical terms, these findings
indicate that the COMPAS instrument has considerably higher false positive rates and lower false
negative rates for black defendants than for white defendants.

ProPublica’s analysis has met with much criticism from both the academic community and
from the Northpointe corporation. Much of the criticism has focussed on the particular choice of
fairness criteria selected for the investigation. Flores et al. 6 argue that the correct approach for
assessing RPI bias is instead to check for calibration, a fairness criterion that they show COMPAS
satisfies. Northpointe in their response7 argue for a still different approach that checks for a
fairness criterion termed predictive parity, which they demonstrate COMPAS also satisfies. We
provide precise definitions and a more in-depth discussion of these and other fairness criteria in
Section 2.1.

In this paper we show that the differences in false positive and false negative rates cited as
evidence of racial bias by Angwin et al. 4 are a direct consequence of applying an RPI that that
satisfies predictive parity to a population in which recidivism prevalencea differs across groups.
Our main contribution is twofold. (1) First, we make precise the connection between the predictive
parity criterion and error rates in classification. (2) Next, we demonstrate how using an RPI that
has different false postive and false negative rates between groups can lead to disparate impact when
individuals assessed as high risk receive stricter penalties. Throughout our discussion we use the
term disparate impact to refer to settings where a penalty policy has unintended disproportionate
adverse impact on a particular group.

It is important to bear in mind that fairness itself—along with the notion of disparate impact—
is a social and ethical concept, not a statistical one. A risk prediction instrument that is fair with
respect to particular fairness criteria may nevertheless result in disparate impact depending on how
and where it is used. In this paper we consider hypothetical use cases in which we are able to
directly connect particular fairness properties of an RPI to a measure of disparate impact. We
present both theoretical and empirical results to illustrate how disparate impact can arise.

1.1 Outline of paper

We begin in Section 2 by providing some background on several of the different fairness criteria
that have appeared in recent literature. We then proceed to demonstrate that an instrument that
satisfies predictive parity cannot have equal false positive and negative rates across groups when the
recidivism prevalence differs across those groups. In Section 3 we analyse a simple risk assessment-
based sentencing policy and show how differences in false positive and false negative rates can
result in disparate impact under this policy. In Section 3.3 we back up our theoretical analysis by
presenting some empirical results based on the data made available by the ProPublica investigators.
We conclude with a discussion of the issues that biased data presents for the arguments put forth
in this paper.

aPrevalence, also termed the base rate, is the proportion of individuals who recidivate in a given population.
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1.2 Data description and setup

The empirical results in this paper are based on the Broward County data made publicly available
by ProPublica8. This data set contains COMPAS recidivism risk decile scores, 2-year recidivism
outcomes, and a number of demographic and crime-related variables on individuals who were scored
in 2013 and 2014. We restrict our attention to the subset of defendants whose race is recorded as
African-American (b) or Caucasian (w).a After applying the same data pre-processing and filtering
as reported in the ProPublica analysis, we are left with a data set on n = 6150 individuals, of
whom nb = 3696 are African-American and nc = 2454 are Caucasian.

2 Assessing fairness

2.1 Background

We begin by with some notation. Let S = S(x) denote the risk score based on covariates
X = x ∈ Rp, with higher values of S corresponding to higher levels of assessed risk. We will
interchangeably refer to S as a score or an instrument. For simplicity, our discussion of fairness
criteria will focus on a setting where there exist just two groups. We let R ∈ {b, w} denote the
group to which an individual belongs, and do not preclude R from being one of the elements of
X. We denote the outcome indicator by Y ∈ {0, 1}, with Y = 1 indicating that the given indi-
vidual goes on to recidivate. Lastly, we introduce the quantity sHR, which denotes the high-risk
score threshold. Defendants whose score S exceeds sHR will be referred to as high-risk, while the
remaining defendants will be referred to as low-risk.

With this notation in hand, we now proceed to define and discuss several fairness criteria
that commonly appear in the literature, beginning with those mentioned in the introduction. We
indicate cases where a given criterion is known to us to also commonly appear under some other
name. All of the criteria presented below can also be assessed conditionally by further conditioning
on some covariates in X. We discuss this point in greater detail in Section 3.1.

Definition 1 (Calibration). A score S = S(x) is said to be well-calibrated if it reflects the same
likelihood of recidivism irrespective of the individuals’ group membership. That is, if for all values
of s,

P(Y = 1 | S = s, R = b) = P(Y = 1 | S = s, R = w). (2.1)

Within the educational and psychological testing and assessment literature, the notion of calibra-
tion features among the widely accepted and adopted standards for empirical fairness assessment.
In this literature, an instrument that is well-calibrated is referred to as being free from predic-
tive bias. This criterion has recently been applied to the PCRAb instrument, with initial findings
suggesting that calibration is satisfied with respect race10,11, but not with respect to gender12. In

aThere are 6 racial groups represented in the data. 85% of individuals are either African-American or Caucasian.

bThe Post Conviction Risk Assessment (PCRA) tool was developed by the Administrative Office of the United
States Courts for the purpose of improving “the effectiveness and efficiency of post-conviction supervision”9
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their response to the ProPublica investigation, Flores et al. 6 verify that COMPAS is well-calibrated
using logistic regression modeling.

Definition 2 (Predictive parity). A score S = S(x) satisfies predictive parity at a threshold sHR if
the likelihood of recidivism among high-risk offenders is the same regardless of group membership.
That is, if,

P(Y = 1 | S > sHR, R = b) = P(Y = 1 | S > sHR, R = w). (2.2)

Predictive parity at a given threshold sHR amounts to requiring that the positive predictive
value (PPV) of the classifier Ŷ = 1S>sHR

be the same across groups. While predictive parity
and calibration look like very similar criteria, well-calibrated scores can fail to satisfy predictive
parity at a given threshold. This is because the relationship between (2.2) and (2.1) depends on
the conditional distribution of S | R = r, which can differ across groups in ways that result in
PPV imbalance. In the simple case where S itself is binary, a score that is well-calibrated will also
satisfy predictive parity. Northpointe’s refutation7 of the ProPublica analysis shows that COMPAS
satisfies predictive parity for threshold choices of interest.

Definition 3 (Error rate balance). A score S = S(x) satisfies error rate balance at a threshold
sHR if the false positive and false negative error rates are equal across groups. That is, if,

P(S > sHR | Y = 0, R = b) = P(S > sHR | Y = 0, R = w) , and (2.3)

P(S ≤ sHR | Y = 1, R = b) = P(S ≤ sHR | Y = 1, R = w), (2.4)

where the expressions in the first line are the group-specific false positive rates, and those in the
second line are the group-specific false negative rates.

ProPublica’s analysis considered a threshold of sHR = 4, which they showed leads to considerable
imbalance in both false positive and false negative rates. While this choice of cutoff met with some
criticism, we will see later in this section that error rate imbalance persists—indeed, must persist—
for any choice of cutoff at which the score satisfies the predictive parity criterion. Error rate balance
is also closely connected to the notions of equalized odds and equal opportunity as introduced in the
recent work of Hardt et al. 13 .

Definition 4 (Statistical parity). A score S = S(x) satisfies statistical parity at a threshold sHR

if the proportion of individuals classified as high-risk is the same for each group. That is, if,

P(S > sHR | R = b) = P(S > sHR | R = w) (2.5)

Statistical parity also goes by the name of equal acceptance rates 14 or group fairness 15, though
it should be noted that these terms are in many cases not used synonymously. While our discussion
focusses primarily on first three fairness criteria, statistical parity is widely used within the machine
learning community and may be the criterion with which many readers are most familiar16,17.
Statistical parity is well-suited to contexts such as employment or admissions, where it may be
desirable or required by law or regulation to employ or admit individuals in equal proportion
across racial, gender, or geographical groups. It is, however, a difficult criterion to motivate in the
recidivism prediction setting, and thus will not be further considered in this work.
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2.2 Further related work

Though the study of discrimination in decision making and predictive modeling is rapidly evolving,
it also has a long and rich multidisciplinary history. Romei and Ruggieri 18 provide an excellent
overview of some of the work in this broad subject area. The recent work of Barocas and Selbst 19

offers a broad examination of algorithmic fairness framed within the context of anti-discrimination
laws governing employment practices. Hannah-Moffat 20 , Skeem 21 , and Monahan and Skeem 22

examine legal and ethical issues relating specifically to the use of risk assessment instruments in
sentencing, citing the potential for race and gender discrimination as a major concern.

In work concurrent with our own, several other researchers have also investigated the compat-
ibility of different notions of fairness. Kleinberg et al. 23 show that calibration cannot be satisfied
simultaneously with the fairness criteria of balance for the negative class and balance for the positive
class. Translated into the present context, the latter criteria require that the average score assigned
to non-recidivists (the negative class) should be the same for both groups, and that the same should
hold among recidivists (the positive class). The work of Corbett-Davies et al. 24 closely parallels the
results that we present in Section 2.3, reaching the same conclusion regarding the incompatibility
of predictive parity and error rate balance in the setting of unequal prevalence.

2.3 Predictive parity, false positive rates, and false negative rates

In this section we present our first main result, which establishes that predictive parity is incompati-
ble with error rate balance when prevalence differs across groups. To better motivate the discussion,
we begin by presenting an empirical fairness assessment of the COMPAS RPI. Figure 1 shows plots
of the observed recidivism rates and error rates corresponding to the fairness notions of calibra-
tion, predictive parity, and error rate balance. We see that the COMPAS RPI is (approximately)
well-calibrated, and also satisfies predictive parity provided that the high-risk cutoff sHR is 4 or
greater. However, COMPAS fails on both false positive and false negative error rate balance across
the range of high-risk cutoffs.

Angwin et al. 4 focussed on a high-risk cutoff of sHR = 4 for their analysis, which some critics
have argued is too low, suggesting that sHR = 7 is more suitable. As can be seen from Figures 1c
and 1d, significant error rate imbalance persists at this cut-off as well. Moreover, the error rates
achieved at so high a cutoff are at odds with evidence suggesting that the use of RPI’s is of interest
in settings where false negatives have a higher cost than false positives, with relative cost estimates
ranging from 2.6 to upwards of 15.25,26

As we now proceed to show, the error rate imbalance exhibited by COMPAS is not a coincidence,
nor can it be remedied in the present context. When the recidivism prevalence–i.e., the base rate
P(Y = 1 | R = r)—differs across groups, any instrument that satisfies predictive parity at a given
threshold sHR must have imbalanced false positive or false negative errors rates at that threshold.
To understand why predictive parity and error rate balance are mutually exclusive in the setting
of unequal recidivism prevalence, it is instructive to think of how these quantities are all related.

Given a particular choice of sHR, we can summarize an instrument’s performance in terms of a
confusion matrix, as shown in Table 1 below.
All of the fairness metrics presented in Section 2.1 can be thought of as imposing constraints on
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the values (or the distribution of values) in this table. Another constraint—one that we have no
direct control over—is imposed by the recidivism prevalence within groups. It is not difficult to
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(a) Bars represent empirical estimates of the expres-
sions in (2.1): P(Y = 1 | S = s, R = r) for decile
scores s ∈ {1, . . . , 10}.
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(b) Bars represent empirical estimates of the expres-
sions in (2.2): P(Y = 1 | S > sHR, R = r) for values
of the high-risk cutoff sHR ∈ {0, . . . , 9}
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(c) Bars represent observed false positive rates,
which are empirical estimates of the expressions in
(2.3): P(S > sHR | Y = 0, R = r) for values of the
high-risk cutoff sHR ∈ {0, . . . , 9}
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(d) Bars represent observed false negative rates,
which are empirical estimates of the expressions in
(2.4): P(S ≤ sHR | Y = 1, R = r) for values of the
high-risk cutoff sHR ∈ {0, . . . , 9}

Figure 1: Empirical assessment of the COMPAS RPI according to three of the fairness criteria
presented in Section 2.1. Error bars represent 95% confidence intervals. These Figures confirm
that COMPAS is (approximately) well-calibrated, satisfies predictive parity for high-risk cutoff
values of 4 or higher, but fails to have error rate balance.
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Low-Risk High-Risk

Y = 0 TN FP
Y = 1 FN TP

Table 1: T/F denote True/False and N/P denote Negative/Positive. For instance, FP is the number
of false positives: individuals who are classified as high-risk but who do not reoffend.

show that the prevalence (p), positive predictive value (PPV), and false positive and negative error
rates (FPR, FNR) are related via the equation

FPR =
p

1 − p

1 − PPV

PPV
(1 − FNR). (2.6)

From this simple expression we can see that if an instrument satisfies predictive parity—that is,
if the PPV is the same across groups—but the prevalence differs between groups, the instrument
cannot achieve equal false positive and false negative rates across those groups.

This observation enables us to better understand why we observe such large discrepancies in
FPR and FNR between black and white defendants in Figure 1. The recidivism rate among black
defendants in the data is 51%, compared to 39% for White defendants. Thus at any threshold
sHR where the COMPAS RPI satisfies predictive parity, equation (2.6) tells us that some level of
imbalance in the error rates must exist. Since not all of the fairness criteria can be satisfied at the
same time, it becomes important to understand the potential impact of failing to satisfy particular
criteria. This question is explored in the context of a hypothetical risk-based sentencing framework
in the next section.

3 Assessing impact

In this section we show how differences in false positive and false negative rates can result in
disparate impact under policies where a high-risk assessment results in a stricter penalty for the
defendant. Such situations may arise when risk assessments are used to inform bail, parole, or
sentencing decisions. In Pennsylvania and Virginia, for instance, statutes permit the use of RPI’s
in sentencing, provided that the sentence ultimately falls within accepted guidelines1. We use the
term “penalty” somewhat loosely in this discussion to refer to outcomes both in the pre-trial and
post-conviction phase of legal proceedings. For instance, even though pre-trial outcomes such as
the amount at which bail is set are not punitive in a legal sense, we nevertheless refer to bail amount
as a “penalty” for the purpose of our discussion.

There are notable cases where RPI’s are used for the express purpose of informing risk reduction
efforts. In such settings, individuals assessed as high risk receive what may be viewed as a benefit
rather than a penalty. The PCRA score, for instance, is intended to support precisely this type of
decision-making at the federal courts level11. Our analysis in this section specifically addresses use
cases where high-risk individuals receive stricter penalties.

To begin, consider a setting in which guidelines indicate that a defendant is to receive a penalty
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An algorithm deployed across the 
United States is now known to 
underestimate the health needs of 
black patients1. The algorithm uses 
health-care costs as a proxy for health 

needs. But black patients’ health-care costs 
have historically been lower because systemic 
racism has impeded their access to treatment 
— not because they are healthier. 

This example illustrates how machine 
learning and artificial intelligence can main-
tain and amplify inequity. Most algorithms 
exploit crude correlations in data. Yet these 
correlations are often by-products of more 
salient social relationships (in the health-care 
example, treatment that is inaccessible is, by 
definition, cheaper), or chance occurrences 
that will not replicate. 

To identify and mitigate discriminatory 

relationships in data, we need models that 
capture or account for the causal pathways 
that give rise to them. Here we outline what 
is required to build models that would allow 
us to explore ethical issues underlying seem-
ingly objective analyses. Only by unearthing 
the true causes of discrimination can we build 
algorithms that correct for these.

Causal models
Models that account for causal pathways 
have three advantages. These ‘causal models’ 
are: tailored to the data at hand; allow us to 
account for quantities that aren’t observed; 
and address shortcomings in current concepts 
of fairness (see ‘Fairness four ways’). 

A causal model2 represents how data are 
generated, and how variables might change in 
response to interventions. This can be shown 
as a graph in which each variable is a node 
and arrows represent the causal connections 
between them. Take, for example, a data set 
about who gets a visa to work in a country. 
There is information about the country each 
person comes from, the work they do, their 
religion and whether or not they obtained a 

A migrant farm worker has her fingerprints scanned so that she can register for a national identity card in India.
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visa (see ‘Three causal tests’, part 1). 
This model says that the country of origin 

directly influences a person’s religion and 
whether they obtain a visa; so, too, do religion 
and type of work. Having a causal model allows 
us to address questions related to ethics, such 
as does religion influence the visa process? 

But because many different causal models 
could have led to a particular observed data 
set, it is not generally possible to identify the 
right causal model from that data set alone3. 
For example, without any extra assump-
tions, data generated from the causal graph 
described here could seem identical to those 
from a graph in which religion is no longer 
linked to visa granting. A modeller must there-
fore also leverage experiments and expert 
knowledge, and probe assumptions. 

Experiments can help in identifying factors 
that affect fairness. For example, a modeller 
wishing to explore whether ethnicity would 
affect treatment recommendations made 
online by health-care professionals could 
create two patient profiles that differ only 
in some respect that relates to ethnicity. For 
instance, one profile could have a name com-
mon to Americans of Chinese descent, and the 
other a name common to Americans of African 
descent. If the treatment recommendations 
are the same, then names can be ruled out as 
a source of bias, and the model can be stress-
tested in another way. 

Few aspects of a deep, multifaceted concept 
can be tested as easily as changing a name. 
This means that experimental evidence can 
underestimate the effects of discrimination. 
Integration of expert knowledge, particularly 

Build models that identify 
and mitigate the causes of 
discrimination.

The long road to  
fairer algorithms 
Matt J. Kusner & Joshua R. Loftus
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from the social sciences and including 
qualitative methods, can help to overcome 
such limitations. This knowledge can be used 
to, for example, inform the modeller of varia-
bles that might be influential but unobserved 
(lighter circles in ‘Three causal tests’), or to 
determine where to put arrows. 

Assumptions about unobserved variables 
that might alter the predictions of a model 
need to be clearly stated. This is particularly 
important when experiments cannot be run 
or more detailed expert knowledge is not 
available. For example, if ‘health-care access’ 
is not observed in a model attempting to pre-
dict ‘health need’, then it is crucial to identify 
any potential impacts it might have on ‘health 
costs’ as well as how it is affected by ‘ethnicity’.

This need for context and metadata makes 
causal models harder to build than non-causal 
ones. It can also make them a more powerful 
way to explore ethical questions. 

Three tests
Causal models can test the fairness of 
predictive algorithms in three ways. 

Counterfactuals. A causal model allows us to 
ask and answer questions such as ‘Had the past 
been different, would the present or future 
have changed?’ In the visa example (see ‘Three 
causal tests’, part 1), algorithmic biases could 
be smoked out by tweaking parts of the model 
to explore, for instance: ‘Had individual X been 
Christian, would this algorithm have granted 
them a visa?’ A researcher could then identify 
what pieces of information an algorithm could 
use to achieve counterfactual fairness4: the 
algorithm’s output would not change regard-
less of the individual’s religion. For example, if 
the algorithm used just work and not country 
of origin or religion, it would satisfy counter-
factual fairness. 

Sensitivity. In many settings, unknowns alter 
knowns — data we can observe are influenced 
by data we cannot. Consider a causal model for 
a trial setting (see ‘Three causal tests’, part 2). 

This model shows how two independent sets 
of unobserved quantities, structural racism 
and jury racism, can unfairly lead to a guilty 
verdict. Although researchers often cannot 
precisely identify unobserved variables, they 
can reason about how sensitive a model is to 
them. For instance, they can explore how sen-
sitive our estimate of the causal link between 
legal representation and guilty verdict is to 
different levels of jury racism. Simulations of 
the worst-case bias scenarios (that is, when 
jury racism is highest) can then be used to 
alter jury selection to minimize the bias. 

Impacts. Data-driven decisions can have 
long-term consequences and spillover effects. 
These effects might not be obvious, especially 
in the standard machine-learning paradigm 

of predicting one short-term outcome. But 
carefully designed causal models can help 
researchers to use ‘interventions’ to probe the 
ripple effects of decisions far into the future 5,6. 
For instance, the models can help regulatory 
agencies to understand how changing a schol-
arship algorithm influences who is accepted 
into law school (see ‘Three causal tests’, part 3). 
In this example, a single parent might need a 
scholarship so that they can reduce the hours 
they need to spend at a job, leaving them more 
time for study. That boosts their grades and 
therefore influences their chances of being 
admitted to law school. This complex chain 
can be explored using causal models. 

Five steps 
Causal models are powerful tools, but they 
must be used appropriately. They are only 
models, and will thus fail to capture impor-
tant aspects of the real world. Here we offer 
some guidelines on using them wisely. 

Collaborate across fields. Researchers in 
statistics and machine learning need to know 
more about the causes of unfairness in soci-
ety. They should work closely with those in 
disciplines such as law, social sciences and the 
humanities. This will help them to incorporate 
the context of the data used to train the algo-
rithms. For example, scholars should meet at 
interdisciplinary workshops and conferences. 
One such is next year’s Association for Com-
puting and Machinery (ACM) conference on 
Fairness, Accountability and Transparency to 
derive a set of causal models for setting bail 
price and for immigration decisions.

A great example of such collaborations 
is one between information scientist Solon 
Barocas at Cornell University in Ithaca, New 
York, and attorney Andrew Selbst at the Data 
& Society Research Institute in New York City. 
They described how current law is unable to 
deal with algorithmic bias7. Partly in response 
to this work, machine-learning researchers 
have launched a large subfield, known as 
algorithmic fairness, that looks into ways of 
removing bias from data. And we and other 
researchers now use causal models to quantify 
discrimination due to data. 

Partner with stakeholders. Predictive algo-
rithms should be developed with people they 
are likely to affect. Stakeholders are best placed 
to provide input on difficult ethical questions 
and historical context. One example is the 
work by statistician Kristian Lum at the Human 
Rights Data Analysis Group in San Francisco, 
California, which investigates criminal-justice 
algorithms8. Such algorithms decide whether 
to detain or release arrested individuals and 
how high to set their bail, yet they are known 
to be biased. Lum has invited people affected 
by such decisions to speak at academic confer-
ences attended by people who research these 
algorithms. This has led to closer collabora-
tion, including the tutorial ‘Understanding the 
context and consequences of pre-trial deten-
tion’ presented at the 2018 ACM conference on 
Fairness, Accountability and Transparency in 
New York. So far, most stakeholder work has 
focused on criminal justice. Another setting 
that would benefit from it is mortgage lending. 

We propose that a rotating, interdisciplinary 
panel of stakeholders investigates the impacts 
of algorithmic decisions, for example as part 
of a new international regulatory institute.

Make the workforce equitable. Women and 
people from minority groups are under-rep-
resented in the fields of statistics and machine 
learning. This directly contributes to the crea-
tion of unfair algorithms. For example, if facial 
detection software struggles to detect faces 
of black people9, it is likely the algorithm was 
trained largely on data representing white peo-
ple. Initiatives such as Black in AI (go.nature.
com/38pbcaa) or Women in Machine Learning 
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(go.nature.com/2s5km5g) are positive steps. 
And we can go further. Causal models 

can themselves help to address the field’s 
‘pipeline problem’ by identifying where 
unfairness enters the process and which 
interventions can increase the participation of 
under-represented groups without shifting the 
burden to extra work for role models in those 
groups. Academic institutions should critically 
evaluate and use these models for fairer admis-
sions in fields related to artificial intelligence.

Identify when algorithms are inappro-
priate. Statistics and machine learning are 
not all-powerful. Some problems should 

not be solved by expanding data-gathering 
capabilities and automating decisions. For 
example, a more accurate model for predic-
tive policing won’t solve many of the ethical 
concerns related to the criminal legal sys-
tem. In fact, these methods can mask struc-
tural issues, including the fact that many 
neighbourhoods are policed by people who 
do not live in them10. This disconnect means 
that police officers might not be invested 
in the community they police or the people 
they arrest. 

There are red flags when demographics, 
such as ethnic origin, influence nearly every 
piece of information in a causal graph, or 

when previous attempts to address a bias 
failed because people strategically changed 
behaviours in response. In these cases, an algo-
rithmic solution would paper over a system 
that needs fundamental change. 

Foment criticism. A vibrant culture of 
feedback is essential. Researchers need to 
continually question their models, evalua-
tion techniques and assumptions. Useful as 
causal models are, they should be scrutinized 
intensely: bad models can make discrimina-
tion worse11. At the very least, a scientist should 
check whether a model has the right data to 
make causal claims, and how much these 
claims would change when the assumptions 
are relaxed. 

Algorithms are increasingly used to make 
potentially life-changing decisions about 
people. By using causal models to formalize 
our understanding of discrimination, we must 
build these algorithms to respect the ethical 
standards required of human decision makers. 

The authors

Matt J. Kusner is an associate professor in the 
Department of Computer Science at University 
College London, and a fellow at the Alan 
Turning Institute, London, UK. Joshua R. Loftus 
is an assistant professor in the Department of 
Technology, Operations, and Statistics at New 
York University, New York, USA.
e-mails: matt.kusner@gmail.com;  
loftus@nyu.edu
1. Obermeyer, Z. et al. Science 366, 447–453 (2019).
2. Pearl, J. Causality: Models, Reasoning, and Inference 

(Cambridge Univ. Press, 2000). 
3. Spirtes, P. et al. Causation, Prediction, and Search 

(MIT Press, 2000).
4. Kusner, M. J., Loftus, J., Russell, C. & Silva, R. In Advances 

in Neural Information Processing Systems 4066–4076 
(MIT Press, 2017).

5. Liu, L. T. et al. In International Conference on Machine 
Learning 3150–3158 (ACM, 2018).

6. Kusner, M., Russell, C., Loftus, J. & Silva, R. Proc. Machine 
Learning Res. 97, 3591–3600 (2019). 

7. Barocas, S. & Selbst, A. D. Calif. L. Rev. 104, 671 (2016).
8. Lum, K. Nature Hum. Behav. 1, 0141 (2017).
9. Simon, M. ‘HP looking into claim webcams can’t see 

black people.’ (CNN Tech, 23 December 2009).
10. McManus, H. D. et al. Race Justice https://doi.

org/10.1177/2153368719849486 (2019).
11. Kilbertus, N. et al. ‘The Sensitivity of Counterfactual 

Fairness to Unmeasured Confounding’. In Uncertainty in 
Artificial Intelligence (AUAI, 2019).

12. Grgic-Hlaca, N. et al. ‘The case for process fairness in 
learning: Feature selection for fair decision making.’ 
NeurIPS Symposium on Machine Learning and the Law 
(2016).

13. Wilford, M. M. & Khairalla, A. in Social Sciences 
Contributions to the Real Legal System Ch. 7, 132 (2019).

14. Zafar, M. B., Valera, I., Rogriguez, M. G. & Gummadi, K. P. 
In Artificial Intelligence and Statistics 962–970 (2017).

15. Dobash, R. E., Dobash, R. P., Cavanagh, K. & Lewis, R. 
Violence Against Women 10, 577–605 (2004).

16. Hardt, M., Price, E. & Srebro, N. ‘Equality of opportunity in 
supervised learning’. In Advances in Neural Information 
Processing Systems 3315–3323 (2016). 

17. Dwork, C. et al. ‘Fairness through awareness’. In Proc. 3rd 
Innov. Theoret. Comp. Sci. Conf. 214–226 (2012). 

18. Pizer, J. C. et al. Loy. LAL Rev. 45, 715 (2011).

Fairness four ways
A flurry of work has conceptualized 
fairness. Here are some of the most popular, 
and ways in which causal models offer 
alternatives. 

Fairness through unawareness12. This 
method works by removing any data that 
are considered prima facie to be unfair. For 
example, for an algorithm used by judges 
making parole decisions, fairness through 
unawareness could dictate that data on 
ethnic origin should be removed when 
training this algorithm, whereas data on the 
number of previous offences can be used. 
But most data are biased. For instance, 
number of previous offences can bear the 
stamp of historical racial bias in policing, 
as can the use of plea bargaining (pleading 
guilty being more likely to reduce a sentence 
than arguing innocence)13. This can leave 
researchers with a hard choice: either 
remove all data or keep biased data. 

Alternatively, causal models can directly 
quantify how data are biased.

Demographic parity14. A predictive algorithm 
satisfies demographic parity if, on average, 
it gives the same predictions to different 
groups. For example, a university-admissions 
algorithm would satisfy demographic 
parity for gender if 50% of its offers went to 
women and 50% to men. It is currently more 
common in law to relax demographic parity 
so that predictions aren’t necessarily equal, 
but are not too imbalanced. Specifically, 
the US Equal Employment Opportunity 
Commission states that fair employment 
should satisfy the 80% rule: the acceptance 
rate for any group should be no less than 
80% of that of the highest-accepted group. 
For instance, if 25% of women were offered 
jobs, and this is the highest acceptance rate, 
then at least 20% of men must be offered 

jobs4. One criticism of demographic parity 
is that it might not make sense to use it in 
certain settings, such as a fair arrest rate for 
violent crimes (men are significantly more 
likely to commit acts of violence)15. 

Instead, one could require that 
counterfactual versions of the same 
individual should get the same prediction4. 

Equality of opportunity16. This is the 
principle of giving the same beneficial 
predictions to individuals in each group. 
Consider a predictive algorithm that grants 
loans only to individuals who have paid back 
previous loans. It satisfies ‘disability-based 
equality of opportunity’ if it grants loans to 
the same percentage of individuals who both 
pay back and have a disability as it does to 
those who pay back and who do not have a 
disability. However, being able to pay back a 
loan in the first place can be affected by bias: 
discriminatory employers might be less likely 
to hire a person with a disability, which can 
make it harder for that person to pay back a 
loan. This societal unfairness is not captured 
by equality of opportunity. 

A causal model could be used to quantify 
the bias and estimate an unbiased version of 
loan repayment.

Individual fairness17. This concept states 
that similar individuals should get similar 
predictions. If two people are alike except 
for their sexual orientation, say, an algorithm 
that displays job advertisements should 
display the same jobs to both. The main 
issue with this concept is how to define 
similar. In this example, training data will 
probably have been distorted by the fact that 
one in five individuals from sexual or gender 
minorities report discrimination against 
them in hiring, promotions and pay18. Thus 
similarity is hard to define, which makes 
individual fairness hard to use in practice. 

In causal modelling, counterfactuals 
offer a natural way to define a similar 
individual. M.J.K. & J.R.L.
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Dissecting racial bias in an algorithm used to manage
the health of populations
Ziad Obermeyer1,2*, Brian Powers3, Christine Vogeli4, Sendhil Mullainathan5*†

Health systems rely on commercial prediction algorithms to identify and help patients with complex
health needs. We show that a widely used algorithm, typical of this industry-wide approach and
affecting millions of patients, exhibits significant racial bias: At a given risk score, Black patients
are considerably sicker than White patients, as evidenced by signs of uncontrolled illnesses.
Remedying this disparity would increase the percentage of Black patients receiving additional
help from 17.7 to 46.5%. The bias arises because the algorithm predicts health care costs rather than
illness, but unequal access to care means that we spend less money caring for Black patients than
for White patients. Thus, despite health care cost appearing to be an effective proxy for health
by some measures of predictive accuracy, large racial biases arise. We suggest that the choice of
convenient, seemingly effective proxies for ground truth can be an important source of algorithmic
bias in many contexts.

T
here is growing concern that algorithms
may reproduce racial and gender dis-
parities via the people building them or
through the data used to train them (1–3).
Empirical work is increasingly lending

support to these concerns. For example, job
search ads for highly paid positions are less
likely to be presented to women (4), searches
for distinctively Black-sounding names are
more likely to trigger ads for arrest records
(5), and image searches for professions such
as CEO produce fewer images of women (6).
Facial recognition systems increasingly used
in law enforcement perform worse on recog-
nizing faces of women and Black individuals
(7, 8), and natural language processing algo-
rithms encode language in gendered ways (9).
Empirical investigations of algorithmic bias,

though, have been hindered by a key constraint:
Algorithms deployed on large scales are typically
proprietary, making it difficult for indepen-
dent researchers to dissect them. Instead, re-
searchers must work “from the outside,” often
with great ingenuity, and resort to clever work-
arounds such as audit studies. Such efforts can
document disparities, but understanding how
and why they arise—much less figuring out
what to do about them—is difficult without
greater access to the algorithms themselves.
Our understanding of a mechanism therefore
typically relies on theory or exercises with

researcher-created algorithms (10–13). With-
out an algorithm’s training data, objective func-
tion, and predictionmethodology, we can only
guess as to the actual mechanisms for the
important algorithmic disparities that arise.
In this study, we exploit a rich dataset that

provides insight into a live, scaled algorithm
deployed nationwide today. It is one of the
largest and most typical examples of a class
of commercial risk-prediction tools that, by
industry estimates, are applied to roughly
200 million people in the United States each
year. Large health systems and payers rely on
this algorithm to target patients for “high-risk
care management” programs. These programs
seek to improve the care of patients with
complex health needs by providing additional
resources, including greater attention from
trained providers, to help ensure that care is
well coordinated. Most health systems use
these programs as the cornerstone of pop-
ulation health management efforts, and they
are widely considered effective at improving
outcomes and satisfaction while reducing costs
(14–17). Because the programs are themselves
expensive—with costs going toward teams of
dedicated nurses, extra primary care appoint-
ment slots, and other scarce resources—health
systems rely extensively on algorithms to iden-
tify patients who will benefit the most (18, 19).
Identifying patients who will derive the

greatest benefit from these programs is a
challenging causal inference problem that
requires estimation of individual treatment ef-
fects. To solve this problem, health systems
make a key assumption: Those with the great-
est care needs will benefit the most from the
program. Under this assumption, the targeting
problem becomes a pure prediction policy prob-
lem (20). Developers then build algorithms

that rely on past data to build a predictor of
future health care needs.
Our dataset describes one such typical algo-

rithm. It contains both the algorithm’s predic-
tions as well as the data needed to understand
its inner workings: that is, the underlying in-
gredients used to form the algorithm (data,
objective function, etc.) and links to a rich
set of outcome data. Because we have the
inputs, outputs, and eventual outcomes, our
data allow us a rare opportunity to quantify
racial disparities in algorithms and isolate the
mechanisms by which they arise. It should be
emphasized that this algorithm is not unique.
Rather, it is emblematic of a generalized ap-
proach to risk prediction in the health sec-
tor, widely adopted by a range of for- and
non-profit medical centers and governmental
agencies (21).
Our analysis has implications beyond what

we learn about this particular algorithm. First,
the specific problem solved by this algorithm
has analogies in many other sectors: The pre-
dicted risk of some future outcome (in our
case, health care needs) is widely used to tar-
get policy interventions under the assumption
that the treatment effect is monotonic in that
risk, and the methods used to build the algo-
rithm are standard. Mechanisms of bias un-
covered in this study likely operate elsewhere.
Second, even beyond our particular finding,
we hope that this exercise illustrates the im-
portance, and the large opportunity, of study-
ing algorithmic bias in health care, not just
as a model system but also in its own right. By
any standard—e.g., number of lives affected,
life-and-death consequences of the decision—
health is one of the most important and wide-
spread social sectors in which algorithms are
already used at scale today, unbeknownst
to many.

Data and analytic strategy

Working with a large academic hospital, we
identified all primary care patients enrolled
in risk-based contracts from2013 to 2015. Our
primary interest was in studying differences
betweenWhite and Black patients.We formed
race categories by using hospital records,which
are based onpatient self-reporting. Any patient
who identified as Black was considered to be
Black for the purpose of this analysis. Of the
remaining patients, those who self-identified
as races other thanWhite (e.g., Hispanic) were
so considered (data on these patients are pre-
sented in table S1 and fig. S1 in the supplemen-
tary materials). We considered all remaining
patients to beWhite. This approach allowed
us to study one particular racial difference of
social and historical interest between patients
who self-identified as Black and patients who
self-identified as White without another race
or ethnicity; it has the disadvantage of not
allowing for the study of intersectional racial
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and ethnic identities. Our main sample thus
consisted of (i) 6079patientswho self-identified
as Black and (ii) 43,539 patients who self-
identified as White without another race or
ethnicity, whom we observed over 11,929 and
88,080 patient-years, respectively (1 patient-
year represents data collected for an indivi-
dual patient in a calendar year). The sample
was 71.2% enrolled in commercial insurance
and 28.8% in Medicare; on average, 50.9 years
old; and 63% female (Table 1).
For these patients, we obtained algorith-

mic risk scores generated for each patient-
year. In the health system we studied, risk
scores are generated for each patient during
the enrollment period for the system’s care
management program. Patients above the
97th percentile are automatically identified
for enrollment in the program. Those above
the 55th percentile are referred to their pri-
mary care physician, who is provided with
contextual data about the patients and asked
to consider whether they would benefit from
program enrollment.
Many existing metrics of algorithmic bias

may apply to this scenario. Some definitions
focus on calibration [i.e., whether the realized
value of some variable of interest Y matches
the risk score R (2, 22, 23)]; others on statis-
tical parity of some decision D influenced by
the algorithm (10); and still others on balance
of average predictions, conditional on the real-
ized outcome (22). Given this multiplicity and
the growing recognition that not all condi-
tions can be simultaneously satisfied (3, 10, 22),
we focus on metrics most relevant to the real-
world use of the algorithm, which are related
to calibration bias [formally, comparing Blacks
B and WhitesW, E½Y jR;W " ¼ E½Y jR;B" indi-
cates the absence of bias (here, E is the ex-
pectation operator)]. The algorithm’s stated
goal is to predict complex health needs for the
purpose of targeting an intervention that
manages those needs. Thus, we compare the
algorithmic risk score for patient i in year t
(Ri,t), formed on the basis of claims data Xi,(t−1)
from the prior year, to data on patients’ real-
ized health Hi,t, assessing how well the algo-
rithmic risk score is calibrated across race for
health outcomesHi,t. We also ask howwell the
algorithm is calibrated for costs Ci,t.
To measureH, we link predictions to a wide

range of outcomes in electronic health record
data, including all diagnoses (in the form of
International Classification of Diseases codes)
as well as key quantitative laboratory studies
and vital signs capturing the severity of chro-
nic illnesses. To measure C, we link predictions
to insurance claims data on utilization, includ-
ing outpatient and emergency visits, hospital-
izations, and health care costs. These data, and
the rationale for the specific measures of H
used in this study, are described inmore detail
in the supplementary materials.

Health disparities conditional on risk score
We begin by calculating an overall measure of
health status, the number of active chronic
conditions [or “comorbidity score,” a metric
used extensively in medical research (24) to
provide a comprehensive view of a patient’s
health (25)] by race, conditional on algorith-
mic risk score. Fig. 1A shows that, at the same
level of algorithm-predicted risk, Blacks have
significantly more illness burden thanWhites.
We can quantify these differences by choosing
one point on the x axis that corresponds to

a very-high-risk group (e.g., patients at the
97th percentile of risk score, at which patients
are auto-identified for program enrollment),
where Blacks have 26.3% more chronic ill-
nesses than Whites (4.8 versus 3.8 distinct
conditions; P < 0.001).
What do these prediction differences mean

for patients? Algorithm scores are a key input
to decisions about future enrollment in a care
coordination program. So as we might expect,
with less-healthy Blacks scored at similar risk
scores to more-healthy Whites, we find evidence
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Table 1. Descriptive statistics on our sample, by race. BP, blood pressure; LDL, low-density
lipoprotein.

White Black

n (patient-years) 88,080 11,929
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

n (patients) 43,539 6079
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Demographics
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Age 51.3 48.6
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Female (%) 62 69
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Care management program
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Algorithm score (percentile) 50 52
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Race composition of program (%) 81.8 18.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Care utilization
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Actual cost $7540 $8442
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hospitalizations 0.09 0.13
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hospital days 0.50 0.78
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Emergency visits 0.19 0.35
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Outpatient visits 4.94 4.31
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Mean biomarker values
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

HbA1c (%) 5.9 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Systolic BP (mmHg) 126.6 130.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Diastolic BP (mmHg) 75.5 75.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Creatinine (mg/dl) 0.89 0.98
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hematocrit (%) 40.7 37.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

LDL (mg/dl) 103.4 103.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Active chronic illnesses (comorbidities)
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Total number of active illnesses 1.20 1.90
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hypertension 0.29 0.44
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Diabetes, uncomplicated 0.08 0.22
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Arrythmia 0.09 0.08
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Hypothyroid 0.09 0.05
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Obesity 0.07 0.18
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Pulmonary disease 0.07 0.11
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Cancer 0.07 0.06
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Depression 0.06 0.08
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Anemia 0.05 0.10
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Arthritis 0.04 0.04
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Renal failure 0.03 0.07
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Electrolyte disorder 0.03 0.05
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Heart failure 0.03 0.05
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Psychosis 0.03 0.05
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Valvular disease 0.03 0.02
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Stroke 0.02 0.03
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Peripheral vascular disease 0.02 0.02
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Diabetes, complicated 0.02 0.07
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Heart attack 0.01 0.02
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .

Liver disease 0.01 0.02
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .
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of substantial disparities in program screening.
We quantify this by simulating a counterfactual
world with no gap in health conditional on
risk. Specifically, at some risk threshold a, we
identify the supramarginal White patient (i)
with Ri > a and compare this patient’s health
to that of the inframarginal Black patient ( j )
with Rj < a. IfHi >Hj , as measured by number
of chronic medical conditions, we replace the
(healthier, but supramarginal) White patient
with the (sicker, but inframarginal) Black patient.
We repeat this procedure until Hi = Hj, to
simulate an algorithm with no predictive gap
between Blacks and Whites. Fig. 1B shows the
results: At all risk thresholds a above the 50th
percentile, this procedure would increase the
fraction of Black patients. For example, at a =
97th percentile, among those auto-identified
for the program, the fraction of Black patients
would rise from 17.7 to 46.5%.
We then turn to amoremultidimensional pic-

ture of the complexity and severity of patients’
health status, as measured by biomarkers that
index the severity of the most common chro-
nic illnesses in our sample (as shown inTable 1).
This allows us to identify patients who might
derive a great deal of benefit from care man-
agement programs—e.g., patients with severe

diabetes who are at risk of catastrophic com-
plications if they do not lower their blood sugar
(18, 26). (The materials and methods section
describes several experiments to rule out a large
effect of the program on these health measures
in year t; had there been such an effect, we
could not easily use the measures to assess the
accuracy of the algorithm’s predictions onhealth,
because the program is allocated as a function
of algorithm score.) Across all of these impor-
tant markers of health needs—severity of diabe-
tes, highbloodpressure, renal failure, cholesterol,
and anemia—we find that Blacks are substan-
tially less healthy than Whites at any level of
algorithmpredictions, as shown in Fig. 2. Blacks
havemore-severe hypertension, diabetes, renal
failure, and anemia, and higher cholesterol.
Themagnitudes of these differences are large:
For example, differences in severity of hyper-
tension (systolic pressure: 5.7 mmHg) and
diabetes [glycated hemoglobin (HbA1c): 0.6%]
imply differences in all-causemortality of 7.6%
(27) and 30% (28), respectively, calculatedusing
data fromclinical trials and longitudinal studies.

Mechanism of bias

An unusual aspect of our dataset is that we
observe the algorithm’s inputs and outputs

as well as its objective function, providing us
a unique window into the mechanisms by
which bias arises. In our setting, the algorithm
takes in a large set of raw insurance claims
data Xi,t−1 (features) over the year t − 1: demo-
graphics (e.g., age, sex), insurance type, diag-
nosis and procedure codes, medications, and
detailed costs. Notably, the algorithm specifi-
cally excludes race.
The algorithm uses these data to predict Yi,t

(i.e., the label). In this instance, the algorithm
takes total medical expenditures (for simplic-
ity, we denote “costs” Ct) in year t as the label.
Thus, the algorithm’s prediction on health
needs is, in fact, a prediction on health costs.
As a first check on this potential mechanism

of bias, we calculate the distribution of real-
ized costs C versus predicted costs R. By this
metric, one could call the algorithm unbiased.
Fig. 3A shows that, at every level of algorithm-
predicted risk, Blacks andWhites have (rough-
ly) the same costs the following year. In other
words, the algorithm’s predictions are well cal-
ibrated across races. For example, at the med-
ian risk score, Black patients had costs of $5147
versus $4995 for Whites (U.S. dollars); in the
top 5% of algorithm-predicted risk, costs were
$35,541 for Blacks versus $34,059 for Whites.
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Fig. 1. Number of chronic illnesses versus algorithm-predicted risk,
by race. (A) Mean number of chronic conditions by race, plotted against
algorithm risk score. (B) Fraction of Black patients at or above a given risk
score for the original algorithm (“original”) and for a simulated scenario
that removes algorithmic bias (“simulated”: at each threshold of risk, defined
at a given percentile on the x axis, healthier Whites above the threshold are

replaced with less healthy Blacks below the threshold, until the marginal patient
is equally healthy). The × symbols show risk percentiles by race; circles
show risk deciles with 95% confidence intervals clustered by patient. The
dashed vertical lines show the auto-identification threshold (the black
line, which denotes the 97th percentile) and the screening threshold (the gray
line, which denotes the 55th percentile).
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Because these programs are used to target
patients with high costs, these results are large-
ly inconsistent with algorithmic bias, as mea-
sured by calibration: Conditional on risk score,
predictions do not favor Whites or Blacks any-
where in the risk distribution.
To summarize, we find substantial disparities

in health conditional on risk but little disparity
in costs. On the one hand, this is surprising:
Health care costs and health needs are highly
correlated, as sicker patients need and receive
more care, on average. On the other hand, there
aremany opportunities for awedge to creep in
between needing health care and receiving
health care—and crucially, we find that wedge
to be correlated with race, as shown in Fig. 3B.
At a given level of health (again measured by
number of chronic illnesses), Blacks generate
lower costs thanWhites—on average, $1801 less
per year, holding constant the number of chron-
ic illnesses (or $1144 less, if we instead hold
constant the specific individual illnesses that
contribute to the sum). Table S2 also shows
that Black patients generate very different
kinds of costs: for example, fewer inpatient
surgical and outpatient specialist costs, and
more costs related to emergency visits and
dialysis. These results suggest that the driv-
ing force behind the bias we detect is that
Black patients generate lesser medical ex-
penses, conditional on health, even when we
account for specific comorbidities. As a re-
sult, accurate prediction of costs necessarily
means being racially biased on health.
How might these disparities in cost arise?

The literature broadly suggests two main po-
tential channels. First, poor patients face sub-
stantial barriers to accessing health care, even
when enrolled in insurance plans. Although
the population we study is entirely insured,
there are many other mechanisms by which
poverty can lead to disparities in use of health
care: geography and differential access to trans-
portation, competing demands from jobs or
child care, or knowledge of reasons to seek care
(29–31). To the extent that race and socioeco-
nomic status are correlated, these factors will
differentially affect Black patients. Second, race
could affect costs directly via several channels:
direct (“taste-based”) discrimination, changes
to the doctor–patient relationship, or others. A
recent trial randomly assigned Black patients
to a Black or White primary care provider and
found significantly higher uptake of recom-
mended preventive carewhen the provider was
Black (32). This is perhaps the most rigorous
demonstration of this effect, and it fits with a
larger literature on potential mechanisms by
which race can affect health care directly. For
example, it has long been documented that
Black patients have reduced trust in the health
care system (33), a fact that some studies trace
to the revelations of the Tuskegee study and
other adverse experiences (34). A substantial

literature in psychology has documented phys-
icians’differential perceptions of Blackpatients,
in terms of intelligence, affiliation (35), or pain
tolerance (36). Thus, whether it is communi-
cation, trust, or bias, something about the inter-
actions of Black patients with the health care
system itself leads to reduced use of health care.
The collective effect of these many channels is
to lower health spending substantially for Black

patients, conditional on need—a finding that has
been appreciated for at least two decades (37).

Problem formulation

Our findings highlight the importance of the
choice of the label on which the algorithm is
trained. On the one hand, the algorithmman-
ufacturer’s choice to predict future costs is rea-
sonable: The program’s goal, at least in part, is
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Fig. 2. Biomarkers of health versus
algorithm-predicted risk, by race. (A to
E) Racial differences in a range of biological
measures of disease severity, conditional
on algorithm risk score, for the most common
diseases in the population studied. The ×
symbols show risk percentiles by race, except
in (C) where they show risk ventiles; circles
show risk quintiles with 95% confidence
intervals clustered by patient. The y axis in
(D) has been trimmed for readability, so the
highest percentiles of values for Black patients
are not shown. The dashed vertical lines
show the auto-identification threshold (black
line: 97th percentile) and the screening
threshold (gray line: 55th percentile).
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to reduce costs, and it stands to reason that
patients with the greatest future costs could
have the greatest benefit from the program.
As noted in the supplementary materials,
the manufacturer is not alone. Although the
details of individual algorithms vary, the cost
label reflects the industry-wide approach. For
example, the Society of Actuaries’s compre-
hensive evaluation of the 10 most widely
used algorithms, including the particular al-
gorithm we study, used cost prediction as its
accuracy metric (21). As noted in the report,
the enthusiasm for cost prediction is not
restricted to industry: Similar algorithms are
developed and used by non-profit hospitals,
academic groups, and governmental agen-
cies, and are often described in academic
literature on targeting population health
interventions (18, 19).
On the other hand, future cost is by no

means the only reasonable choice. For exam-
ple, the evidence on care management prog-
rams shows that they do not operate to reduce
costs globally. Rather, these programs primar-
ily work to prevent acute health decompensa-
tions that lead to catastrophic health care
utilization (indeed, they actually work to in-
crease other categories of costs, such as pri-
mary care and home health assistance; see
table S2). Thus avoidable future costs, i.e.,
those related to emergency visits and hospi-

talizations, could be a useful label to predict.
Alternatively, rather than predicting costs
at all, we could simply predict a measure of
health; e.g., the number of active chronic health
conditions. Because the program ultimately
operates to improve the management of these
conditions, patients with the most encoun-
ters related to them could also be a promis-
ing group on which to deploy preventative
interventions.
The dilemma of which label to choose re-

lates to a growing literature on “problem formu-
lation” in data science: the task of turning an
often amorphous concept we wish to predict
into a concrete variable that can be predicted
in a given dataset (38). Problems in health
seem particularly challenging: Health is, by
nature, holistic and multidimensional, and
there is no single, precise way to measure it.
Health care costs, though well measured and
readily available in insurance claims data,
are also the result of a complex aggregation
process with a number of distortions due to
structural inequality, incentives, and ineffi-
ciency. So although the choice of label is
perhaps the single most important decision
made in the development of a prediction al-
gorithm, in our setting and in many others,
there is often a confusingly large array of
different options, each with its own profile
of costs and benefits.

Experiments on label choice
Through a series of experiments with our data-
set, we can gain some insight into how label
choice affects both predictive performance and
racial bias. We develop three new predictive
algorithms, all trained in the same way, to
predict the following outcomes: total cost in
year t (this tailors cost predictions to our own
dataset rather than the national training set),
avoidable cost in year t (due to emergency
visits and hospitalizations), and health in year
t (measured by the number of chronic condi-
tions that flare up in that year). We train all
models in a random ⅔ training set and show
all results only from the ⅓ holdout set. Fur-
thermore, as with the original algorithm, we
exclude race from the feature set (more details
are in the materials and methods).
Table 2 shows the results of these experi-

ments. The first finding is that all algorithms
perform reasonably well for predicting not
only the outcome on which they were trained
but also the other outcomes: The concentra-
tion of realized outcomes in those at or above
the 97th percentile is notably similar for all
algorithms across all outcomes. The largest
difference in performance across algorithms
is seen for cost prediction: Of all costs in the
holdout set, the fraction generated by those
at or above the 97th percentile is 16.5% for the
cost predictor versus 12.1% for the predictor
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Fig. 3. Costs versus algorithm-predicted risk, and costs versus health, by race. (A) Total medical expenditures by race, conditional on algorithm risk score.
The dashed vertical lines show the auto-identification threshold (black line: 97th percentile) and the screening threshold (gray line: 55th percentile). (B) Total medical
expenditures by race, conditional on number of chronic conditions. The × symbols show risk percentiles; circles show risk deciles with 95% confidence intervals
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of chronic conditions. We then test for label
choice bias, defined analogously to calibra-
tion bias above: For two algorithms trained to
predict Y and Y ', and using a threshold t
indexing a (similarly sized) high-risk group,
we would test p½BjR > t" ¼ p½BjR′ > t" (here,
p denotes probability and B represents Black
patients).
We find that the racial composition of this

highest-risk group varies far more across algo-
rithms: The fraction of Black patients at or
above these risk levels ranges from 14.1% for
the cost predictor to 26.7% for the predictor
of chronic conditions. Thus, although there
could be many reasonable choices of label—
all predictions are highly correlated, and any
could be justified as a measure of patients’
likely benefit from the program—they have
markedly different implications in terms of
bias, with nearly twofold variation in composi-
tion of Black patients in the highest-risk groups.

Relation to human judgment

As noted above, the algorithm is not used for
program enrollment decisions in isolation.
Rather, it is used as a screening tool, in part
to alert primary care doctors to high-risk

patients. Specifically, for patients at or above
a certain level of predicted risk (the 55th per-
centile), doctors are presented with contex-
tual information from patients’ electronic health
records and insurance claims and are promp-
ted to consider enrolling them in the prog-
ram. Thus, realized enrollment decisions largely
reflect how doctors respond to algorithmic
predictions, along with other administrative
factors related to eligibility (for instance, pri-
mary care practice site, residence outside of
a nursing home, and continual enrollment in
an insurance plan).
Table 3 shows statistics on those enrolled in

the program, accounting for 1.3% of observa-
tions in our sample: The enrolled individuals
are 19.2% Black (versus 11.9% Black in our en-
tire sample) and account for 2.9% of all costs
and 3.3% of all active chronic conditions in the
population as a whole. We then perform four
counterfactual simulations to put these num-
bers in context; naturally, these simulations
use only observable factors, not the many un-
observed administrative and human factors
that also affect enrollment. First, we calculate
the realized program enrollment rate within
each percentile of the original algorithm’s pre-

dicted risk bins and randomly sample patients
in each bin for enrollment. This simulation,
which mimics “race-blind” enrollment condi-
tional on algorithm score, would yield an en-
rolled population that is 18.3% Black (versus
19.2% observed; P = 0.8348). Second, rather
than randomly sampling, we sample thosewith
the highest predicted number of active chronic
conditions within a risk bin (using our ex-
perimental algorithm described above); this
would yield a population that is 26.9% Black.
Finally, we compare this to simply assigning
those with the highest predicted costs, or the
highest number of active chronic conditions,
to the program (also using our own algorithms
detailed above), which would yield 17.2 and
29.2% Black patients, respectively. Thus, al-
though doctors do redress a small part of the
algorithm’s bias, they do so far less than an
algorithm trained on a different label.

Discussion

Bias attributable to label choice—the difference
between some unobserved optimal prediction
and thepredictionof an algorithm trained onan
observed label—is a useful framework through
which to understand bias in algorithms, both
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Table 3. Doctors’ decisions versus algorithmic predictions. For those
enrolled in the high-risk care management program (1.3% of our sample),
we first show the fraction of the population that is Black, as well as
the fraction of all costs and chronic conditions accounted for by these
observations. We also show these quantities for four alternative program
enrollment rules, which we simulate in our dataset (using the holdout
set when we use our experimental predictors). We first calculate the program

enrollment rate within each percentile bin of predicted risk from the original
algorithm and either (i) randomly sample patients or (ii) sample those
with the highest predicted number of active chronic conditions within a bin
and assign them to the program. The resultant values are then compared
with values obtained by simply assigning the aforementioned 1.3% of
our sample with (iii) the highest predicted cost or (iv) the highest number
of active chronic conditions to the program.

Population Fraction Black (SE) Fraction of all costs (SE) Fraction of all active chronic conditions (SE)

Observed program enrollment (1.3%) 0.192 (0.003) 0.029 (0.001) 0.033 (0.001)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Simulated alternative enrollment rules
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Random, in predicted-cost bin 0.183 (0.003) 0.044 (0.002) 0.034 (0.001)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Predicted health, in predicted-cost bin 0.269 (0.003) 0.044 (0.002) 0.064 (0.002)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Highest predicted cost 0.172 (0.003) 0.100 (0.002) 0.047 (0.002)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Worst predicted health 0.292 (0.004) 0.067 (0.002) 0.076 (0.002)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Table 2. Performance of predictors trained on alternative labels. For each new algorithm, we show the label on which it was trained (rows) and the
concentration of a given outcome of interest (columns) at or above the 97th percentile of predicted risk. We also show the fraction of Black patients
in each group.

Algorithm training
label

Concentration in highest-risk patients (SE) Fraction of Black patients in
group with highest risk (SE)Total costs Avoidable costs Active chronic conditions

Total costs 0.165 (0.003) 0.187 (0.003) 0.105 (0.002) 0.141 (0.003)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Avoidable costs 0.142 (0.003) 0.215 (0.003) 0.130 (0.003) 0.210 (0.003)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Active chronic conditions 0.121 (0.003) 0.182 (0.003) 0.148 (0.003) 0.267 (0.003)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Best-to-worst difference 0.044 0.033 0.043 0.126
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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in the health sector and further afield. This is
because labels are often measured with errors
that reflect structural inequalities (39). Within
the health sector, using mortality or readmis-
sion rates to measure hospital performance
penalizes those serving poor or non-White pop-
ulations (40, 41). Outside of the health arena,
credit-scoring algorithms predict outcomes re-
lated to income, thus incorporating disparities
in employment and salary (2). Policing algo-
rithms predict measured crime, which also re-
flects increased scrutiny of some groups (42).
Hiring algorithms predict employment deci-
sions or supervisory ratings, which are affec-
ted by race and gender biases (43). Even retail
algorithms, which set pricing for goods at the
national level, penalize poorer households,
which are subjected to increased prices as a
result (44).
This mechanism of bias is particularly perni-

cious because it can arise from reasonable
choices: Using traditional metrics of overall
prediction quality, cost seemed to be an effec-
tive proxy for health yet still produced large
biases. After completing the analyses described
above, we contacted the algorithm manufac-
turer for an initial discussion of our results. In
response, themanufacturer independently rep-
licated our analyses on its national dataset of
3,695,943 commercially insured patients. This
effort confirmed our results—by one measure
of predictive bias calculated in their dataset,
Black patients had 48,772 more active chronic
conditions thanWhite patients, conditional on
risk score—illustrating how biases can indeed
arise inadvertently.
To resolve the issue, we began to experiment

with solutions together. As a first step, we sug-
gested using the existing model infrastructure—
sample, predictors (excluding race, as before),
training process, and so forth—but changing
the label: Rather than future cost, we created
an index variable that combined health pre-
diction with cost prediction. This approach
reduced the number of excess active chronic
conditions in Blacks, conditional on risk score,
to 7758, an 84% reduction in bias. Building on
these results, we are establishing an ongoing
(unpaid) collaboration to convert the results of
Table 3 into a better, scaled predictor of multi-
dimensional health measures, with the goal of
rolling these improvements out in a future
round of algorithm development. Of course,
our experience may not be typical of all algo-
rithm developers in this sector. But because
the manufacturer of the algorithm we study is
widely viewed as an industry leader in data
and analytics, we are hopeful that this en-
deavor will prompt other manufacturers to
implement similar fixes.
These results suggest that label biases are

fixable. Changing the procedures by which
we fit algorithms (for instance, by using a new
statistical technique for decorrelating predic-

tors with race or other similar solutions) is
not required. Rather, we must change the data
we feed the algorithm—specifically, the labels
we give it. Producing new labels requires deep
understanding of the domain, the ability to
identify and extract relevant data elements,
and the capacity to iterate and experiment.
But there is precedent for all of these func-
tions in the literature and, more concretely,
in the private companies that invest heavily
in developing new and improved labels to
predict factors such as consumer behavior
(45). In addition, although health—as well
as criminal justice, employment, and other
socially important areas—presents substan-
tial challenges to measurement, the impor-
tance of these sectors emphasizes the value
of investing in such research. Because labels
are the key determinant of both predictive
quality and predictive bias, careful choice
can allow us to enjoy the benefits of algo-
rithmic predictions while minimizing their
risks.

REFERENCES AND NOTES

1. J. Angwin, J. Larson, S. Mattu, L. Kirchner, “Machine Bias,”
ProPublica (23 May 2016); www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing.

2. S. Barocas, A. D. Selbst, Calif. Law Rev. 104, 671 (2016).
3. A. Chouldechova, A. Roth, arXiv:1810.08810 [cs.LG]

(20 October 2018).
4. A. Datta, M. C. Tschantz, A. Datta, Proc. Privacy Enhancing

Technol. 2015, 92–112 (2015).
5. L. Sweeney, Queue 11, 1–19 (2013).
6. M. Kay, C. Matuszek, S. A. Munson, in Proceedings of the 33rd

Annual ACM Conference on Human Factors in Computing
Systems (ACM, 2015), pp. 3819–3828.

7. B. F. Klare, M. J. Burge, J. C. Klontz, R. W. Vorder Bruegge,
A. K. Jain, IEEE Trans. Inf. Forensics Security 7, 1789–1801
(2012).

8. J. Buolamwini, T. Gebru, in Proceedings of the Conference
on Fairness, Accountability and Transparency (PMLR, 2018),
pp. 77–91.

9. A. Caliskan, J. J. Bryson, A. Narayanan, Science 356, 183–186
(2017).

10. S. Corbett-Davies, S. Goel, arXiv:1808.00023 [cs.CY]
(31 July 2018).

11. M. De-Arteaga et al., arXiv:1901.09451 [cs.IR] (27 January 2019).
12. M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger,

S. Venkatasubramanian, in Proceedings of the 21st ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining (ACM, 2015), pp. 259–268.

13. J. Kleinberg, H. Lakkaraju, J. Leskovec, J. Ludwig, S. Mullainathan,
Q. J. Econ. 133, 237–293 (2018).

14. C. S. Hong, A. L. Siegel, T. G. Ferris, Issue Brief (Commonwealth
Fund) 19, 1–19 (2014).

15. N. McCall, J. Cromwell, C. Urato, “Evaluation of Medicare Care
Management for High Cost Beneficiaries (CMHCB)
Demonstration: Massachusetts General Hospital and
Massachusetts General Physicians Organization (MGH)”
(RTI International, 2010).

16. J. Hsu et al., Health Aff. 36, 876–884 (2017).
17. L. Nelson, “Lessons from Medicare’s demonstration projects

on disease management and care coordination” (Working
Paper 2012-01, Congressional Budget Office, 2012).

18. C. Vogeli et al., J. Gen. Intern. Med. 22 (suppl. 3), 391–395
(2007).

19. D. W. Bates, S. Saria, L. Ohno-Machado, A. Shah, G. Escobar,
Health Aff. 33, 1123–1131 (2014).

20. J. Kleinberg, J. Ludwig, S. Mullainathan, Z. Obermeyer,
Am. Econ. Rev. 105, 491–495 (2015).

21. G. Hileman, S. Steele, “Accuracy of claims-based risk scoring
models” (Society of Actuaries, 2016).

22. J. Kleinberg, S. Mullainathan, M. Raghavan, arXiv:1609.05807
[cs.LG] (19 September 2016).

23. A. Chouldechova, Big Data 5, 153–163 (2017).
24. V. de Groot, H. Beckerman, G. J. Lankhorst, L. M. Bouter,

J. Clin. Epidemiol. 56, 221–229 (2003).
25. J. J. Gagne, R. J. Glynn, J. Avorn, R. Levin, S. Schneeweiss,

J. Clin. Epidemiol. 64, 749–759 (2011).
26. A. K. Parekh, M. B. Barton, JAMA 303, 1303–1304

(2010).
27. D. Ettehad et al., Lancet 387, 957–967 (2016).
28. K.-T. Khaw et al., BMJ 322, 15 (2001).
29. K. Fiscella, P. Franks, M. R. Gold, C. M. Clancy, JAMA 283,

2579–2584 (2000).
30. N. E. Adler, K. Newman, Health Aff. 21, 60–76 (2002).
31. N. E. Adler, W. T. Boyce, M. A. Chesney, S. Folkman, S. L. Syme,

JAMA 269, 3140–3145 (1993).
32. M. Alsan, O. Garrick, G. C. Graziani, “Does diversity matter

for health? Experimental evidence from Oakland” (National
Bureau of Economic Research, 2018).

33. K. Armstrong, K. L. Ravenell, S. McMurphy, M. Putt,
Am. J. Public Health 97, 1283–1289 (2007).

34. M. Alsan, M. Wanamaker, Q. J. Econ. 133, 407–455
(2018).

35. M. van Ryn, J. Burke, Soc. Sci. Med. 50, 813–828
(2000).

36. K. M. Hoffman, S. Trawalter, J. R. Axt, M. N. Oliver, Proc. Natl.
Acad. Sci. U.S.A. 113, 4296–4301 (2016).

37. J. J. Escarce, F. W. Puffer, in Racial and Ethnic Differences
in the Health of Older Americans (National Academies
Press, 1997), chap. 6; www.ncbi.nlm.nih.gov/books/
NBK109841/.

38. S. Passi, S. Barocas, arXiv:1901.02547 [cs.CY]
(8 January 2019).

39. S. Mullainathan, Z. Obermeyer, Am. Econ. Rev. 107, 476–480
(2017).

40. K. E. Joynt Maddox et al., Health Serv. Res. 54, 327–336
(2019).

41. K. E. Joynt Maddox, M. Reidhead, A. C. Qi, D. R. Nerenz,
JAMA Intern. Med. 179, 769–776 (2019).

42. K. Lum, W. Isaac, Significance 13, 14–19 (2016).
43. I. Ajunwa, “The Paradox of Automation as Anti-Bias

Intervention,” available at SSRN (2016); https://ssrn.com/
abstract=2746078.

44. S. DellaVigna, M. Gentzkow, “Uniform pricing in US retail
chains” (National Bureau of Economic Research, 2017).

45. C. A. Gomez-Uribe, N. Hunt, ACM Trans. Manag. Inf. Syst. 6, 13
(2016).

ACKNOWLEDGMENTS

We thank S. Lakhtakia, Z. Li, K. Lin, and R. Mahadeshwar for
research assistance and D. Buefort and E. Maher for data science
expertise. Funding: This work was supported by a grant from
the National Institute for Health Care Management Foundation.
Author contributions: Z.O. and S.M. designed the study, obtained
funding, and conducted the analyses. All authors contributed to
reviewing findings and writing the manuscript. Competing
interests: The analysis was completely independent: None of the
authors had any contact with the algorithm’s manufacturer
until after it was complete. No authors received compensation,
in any form, from the manufacturer or have any commercial
interests in the manufacturer or competing entities or products.
There were no confidentiality agreements that limited reporting
of the work or its results, no material transfer agreements,
no oversight in the preparation of this article (besides ethical
oversight from the approving IRB, which was based at a
non-profit academic health system), and no formal relationship
of any kind between any of the authors and the manufacturer.
Data and materials availability: Because the data used
in this analysis are protected health information, they cannot
be made publicly available. We provide instead a synthetic
dataset (using the R package synthpop) and all code necessary
to reproduce our analyses at https://gitlab.com/labsysmed/
dissecting-bias.

SUPPLEMENTARY MATERIALS

science.sciencemag.org/content/366/6464/447/suppl/DC1
Materials and Methods
Figs. S1 to S5
Tables S1 to S4
References (46–51)

8 March 2019; accepted 4 October 2019
10.1126/science.aax2342

Obermeyer et al., Science 366, 447–453 (2019) 25 October 2019 7 of 7

RESEARCH | RESEARCH ARTICLE

on January 19, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 



Causal Reasoning for Algorithmic Fairness

Joshua R. Loftus1, Chris Russell2,5, Matt J. Kusner3,5, and Ricardo Silva4,5

1New York University 2University of Surrey 3University of Warwick
4University College London 5Alan Turing Institute

Abstract

In this work, we argue for the importance of causal reasoning in cre-
ating fair algorithms for decision making. We give a review of existing
approaches to fairness, describe work in causality necessary for the under-
standing of causal approaches, argue why causality is necessary for any
approach that wishes to be fair, and give a detailed analysis of the many
recent approaches to causality-based fairness.

1 Introduction

The success of machine learning algorithms has created a wave of excitement
about the problems they could be used to solve. Already we have algorithms that
match or outperform humans in non-trivial tasks such as image classification
[18], the game of Go [37], and skin cancer classification [15]. This has spurred
the use of machine learning algorithms in predictive policing [25], in loan lending
[17], and to predict whether released people from jail will re-o↵end [9]. In these
life-changing settings however, it has quickly become clear that machine learning
algorithms can unwittingly perpetuate or create discriminatory decisions that
are biased against certain individuals (for example, against a particular race,
gender, sexual orientation, or other protected attributes). Specifically, such
biases have already been demonstrated in natural language processing systems
[5] (where algorithms associate men with technical occupations like ‘computer
programmer’ and women with domestic occupations like ‘homemaker’), and in
online advertising [41] (where Google showed advertisements suggesting that a
person had been arrested when that person had a name more often associated
with black individuals).

As machine learning is deployed in an increasingly wide range of human sce-
narios, it is more important than ever to understand what biases are present in a
decision making system, and what constraints we can put in place to guarantee
that a learnt system never exhibits such biases. Research into these problems
is referred to as algorithmic fairness. It is a particularly challenging area of
research for two reasons: many di↵erent features are intrinsically linked to pro-
tected classes such as race or gender. For example, in many scenarios, knowledge
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of someone’s address makes it easy to predict their race with relatively high accu-
racy; while their choice of vocabulary might reveal much about their upbringing
or gender. As such it is to easy to accidentally create algorithms that make de-
cisions without knowledge of a persons race or gender, but still exhibit a racial
or gender bias. The second issue is more challenging still, there is fundamental
disagreement in the field as to what algorithmic fairness really means. Should
algorithms be fair if they always make similar decisions for similar individuals?
Should we instead call algorithms that make beneficial decisions for all genders
at roughly the same rate fair? Or should we use a third di↵erent criteria? This
question is of fundamental importance as many of these di↵erent criteria can
not be satisfied at the same time [22].

In this work we argue that it is important to understand where these sources
of bias come from in order to rectify them, and that causal reasoning is a
powerful tool for doing this. We review existing notions of fairness in prediction
problems; the tools of causal reasoning; and show how these can be combined
together using techniques such as counterfactual fairness [23].

2 Current Work in Algorithmic Fairness

To discuss the existing measures of fairness, we use capital letters to refer to
variables and lower case letters to refer to a value a variable takes. For example,
we will always use A for a protected attribute such as gender, and a or a0 to
refer to the di↵erent values the attribute can take such as man or woman. We
use Y to refer to the true state of a variable we wish to predict, for example
the variable might denote whether a person defaults on a loan or if they will
violate parole conditions. We will use Ŷ to denote our prediction of the true
variable Y . The majority of definitions of fairness in prediction problems are
statements about probability of a particular prediction occurring given that
some prior conditions hold. In what follows, we will use P (· | ·) to represent
either conditional probability of events, probability mass functions or density
functions, as required by the context.

2.0.1 Equalised Odds

Two definitions of fairness that have received much attention are equalised odds
and calibration. Both were heavily used in the ProPublica investigation into
Northpointe’s COMPAS score, designed to gauge the propensity of a prisoner
to re-o↵end upon release [16]. The first measure is equalised odds, which says
that if a person truly has state y, the classifier will predict this at the same rate
regardless of the value of their protected attribute. This can be written as an
equation in the following form:

P (Ŷ = y | A = a, Y = y) = P (Ŷ = y | A = a0, Y = y) (1)

for all y, a, a0. Another way of stating this property is by saying that Ŷ is
independent of A given Y , which we will denote by Ŷ ?? A | Y .
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2.0.2 Calibration

The second condition is referred to as calibration (or ‘test fairness’ in [9]). This
reverses the previous condition of equalised odds, and says that if the classifier
predicts that a person has state y, their probability of actually having state y
should be the same for all choices of attribute.

P (Y = y | A = a, Ŷ = y) = P (Y = y | A = a0, Ŷ = y) (2)

for all choices of y, a, and a0, that is, Y ?? A | Ŷ .
Although the two measures sound very similar, they are fundamentally in-

compatible. These two measures achieved some notoriety when Propublica
showed that Northpointe’s COMPAS score violated equalised odds, accusing
them of racial discrimination. In response, Northpointe claimed that their
COMPAS score satisfied calibration and that they did not discriminate. Klein-
berg et al. [22] and Chouldechova [8] showed that both conditions cannot be
satisfied at the same time except in special cases such as zero prediction error
or if Y ?? A.

The use of calibration and equalised odds has another major limitation. If
Y 6?? A, the true scores Y typically have some inherent bias. This happens,
for example, if the police are more likely to unfairly decide that minorities are
violating their parole. The definitions of calibration or equalised odds do not
explicitly forbid the classifier from preserving an existing bias.

2.0.3 Demographic Parity/Disparate Impact

Perhaps the most common non-causal notion of fairness is demographic parity,
defined as follows:

P (Ŷ = y | A = a) = P (Ŷ = y | A = a0), (3)

for all y, a, a0, that is, Ŷ ?? A. If unsatisfied, this notion is also referred to as
disparate impact. Demographic parity has been used, for several purposes, in
the following works: [14, 19, 20, 24, 42, 43].

Satisfying demographic parity can often require positive discrimination, where
certain individuals who are otherwise very similar are treated di↵erently due to
having di↵erent protected attributes. Such disparate treatment can violate other
intuitive notions of fairness or equality, contradict equalised odds or calibration,
and in some cases is prohibited by law.

2.0.4 Individual Fairness

Dwork et al. [12] proposed the concept of individual fairness as follows.

P (Ŷ (i) = y | X(i), A(i)) ⇡ P (Ŷ (j) = y | X(j), A(j)), if d(i, j) ⇡ 0, (4)

where i, j refer to two di↵erent individuals and the superscripts (i), (j) are their
associated data. The function d(·, ·) is a ‘task-specific’ metric that describes
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how any pair of individuals should be treated similarly in a fair world. The
work suggests that this metric could be defined by ‘a regulatory body, or . . . a
civil rights organization’. While this notion mitigates the issues with individ-
ual predictions that arose from demographic parity, it replaces the problem of
defining fairness with defining a fair metric d(·, ·). As we observed in the in-
troduction, many variables vary along with protected attributes such as race
or gender, making it challenging to find a distance measure that will not allow
some implicit discrimination.

2.0.5 Causal Notions of Fairness

A number of recent works use causal approaches to address fairness [1, 7, 21,
23, 35, 44], which we review in more detail in Section 5. We describe selected
background on causal reasoning in Section 3. These works depart from the pre-
vious approaches in that they are not wholly data-driven but require additional
knowledge of the structure of the world, in the form of a causal model. This
additional knowledge is particularly valuable as it informs us how changes in
variables propagate in a system, be it natural, engineered or social. Explicit
causal assumptions remove ambiguity from methods that just depend upon sta-
tistical correlations. For instance, causal methods provide a recipe to express
assumptions on how to recover from sampling biases in the data (Section 4)
or how to describe mixed scenarios where we may believe that certain forms
of discrimination should be allowed while others should not (e.g., how gender
influences one’s field of study in college, as in Section 5).

3 Causal Models

We now review causality in su�cient detail for our analysis of causal fairness
in Section 5. It is challenging to give a self-contained definition of causality,
as many working definitions reveal circularities on close inspection. For two
random variables X and Y , informally we say that X causes Y when there exist
at least two di↵erent interventions on X that result in two di↵erent probability
distributions of Y . This does not mean we will be able to define what an
“intervention” is without using causal concepts, hence circularities appear.

Nevertheless, it is possible to formally express causal assumptions and to
compute the consequences of such assumptions if one is willing to treat some
concepts, such as interventions, as primitives. This is just an instance of the tra-
ditional axiomatic framework of mathematical modelling, dating back to Euclid.
In particular, in this paper we will make use primarily of the structural causal
model (SCM) framework advocated by [29], which shares much in common with
the approaches by [33] and [39].

3.1 Structural Causal Models

We define a causal model as a triplet (U, V, F ) of sets such that:
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is set to intervention levels a and a0. A joint distribution for Y (a) and Y (a0) is
implied by the model. Conditional distributions, such as P (Y (a) = ya, Y (a0) =
ya0 | A = a, Y = y, Z = z) are also defined. Figure 1(c) shows the case for
interventions on Y . It is not di�cult to show, as Y is not an ancestor of A
in the graph, that A(y, u) = A(y0, u) = A(u) for all u, y, y0. This captures the
notion the Y does not cause A.

3.3 Counterfactuals Require Untestable Assumptions

Unless structural equations depend on observed variables only, they cannot
be tested for correctness (unless other untestable assumptions are imposed).
We can illustrate this problem by noting that a conditional density function
P (Vj | Vi = v) can be written as an equation Vj = f1(v, U) ⌘ F�1

Vi=v(U) =

F�1
Vi=v(g�1(g(U))) ⌘ f2(v, U 0), where F�1

Vi=V (·) is the inverse cumulative distri-
bution function corresponding to P (Vj | Vi = v), U is an uniformly distributed
random variable on [0, 1], g(·) is some arbitrary invertible function on [0, 1], and
U 0 ⌘ g(U). While this is not fundamental for e↵ects of causes, which depend
solely on predictive distributions that at least in theory can be estimated from
RCTs, di↵erent structural equations with the same interventional distributions
will imply di↵erent joint distributions over the counterfactuals.

The traditional approach for causal inference in statistics tries to avoid any
estimand that cannot be expressed by the marginal distributions of the counter-
factuals (i.e., all estimands in which marginals P (Y (a) = ya) and P (Y (a0) = ya0)
would provide enough information, such as the average causal e↵ect E[Y (a) �
Y (a0)] = E[Y | do(A = a)]�E[Y | do(A = a0)]). Models that follow this approach
and specify solely the univariate marginals of a counterfactual joint distribution
are sometimes called single-world models [32]. However, as we will see, cross-
world models seem a natural fit to algorithmic fairness. In particular, they are
required for non-trivial statements that concern fairness at an individual level
as opposed to fairness measures averaged over groups of individuals.

4 Why Causality is Critical For Fairness

Ethicists and social choice theorists recognise the importance of causality in
defining and reasoning about fairness. Terminology varies, but many of their
central questions and ideas, such as the role of agency in justice, responsibility-
sensitive egalitarianism, and luck egalitarianism [10, 13, 31] involve causal rea-
soning. Intuitively, it is unfair for individuals to experience di↵erent outcomes
caused by factors outside of their control. Empirical studies of attitudes about
distributive justice [6, 26] have found that most participants prefer redistribu-
tion to create fairer outcomes, and do so in ways that depend on how much
control individuals have on their outcomes. Hence, when choosing policies and
designing systems that will impact people, we should minimise or eliminate the
causal dependence on factors outside an individual’s control, such as their per-
ceived race or where they were born. Since such factors have influences on other
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aspects of peoples’ lives that may also be considered relevant for determining
what is fair, applying this intuitive notion of fairness requires careful causal
modelling as we describe here.

Is it necessary that models attempting to remove such factors be causal?
Many other notions of algorithmic fairness have also attempted to control or
adjust for covariates. While it is possible to produce identical predictions or de-
cisions with a model that is equivalent mathematically but without overt causal
assumptions or interpretations, the design decisions underlying a covariate ad-
justment are often based on implicit causal reasoning. There is a fundamental
benefit from an explicit statement of these assumptions. To illustrate this, we
consider a classic example of bias in graduate admissions.

4.1 Revisiting Gender Bias In Berkeley Admissions

The Berkeley admissions example [3] is often used to explain Simpson’s paradox
[38] and highlight the importance of adjusting for covariates. In the fall of 1973,
about 34.6% of women and 44.3% of men who applied to graduate studies at
Berkeley were admitted. However, this was not evidence that the admissions
decisions were biased against women. Decisions were made on a departmental
basis, and each department admitted proportions of men and women at ap-
proximately the same rate. However, a greater proportion of women applied to
the most selective departments, resulting in a lower overall acceptance rate for
women.

While the overall outcome is seemingly unfair, after controlling for choice
of department it appears to be fair, at least in some sense. In fact, while the
presentation of this example to illustrate Simpson’s paradox often ends there,
the authors in [3] conclude, ”Women are shunted by their socialisation and
education toward fields of graduate study that are generally more crowded, less
productive of completed degrees, and less well funded, and that frequently o↵er
poorer professional employment prospects.” The outcome can still be judged to
be unfair, not due to biased admissions decisions, but rather to the causes of
di↵erences in choice of department, such as socialisation. Achieving or defining
fairness requires addressing those root causes and applying value judgements.
Applicants certainly have some agency over which department they apply to,
but that decision is not made free of outside influences. They had no control
over what kind of society they had been born into, what sort of gender norms
that society had during their lifetime, or the scarcity of professional role models,
and so on.

The quote above suggests that the authors in [3] were reasoning about causes
even if they did not make explicit use of causal modelling. Indeed, conditioning
on the choice of the department only makes sense because we understand it has
a causal relationship with the outcome of interest and is not just a spurious cor-
relation. Pearl [29] provides a detailed account of the causal basis of Simpson’s
paradox.
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4.2 Selection Bias and Causality

Unfairness can also arise from bias in how data is collected or sampled. For
instance, if the police stop individuals on the street to check for the possession
of illegal drugs, and if the stopping protocol is the result of discrimination
that targets individuals of a particular race, this can create a feedback loop
that justifies discriminatory practice. Namely, if data gathered by the police
suggests that P (Drugs = yes | Race = a) > P (Drugs = yes | Race = a0),
this can be exploited to justify an unbalanced stopping process when police
resources are limited. How then can we assess its fairness? It is possible to
postulate structures analogous to the Berkeley example, where a mechanism
such as Race ! Economic status ! Drugs explains the pathway. Debate
would focus on the level of agency of an individual on finding himself or herself
at an economic level that leads to increased drug consumption.

But selection bias cuts deeper than that, and more recently causal knowledge
has been formally brought in to understand the role of such biases [2, 40]. This
is achieved by representing a selection variable Selected as part of our model,
and carrying out inference by acknowledging that, in the data, all individuals
are such that “Selected = true”. The association between race and drug is
expressed as P (Drugs = yes | Race = a, Selected = true) > P (Drugs =
yes | Race = a0, Selected = true), which may or may not be representative of
the hypothetical population in which everyone has been examined. The data
cannot directly tell whether P (Drugs = yes | Race = a, do(Selected = true)) >
P (Drugs = yes | Race = a0, do(Selected = true)). As an example, it is possible
to postulate the two following causal structures that cannot be distinguished
on the basis of data already contaminated with selection bias: (i) the structure
Race ! Drugs, with Selected being a disconnected vertex; (ii) the structure
Race ! Selected  H ! Drugs, where H represents hidden variables not
formally logged in police records.

In the latter case, we can check that drugs and race and unrelated. However,
P (Drugs = yes | Race = a, Selected = true) 6= P (Drugs = yes | Race =
a0, Selected = true), as conditioning on Selected means that both of its causes
Race and H “compete” to explain the selection. This induces an association
between Race and H, which carries over the association between Race and
Drugs. At the same time, P (Drugs = yes | Race = a, do(Selected = true)) =
P (Drugs = yes | Race = a0, do(Selected = true)), a conclusion that cannot
be reached without knowledge of the causal graph or a controlled experiment
making use of interventions. Moreover, if the actual structure is a combination
of (i) and (ii), standard statistical adjustments that remove the association
between Race and Drugs cannot disentangle e↵ects due to selection bias from
those due to the causal link Race ! Drugs, harming any arguments that can
be constructed around the agency behind the direct link.
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4.3 Fairness Requires Intervention

Approaches to algorithmic fairness usually involve imposing some kind of con-
straints on the algorithm (such as those formula given by Section 2). We can
view this as an intervention on the predicted outcome Ŷ . And, as argued in
[1], we can also try to understand the causal implications for the system we are
intervening on. That is, we can use an SCM to model the causal relationships
between variables in the data, between those and the predictor Ŷ that we are
intervening on, and between Ŷ and other aspects of the system that will be
impacted by decisions made based on the output of the algorithm.

To say that fairness is an intervention is not a strong statement considering
that any decision can be considered to be an intervention. Collecting data, using
models and algorithms with that data to predict some outcome variable, and
making decisions based on those predictions are all intentional acts motivated
by a causal hypothesis about the consequences of that course of action. In
particular, not imposing fairness can also be a deliberate intervention, albeit
one of inaction.

We should be clear that prediction problems do not tell the whole story.
Breaking the causal links between A and a prediction Ŷ is a way of avoiding
some unfairness in the world, but it is only one aspect of the problem. Ideally,
we would like that no paths from A to Y existed, and the provision of fair
predictions is predicated on the belief that it will be a contributing factor for
the eventual change in the generation of Y . We are not, however, making any
formal claims of modelling how predictive algorithmic fairness will lead to this
ideal stage where causal paths from A to Y themselves disappear.

5 Causal Notions of Fairness

In this section we discuss some of the emerging notions of fairness formulated
in terms of SCMs, focusing in particular on a notion introduced by us in [23],
counterfactual fairness. We explain how counterfactual fairness relates to some
of the more well-known notions of statistical fairness and in which ways a causal
perspective contributes to their interpretation. The remainder of the section will
discuss alternative causal notions of fairness and how they relate to counterfac-
tual fairness.

5.1 Counterfactual Fairness

A predictor Ŷ is said to satisfy counterfactual fairness if

P (Ŷ (a, U) = y | X = x, A = a) = P (Ŷ (a0, U) = y | X = x, A = a), (8)

for all y, x, a, a0 in the domain of the respective variables [23]. The randomness
here is on U (recall that background variables U can be thought of as describing
a particular individual person at some point in time). In practice, this means
we can build Ŷ from any variable Z in the system which is not caused by A
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Abstract

Machine learning can impact people with legal or ethical consequences when
it is used to automate decisions in areas such as insurance, lending, hiring, and
predictive policing. In many of these scenarios, previous decisions have been made
that are unfairly biased against certain subpopulations, for example those of a
particular race, gender, or sexual orientation. Since this past data may be biased,
machine learning predictors must account for this to avoid perpetuating or creating
discriminatory practices. In this paper, we develop a framework for modeling
fairness using tools from causal inference. Our definition of counterfactual fairness
captures the intuition that a decision is fair towards an individual if it is the same in
(a) the actual world and (b) a counterfactual world where the individual belonged
to a different demographic group. We demonstrate our framework on a real-world
problem of fair prediction of success in law school.

1 Contribution

Machine learning has spread to fields as diverse as credit scoring [20], crime prediction [5], and loan
assessment [25]. Decisions in these areas may have ethical or legal implications, so it is necessary for
the modeler to think beyond the objective of maximizing prediction accuracy and consider the societal
impact of their work. For many of these applications, it is crucial to ask if the predictions of a model
are fair. Training data can contain unfairness for reasons having to do with historical prejudices or
other factors outside an individual’s control. In 2016, the Obama administration released a report2

which urged data scientists to analyze “how technologies can deliberately or inadvertently perpetuate,
exacerbate, or mask discrimination."

There has been much recent interest in designing algorithms that make fair predictions [4, 6, 10,
12, 14, 16–19, 22, 24, 36–39]. In large part, the literature has focused on formalizing fairness
into quantitative definitions and using them to solve a discrimination problem in a certain dataset.
Unfortunately, for a practitioner, law-maker, judge, or anyone else who is interested in implementing
algorithms that control for discrimination, it can be difficult to decide which definition of fairness to
choose for the task at hand. Indeed, we demonstrate that depending on the relationship between a
protected attribute and the data, certain definitions of fairness can actually increase discrimination.

⇤Equal contribution. This work was done while JL was a Research Fellow at the Alan Turing Institute.
2https://obamawhitehouse.archives.gov/blog/2016/05/04/big-risks-big-opportunities-intersection-big-data-

and-civil-rights
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In this paper, we introduce the first explicitly causal approach to address fairness. Specifically, we
leverage the causal framework of Pearl [30] to model the relationship between protected attributes
and data. We describe how techniques from causal inference can be effective tools for designing fair
algorithms and argue, as in DeDeo [9], that it is essential to properly address causality in fairness. In
perhaps the most closely related prior work, Johnson et al. [15] make similar arguments but from a
non-causal perspective. An alternative use of causal modeling in the context of fairness is introduced
independently by [21].

In Section 2, we provide a summary of basic concepts in fairness and causal modeling. In Section 3,
we provide the formal definition of counterfactual fairness, which enforces that a distribution over
possible predictions for an individual should remain unchanged in a world where an individual’s
protected attributes had been different in a causal sense. In Section 4, we describe an algorithm to
implement this definition, while distinguishing it from existing approaches. In Section 5, we illustrate
the algorithm with a case of fair assessment of law school success.

2 Background

This section provides a basic account of two separate areas of research in machine learning, which
are formally unified in this paper. We suggest Berk et al. [1] and Pearl et al. [29] as references.
Throughout this paper, we will use the following notation. Let A denote the set of protected attributes
of an individual, variables that must not be discriminated against in a formal sense defined differently
by each notion of fairness discussed. The decision of whether an attribute is protected or not is taken
as a primitive in any given problem, regardless of the definition of fairness adopted. Moreover, let
X denote the other observable attributes of any particular individual, U the set of relevant latent
attributes which are not observed, and let Y denote the outcome to be predicted, which itself might
be contaminated with historical biases. Finally, Ŷ is the predictor, a random variable that depends on
A, X and U , and which is produced by a machine learning algorithm as a prediction of Y .

2.1 Fairness

There has been much recent work on fair algorithms. These include fairness through unawareness
[12], individual fairness [10, 16, 24, 38], demographic parity/disparate impact [36], and equality of
opportunity [14, 37]. For simplicity we often assume A is encoded as a binary attribute, but this can
be generalized.
Definition 1 (Fairness Through Unawareness (FTU)). An algorithm is fair so long as any protected
attributes A are not explicitly used in the decision-making process.

Any mapping Ŷ : X ! Y that excludes A satisfies this. Initially proposed as a baseline, the approach
has found favor recently with more general approaches such as Grgic-Hlaca et al. [12]. Despite its
compelling simplicity, FTU has a clear shortcoming as elements of X can contain discriminatory
information analogous to A that may not be obvious at first. The need for expert knowledge in
assessing the relationship between A and X was highlighted in the work on individual fairness:
Definition 2 (Individual Fairness (IF)). An algorithm is fair if it gives similar predictions to similar
individuals. Formally, given a metric d(·, ·), if individuals i and j are similar under this metric (i.e.,
d(i, j) is small) then their predictions should be similar: Ŷ (X(i), A(i)) ⇡ Ŷ (X(j), A(j)).

As described in [10], the metric d(·, ·) must be carefully chosen, requiring an understanding of the
domain at hand beyond black-box statistical modeling. This can also be contrasted against population
level criteria such as
Definition 3 (Demographic Parity (DP)). A predictor Ŷ satisfies demographic parity if P (Ŷ |A =

0) = P (Ŷ |A = 1).

Definition 4 (Equality of Opportunity (EO)). A predictor Ŷ satisfies equality of opportunity if
P (Ŷ = 1|A = 0, Y = 1) = P (Ŷ = 1|A = 1, Y = 1).

These criteria can be incompatible in general, as discussed in [1, 7, 22]. Following the motivation of
IF and [15], we propose that knowledge about relationships between all attributes should be taken
into consideration, even if strong assumptions are necessary. Moreover, it is not immediately clear
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for any of these approaches in which ways historical biases can be tackled. We approach such issues
from an explicit causal modeling perspective.

2.2 Causal Models and Counterfactuals

We follow Pearl [28], and define a causal model as a triple (U, V, F ) of sets such that

• U is a set of latent background variables,which are factors not caused by any variable in
the set V of observable variables;

• F is a set of functions {f1, . . . , fn}, one for each Vi 2 V , such that Vi = fi(pai, Upai
),

pai ✓ V \{Vi} and Upai
✓ U . Such equations are also known as structural equations [2].

The notation “pai” refers to the “parents” of Vi and is motivated by the assumption that the model
factorizes as a directed graph, here assumed to be a directed acyclic graph (DAG). The model is causal
in that, given a distribution P (U) over the background variables U , we can derive the distribution of a
subset Z ✓ V following an intervention on V \ Z. An intervention on variable Vi is the substitution
of equation Vi = fi(pai, Upai

) with the equation Vi = v for some v. This captures the idea of an
agent, external to the system, modifying it by forcefully assigning value v to Vi, for example as in a
randomized experiment.

The specification of F is a strong assumption but allows for the calculation of counterfactual
quantities. In brief, consider the following counterfactual statement, “the value of Y if Z had taken
value z”, for two observable variables Z and Y . By assumption, the state of any observable variable is
fully determined by the background variables and structural equations. The counterfactual is modeled
as the solution for Y for a given U = u where the equations for Z are replaced with Z = z. We
denote it by YZ z(u) [28], and sometimes as Yz if the context of the notation is clear.

Counterfactual inference, as specified by a causal model (U, V, F ) given evidence W , is the computa-
tion of probabilities P (YZ z(U) | W =w), where W , Z and Y are subsets of V . Inference proceeds
in three steps, as explained in more detail in Chapter 4 of Pearl et al. [29]: 1. Abduction: for a given
prior on U , compute the posterior distribution of U given the evidence W = w; 2. Action: substitute
the equations for Z with the interventional values z, resulting in the modified set of equations Fz;
3. Prediction: compute the implied distribution on the remaining elements of V using Fz and the
posterior P (U |W = w).

3 Counterfactual Fairness

Given a predictive problem with fairness considerations, where A, X and Y represent the protected
attributes, remaining attributes, and output of interest respectively, let us assume that we are given a
causal model (U, V, F ), where V ⌘ A [X . We postulate the following criterion for predictors of Y .

Definition 5 (Counterfactual fairness). Predictor Ŷ is counterfactually fair if under any context
X = x and A = a,

P (ŶA a (U) = y | X = x, A = a) = P (ŶA a0(U) = y | X = x, A = a), (1)

for all y and for any value a0 attainable by A.

This notion is closely related to actual causes [13], or token causality in the sense that, to be fair,
A should not be a cause of Ŷ in any individual instance. In other words, changing A while holding
things which are not causally dependent on A constant will not change the distribution of Ŷ . We also
emphasize that counterfactual fairness is an individual-level definition. This is substantially different
from comparing different individuals that happen to share the same “treatment” A = a and coincide
on the values of X , as discussed in Section 4.3.1 of [29] and the Supplementary Material. Differences
between Xa and Xa0 must be caused by variations on A only. Notice also that this definition is
agnostic with respect to how good a predictor Ŷ is, which we discuss in Section 4.

Relation to individual fairness. IF is agnostic with respect to its notion of similarity metric, which
is both a strength (generality) and a weakness (no unified way of defining similarity). Counterfactuals
and similarities are related, as in the classical notion of distances between “worlds” corresponding to
different counterfactuals [23]. If Ŷ is a deterministic function of W ⇢ A [X [ U , as in several of
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Figure 1: (a), (b) Two causal models for different real-world fair prediction scenarios. See Section 3.1
for discussion. (c) The graph corresponding to a causal model with A being the protected attribute and
Y some outcome of interest, with background variables assumed to be independent. (d) Expanding
the model to include an intermediate variable indicating whether the individual is employed with
two (latent) background variables Prejudiced (if the person offering the job is prejudiced) and
Qualifications (a measure of the individual’s qualifications). (e) A twin network representation of
this system [28] under two different counterfactual levels for A. This is created by copying nodes
descending from A, which inherit unaffected parents from the factual world.

our examples to follow, then IF can be defined by treating equally two individuals with the same W
in a way that is also counterfactually fair.

Relation to Pearl et al. [29]. In Example 4.4.4 of [29], the authors condition instead on X , A, and
the observed realization of Ŷ , and calculate the probability of the counterfactual realization ŶA a0

differing from the factual. This example conflates the predictor Ŷ with the outcome Y , of which
we remain agnostic in our definition but which is used in the construction of Ŷ as in Section 4. Our
framing makes the connection to machine learning more explicit.

3.1 Examples

To provide an intuition for counterfactual fairness, we will consider two real-world fair prediction sce-
narios: insurance pricing and crime prediction. Each of these correspond to one of the two causal
graphs in Figure 1(a),(b). The Supplementary Material provides a more mathematical discussion of
these examples with more detailed insights.

Scenario 1: The Red Car. A car insurance company wishes to price insurance for car owners
by predicting their accident rate Y . They assume there is an unobserved factor corresponding to
aggressive driving U , that (a) causes drivers to be more likely have an accident, and (b) causes
individuals to prefer red cars (the observed variable X). Moreover, individuals belonging to a
certain race A are more likely to drive red cars. However, these individuals are no more likely to be
aggressive or to get in accidents than any one else. We show this in Figure 1(a). Thus, using the
red car feature X to predict accident rate Y would seem to be an unfair prediction because it may
charge individuals of a certain race more than others, even though no race is more likely to have an
accident. Counterfactual fairness agrees with this notion: changing A while holding U fixed will also
change X and, consequently, Ŷ . Interestingly, we can show (Supplementary Material) that in a linear
model, regressing Y on A and X is equivalent to regressing on U , so off-the-shelf regression here is
counterfactually fair. Regressing Y on X alone obeys the FTU criterion but is not counterfactually
fair, so omitting A (FTU) may introduce unfairness into an otherwise fair world.

Scenario 2: High Crime Regions. A city government wants to estimate crime rates by neighbor-
hood to allocate policing resources. Its analyst constructed training data by merging (1) a registry of
residents containing their neighborhood X and race A, with (2) police records of arrests, giving each
resident a binary label with Y = 1 indicating a criminal arrest record. Due to historically segregated
housing, the location X depends on A. Locations X with more police resources have larger numbers
of arrests Y . And finally, U represents the totality of socioeconomic factors and policing practices
that both influence where an individual may live and how likely they are to be arrested and charged.
This can all be seen in Figure 1(b).

In this example, higher observed arrest rates in some neighborhoods are due to greater policing there,
not because people of different races are any more or less likely to break the law. The label Y = 0
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does not mean someone has never committed a crime, but rather that they have not been caught. If
individuals in the training data have not already had equal opportunity, algorithms enforcing EO will
not remedy such unfairness. In contrast, a counterfactually fair approach would model differential
enforcement rates using U and base predictions on this information rather than on X directly.

In general, we need a multistage procedure in which we first derive latent variables U , and then based
on them we minimize some loss with respect to Y . This is the core of the algorithm discussed next.

3.2 Implications

One simple but important implication of the definition of counterfactual fairness is the following:

Lemma 1. Let G be the causal graph of the given model (U, V, F ). Then Ŷ will be counterfactually
fair if it is a function of the non-descendants of A.

Proof. Let W be any non-descendant of A in G. Then WA a(U) and WA a0(U) have the same
distribution by the three inferential steps in Section 2.2. Hence, the distribution of any function Ŷ of
the non-descendants of A is invariant with respect to the counterfactual values of A.

This does not exclude using a descendant W of A as a possible input to Ŷ . However, this will only
be possible in the case where the overall dependence of Ŷ on A disappears, which will not happen in
general. Hence, Lemma 1 provides the most straightforward way to achieve counterfactual fairness.
In some scenarios, it is desirable to define path-specific variations of counterfactual fairness that allow
for the inclusion of some descendants of A, as discussed by [21, 27] and the Supplementary Material.

Ancestral closure of protected attributes. Suppose that a parent of a member of A is not in A.
Counterfactual fairness allows for the use of it in the definition of Ŷ . If this seems counterintuitive,
then we argue that the fault should be at the postulated set of protected attributes rather than with the
definition of counterfactual fairness, and that typically we should expect set A to be closed under
ancestral relationships given by the causal graph. For instance, if Race is a protected attribute, and
Mother’s race is a parent of Race, then it should also be in A.

Dealing with historical biases and an existing fairness paradox. The explicit difference between
Ŷ and Y allows us to tackle historical biases. For instance, let Y be an indicator of whether a client
defaults on a loan, while Ŷ is the actual decision of giving the loan. Consider the DAG A ! Y ,
shown in Figure 1(c) with the explicit inclusion of set U of independent background variables. Y is
the objectively ideal measure for decision making, the binary indicator of the event that the individual
defaults on a loan. If A is postulated to be a protected attribute, then the predictor Ŷ = Y = fY (A, U)
is not counterfactually fair, with the arrow A ! Y being (for instance) the result of a world that
punishes individuals in a way that is out of their control. Figure 1(d) shows a finer-grained model,
where the path is mediated by a measure of whether the person is employed, which is itself caused
by two background factors: one representing whether the person hiring is prejudiced, and the other
the employee’s qualifications. In this world, A is a cause of defaulting, even if mediated by other
variables3. The counterfactual fairness principle however forbids us from using Y : using the twin
network 4 of Pearl [28], we see in Figure 1(e) that Ya and Ya0 need not be identically distributed
given the background variables.

In contrast, any function of variables not descendants of A can be used a basis for fair decision
making. This means that any variable Ŷ defined by Ŷ = g(U) will be counterfactually fair for any
function g(·). Hence, given a causal model, the functional defined by the function g(·) minimizing
some predictive error for Y will satisfy the criterion, as proposed in Section 4.1. We are essentially
learning a projection of Y into the space of fair decisions, removing historical biases as a by-product.

Counterfactual fairness also provides an answer to some problems on the incompatibility of fairness
criteria. In particular, consider the following problem raised independently by different authors (e.g.,

3For example, if the function determining employment fE(A, P, Q) ⌘ I(Q>0,P=0 or A 6=a) then an individual
with sufficient qualifications and prejudiced potential employer may have a different counterfactual employment
value for A = a compared to A = a0, and a different chance of default.

4In a nutshell, this is a graph that simultaneously depicts “multiple worlds” parallel to the factual realizations.
In this graph, all multiple worlds share the same background variables, but with different consequences in the
remaining variables depending on which counterfactual assignments are provided.
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[7, 22]), illustrated below for the binary case: ideally, we would like our predictors to obey both
Equality of Opportunity and the predictive parity criterion defined by satisfying

P (Y = 1 | Ŷ = 1, A = 1) = P (Y = 1 | Ŷ = 1, A = 0),

as well as the corresponding equation for Ŷ = 0. It has been shown that if Y and A are marginally
associated (e.g., recidivism and race are associated) and Y is not a deterministic function of Ŷ ,
then the two criteria cannot be reconciled. Counterfactual fairness throws a light in this scenario,
suggesting that both EO and predictive parity may be insufficient if Y and A are associated: assuming
that A and Y are unconfounded (as expected for demographic attributes), this is the result of A being
a cause of Y . By counterfactual fairness, we should not want to use Y as a basis for our decisions,
instead aiming at some function Y?A

of variables which are not caused by A but are predictive of Y .
Ŷ is defined in such a way that is an estimate of the “closest” Y?A

to Y according to some preferred
risk function. This makes the incompatibility between EO and predictive parity irrelevant, as A and
Y?A

will be independent by construction given the model assumptions.

4 Implementing Counterfactual Fairness

As discussed in the previous Section, we need to relate Ŷ to Y if the predictor is to be useful, and we
restrict Ŷ to be a (parameterized) function of the non-descendants of A in the causal graph following
Lemma 1. We next introduce an algorithm, then discuss assumptions that can be used to express
counterfactuals.

4.1 Algorithm

Let Ŷ ⌘ g✓(U, X⌥A) be a predictor parameterized by ✓, such as a logistic regression or a neural
network, and where X⌥A ✓ X are non-descendants of A. Given a loss function l(·, ·) such as
squared loss or log-likelihood, and training data D ⌘ {(A(i), X(i), Y (i))} for i = 1, 2, . . . , n, we
define L(✓) ⌘ Pn

i=1 E[l(y(i), g✓(U
(i), x

(i)
⌥A)) | x(i), a(i)]/n as the empirical loss to be minimized

with respect to ✓. Each expectation is with respect to random variable U (i) ⇠ PM(U | x(i), a(i))
where PM(U | x, a) is the conditional distribution of the background variables as given by a causal
model M that is available by assumption. If this expectation cannot be calculated analytically,
Markov chain Monte Carlo (MCMC) can be used to approximate it as in the following algorithm.

1: procedure FAIRLEARNING(D, M) . Learned parameters ✓̂
2: For each data point i 2 D, sample m MCMC samples U

(i)
1 , . . . , U

(i)
m ⇠ PM(U | x(i), a(i)).

3: Let D0 be the augmented dataset where each point (a(i), x(i), y(i)) in D is replaced with the
corresponding m points {(a(i), x(i), y(i), u

(i)
j )}.

4: ✓̂  argmin✓

P
i02D0 l(y(i0), g✓(U

(i0), x
(i0)
⌥A)).

5: end procedure

At prediction time, we report Ỹ ⌘ E[Ŷ (U?, x?
⌥A) | x?, a?] for a new data point (a?, x?).

Deconvolution perspective. The algorithm can be understood as a deconvolution approach that,
given observables A [X , extracts its latent sources and pipelines them into a predictive model. We
advocate that counterfactual assumptions must underlie all approaches that claim to extract the
sources of variation of the data as “fair” latent components. As an example, Louizos et al. [24] start
from the DAG A! X  U to extract P (U | X, A). As U and A are not independent given X in this
representation, a type of penalization is enforced to create a posterior Pfair(U |A, X) that is close
to the model posterior P (U | A, X) while satisfying Pfair(U |A = a, X) ⇡ Pfair(U |A = a0, X).
But this is neither necessary nor sufficient for counterfactual fairness. The model for X given A
and U must be justified by a causal mechanism, and that being the case, P (U | A, X) requires no
postprocessing. As a matter of fact, model M can be learned by penalizing empirical dependence
measures between U and pai for a given Vi (e.g. Mooij et al. [26]), but this concerns M and not Ŷ ,
and is motivated by explicit assumptions about structural equations, as described next.
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