Responsible Data Science

Association rule mining data profiling continued

Prof. Julia Stoyanovich

Center for Data Science & Computer Science and Engineering **New York University**

Classification of data profiling tasks

 P ⁿoogan, dolab, [Abedjan, Golab, Naumann; *SIGMOD 2017*]

Data profiling

		R	c	D	F.	в	G	
п	UID	sex	race		MarriageSta DateOfBirth age			juv_fel_cour decile_score
\overline{z}	1	$\mathbf 0$	1	1	4/18/47	69	0	
3	2	0	2	1	1/22/82	34	0	3
4	3	$\bf{0}$	2	1	5/14/91	24	$\mathbf 0$	4
5	4	0	2	1	1/21/93	23	0	8
6	5	0	1	\overline{a}	1/22/73	43	$\mathbf{0}$	1
$\overline{7}$	6	Ō	1	3	8/22/71	44	0	1
8	7	0	3	1	7/23/74	41	$\mathbf{0}$	6
9	8	0	1	$\overline{\mathbf{2}}$	2/25/73	43	0	4
10	9	$\mathbf{0}$	3	$\mathbf{1}$	6/10/94	21	0	3
11	10	0	3	1	6/1/88	27	0	4
12	11	1	3	2	8/22/78	37	0	1
13	12	Ō	2	1	12/2/74	41	0	4
14	13	1	3	1	6/14/68	47	0	1
15	14	Ō	2	1	3/25/85	31	0	3
16	15	0	4	4	1/25/79	37	0	1
17	16	0	2	1	6/22/90	25	$\mathbf 0$	10
18	17	0	3	$\mathbf{1}$	12/24/84	31	0	5
19	18	$\mathbf{0}$	3	1	1/8/85	31	0	3
20	19	0	2	3	6/28/51	64	0	6
21	20	$\mathbf 0$	2	$\overline{\mathbf{1}}$	11/29/94	21	$\mathbf 0$	9
22	21	0	3	1	8/6/88	27	0	2
23	22	1	3	1	3/22/95	21	$\mathbf 0$	4
24	23	0	4	1	1/23/92	24	0	4
25	24	0	3	3	1/10/73	43	0	1
26	25	Ō	1	1	8/24/83	32	0	3
27	26	$\bf{0}$	2	1	2/8/89	27	0	3
28	27	1	3	1	9/3/79	36	0	3
$\overline{20}$	no.	n	n	٠	A/27/00	nc.	CO	÷

relational data (here: just one table)

Given a relation schema *R (A, B, C, D)* and a relation instance *r*, a **unique column combination** (or a **"unique"** for short) is a set of attributes *X* whose **projection** contains no duplicates in *r*

Episodes(*season*,*num*,*title*,*viewers*)

Projection is a relational algebra operation that takes as input relation *R* and returns a new relation *R'* with a subset of the columns of *R.*

Julia Stoyanovich 33 and 33 and 34 and 35 and 3

Given a relation schema *R (A, B, C, D)* and a relation instance *r*, a **unique column combination** (or a **"unique"** for short) is a set of attributes *X* whose **projection** contains no duplicates in *r*

Episodes(*season*,*num*,*title*,*viewers*)

Projection is a relational algebra operation that takes as input relation *R* and returns a new relation *R'* with a subset of the columns of *R.*

- Recall that more than one set of attributes **X** may be unique
- It may be the case that **X** and **Y** are both unique, and that they are not disjoint. When is this interesting?

attribute lattice of *R*

What's the size of the attribute lattice of *R*?

Look at all attribute combinations?

R (A, B, C, D)

R (A, B, C, D) attribute lattice of R

- If **X** is unique, then what can we say about its **superset Y**?
- If **X** is non-unique, then what can we say about its **subset Z**?

Given a relation schema *R (A, B, C, D)* and a relation instance *r*, a **unique column combination** (or a **"unique"** for short) is a set of attributes *X* whose **projection** contains no duplicates in *r*

Given a relation schema *R (A, B, C, D)* and a relation instance *r*, a set of attributes *Y* is **non-unique** if its projection contains duplicates in *r*

X is **minimal unique** if every subset *Y* of *X* is non-unique

Y is maximal non-unique if every superset *X* of *Y* is unique

From uniques to candidate keys

Given a relation schema *R (A, B, C, D)* and a relation instance *r*, a **unique column combination** is a set of attributes *X* whose **projection** contains no duplicates in *r*

Episodes(*season*,*num*,*title*,*viewers*)

A set of attributes is a **candidate key** for a relation if:

(1) no two distinct tuples can have the same values for all key attributes (candidate key **uniquely identifies** a tuple), *and*

(2) this is not true for any subset of the key attributes (candidate key **is minimal**)

A minimal unique of a relation instance is a (possible) candidate key of the relation schema. To find all possible candidate keys, find all minimal uniques in a relation instance.

association rule mining

The early days of data mining

- Problem formulation due to Agrawal, Imielinski, Swami, SIGMOD 1993
- Solution: the **Apriori** algorithm by Agrawal & Srikant, VLDB 1994
- Initially for **market-basket data** analysis, has many other applications, we'll see one today
- We wish to answer two related questions:
	- **Frequent itemsets:** Which items are often purchased together, e.g., milk and cookies are often bought together
	- **Association rules:** Which items will likely be purchased, based on other purchased items, e.g., if diapers are bought in a transaction, beer is also likely bought in the same transaction

Market-basket data

- $I = \{i_1, i_2, ..., i_m\}$ is the set of available items, e.g., a product catalog of a store
- *^X*⊂ *I* is an **itemset**, e.g., {milk, bread, cereal}
- **Transaction** *t* is a set of items purchased together, *t* ⊆ *I*, has a transaction id (TID)
	- t₁: {bread, cheese, milk}
	- *t*₂: {apple, eggs, salt, yogurt}
	- t₃: {biscuit, cheese, eggs, milk}
- Database **T** is a set of transactions $\{t_1, t_2, ..., t_n\}$
- A transaction *t* **supports** an itemset *X* if *X* ⊆ *t*
- Itemsets supported by at least *minSupp* transactions are called **frequent itemsets**

minSupp, which can be a number or a percentage, is specified by the user

Itemsets

minSupp = 2 transactions

How many possible itemsets are there (excluding the empty itemset)?

$$
2^4 - 1 = 15
$$

Association rules

An association rule is an implication $X \rightarrow Y$, where X, $Y \subset I$, and $X \cap Y = \emptyset$

example: {milk, bread}→{cereal}

"A customer who purchased X is also likely to have purchased Y in the same transaction"

we are interested in rules with a single item in Y

can we represent {milk, bread} \rightarrow {cereal, cheese}?

Rule $X \rightarrow Y$ holds with **support** *supp* in T if *supp* of transactions contain *X* ∪*Y*

Rule *X* →*Y* holds with confidence *conf* in T if *conf* % of transactions that contain X also contain Y

conf ≈ $Pr(Y | X)$ *conf* $(X \rightarrow Y)$ = *supp* $(X \cup Y)$ / *supp* (X)

Julia Stoyanovich

Association rules

Julia Stoyanovich ¹⁴

NYU

VE

Association rule mining

- Goal: find all association rules that satisfy the userspecified minimum support and minimum confidence
- Algorithm outline
	- Step 1: find all frequent itemsets
	- Step 2: find association rules
- Take 1: naïve algorithm for frequent itemset mining
	- Enumerate all subsets of *I*, check their support in *T*
	- **• What is the complexity?**

Key idea: downward closure

All subsets of a frequent itemset *X* are themselves frequent

So, if some subset of X is infrequent, then X cannot be frequent, we know this **apriori**

The converse is not true! If all subsets of *X* are frequent, *X* is not guaranteed to be frequent

The Apriori algorithm

Candidate generation

The **candidate-gen** function takes F_{k-1} and returns a superset (called the candidates) of the set of all frequent k-itemsets. It has two steps:

Join: generate all possible candidate itemsets C_k of length k

Prune: optionally remove those candidates in C_k that have infrequent subsets ABCD

Candidate generation: join

NYU

 $\frac{1}{\sqrt{2}}$

Candidate generation: join

NYU

 \mathbb{Q}

Candidate generation

Assume a lexicographic ordering of the items

Join

Prune

for each c in C_k do **for** each (k-1) subset s of c do **if** (s not in F_{k-1}) **then** delete c from C_k

Generating association rules

Rules $= \emptyset$ **for** each frequent *k-itemset* X do **for** each 1-itemset A ⊂ X **do** compute conf $(X / A \rightarrow A)$ = supp(X) / sup (X / A) **if** conf $(X / A \rightarrow A) \ge$ minConf **then** $Rules \leftarrow "X / A \rightarrow A"$ **end end end return** Rules

Performance of *Apriori*

- The possible number of frequent itemsets is exponential, O(*2m*), where *m* is the number of items
- Apriori exploits sparseness and locality of data
	- Still, it may produce a large number of rules: thousands, tens of thousands, ….
	- So, thresholds should be set carefully. What are some good heuristics?

Back to data profiling: Discovering uniques

Given a relation schema *R (A, B, C, D)* and a relation instance *r*, a **unique column combination** (or a **"unique"** for short) is a set of attributes *X* whose **projection** contains no duplicates in *r*

Given a relation schema *R (A, B, C, D)* and a relation instance *r*, a set of attributes *Y* is **non-unique** if its projection contains duplicates in *r*

X is **minimal unique** if every subset *Y* of *X* is non-unique

Y is maximal non-unique if every superset *X* of *Y* is unique

[Abedjan, Golab, Naumann; *SIGMOD 2017*]

Output

Julia Stoyanovich ²⁵

NYU

 $\frac{1}{\sqrt{2}}$

From uniques to candidate keys

Given a relation schema *R (A, B, C, D)* and a relation instance *r*, a **unique column combination** is a set of attributes *X* whose **projection** contains no duplicates in *r*

Episodes(*season*,*num*,*title*,*viewers*)

A set of attributes is a **candidate key** for a relation if:

(1) no two distinct tuples can have the value values for all key attributes (candidate key **uniquely identifies** a tuple), *and*

(2) this is not true for any subset of the key attributes (candidate key **is minimal**)

A minimal unique of a relation instance is a (possible) candidate key of the relation schema. To find such possible candidate keys, find all minimal uniques in a given relation instance.

Apriori-style uniques discovery

[Abedjan, Golab, Naumann; *SIGMOD 2017*]

A minimal unique of a relation instance is a **(possible) candidate key** of the relation schema.

Algorithm Uniques // sketch, similar to HCA

 $U_1 = \{1$ -uniques $\}$ $N_1 = \{1$ -non-uniques $\}$

for $(k = 2; N_{k-1} \neq \emptyset; k++)$ **do**

 $C_k \leftarrow$ candidate-gen(N_{k-1})

 $U_k \leftarrow$ prune-then-check (C_k)

// prune candidates with unique sub-sets, and with **value distributions** that cannot be unique

// check each candidate in pruned set for uniqueness

 N_k \leftarrow $C_k \setminus U_k$

 end

breadth-first bottom-up strategy for attribute lattice traversal

return $U \leftarrow \bigcup_{k} U_{k}$;