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ABSTRACT

Items from a database are often ranked based on a combi-
nation of criteria. The weight given to each criterion in the
combination can greatly affect the fairness of the produced
ranking, for example, preferring men over women. A user
may have the flexibility to choose combinations that weigh
these criteria differently, within limits. In this paper, we de-
velop a system that helps users choose criterion weights
that lead to greater fairness. We consider ranking functions
that compute the score of each item as a weighted sum of
(numeric) attribute values, and then sort items on their score.
Each ranking function can be expressed as a point in a multi-
dimensional space. For a broad range of fairness criteria,
including proportionality, we show how to efficiently iden-
tify regions in this space that satisfy these criteria. Using this
identificationmethod, our system is able to tell users whether
their proposed ranking function satisfies the desired fairness
criteria and, if it does not, to suggest the smallest modifica-
tion that does. Our extensive experiments on real datasets
demonstrate that our methods are able to find solutions that
satisfy fairness criteria effectively (usually with only small
changes to proposed weight vectors) and efficiently (in in-
teractive time, after some initial pre-processing).
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1 INTRODUCTION

Ranking of individuals is commonplace today, and is used,
for example, to establish credit worthiness, desirability for
college admissions and employment, and attractiveness as
dating partners. Properly, topics such as ranking, top-k query
processing, and building indexes to efficiently answer such
queries, have recently been increasingly relevant to database
research. A prominent family of ranking schemes are score-
based rankers, which compute the score of each individual
from some database D, sort the individuals in decreasing or-
der of score, and finally return either the full ranked list, or its
highest-scoring sub-set, the top-k . Many score-based rankers
compute the score as a linear combination of attribute values,
with non-negative weights.

This sort of linear-weighted scoring and ranking is ubiq-
uitous. Many sports use such schemes. For example, tennis
players have an ATP rank based on a score that weights each
level of success (winner, finalist, semi-finalist, and so on) at
each type of tournament, and adds these up. A score with
more serious implications is the credit score that each person
has in many countries, meant to indicate creditworthiness.
Even in the context of academic research, we see such scor-
ing: many funding agencies compute a score for a research
proposal as a weighted sum of scores for its attributes.

Because of the potential impact of such rankings on indi-
viduals and on population groups, issues of algorithmic bias
and discrimination are coming to the forefront of societal
and technological discourse [1]. In their seminal work Fried-
man and Nissenbaum [2] define a biased computer system as
one that (1) systematically and unfairly discriminates against
some individuals or groups in favor of others, and (2) joins
this discrimination with an unfair outcome.
We desire a ranking scheme that is fair, in the sense that

it mitigates preexisting bias with respect to a protected fea-

ture embodied in the data. In line with prior work [3–7], a
protected feature denotes membership of an individual in a
legally-protected category, such as persons with disabilities,
or under-represented minorities by gender or ethnicity. We
refer to such categories (e.g., minority ethnicity) as protected
groups, and to the attributes that define them (e.g., ethnicity)
as sensitive attributes. Interpreting the definition of Fried-
man and Nissenbaum [2] for rankings, discrimination occurs
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when the outcome is systematic and unfavorable, for exam-
ple, when minority ethnicity or female gender systematically
lead to placing individuals at lower ranks.
Numerous fairness definitions have been considered in

the recent literature [7, 8]. A useful dichotomy is between in-

dividual fairness and group fairness, also known as statistical
parity. The former requires that similar individuals be treated
similarly, while the latter requires that demographics of those
receiving a particular outcome are identical or similar to the
demographics of the population as a whole [8]. These two
requirements represent intrinsically different world views,
and accommodating both requires trade-offs [9]. We focus on
group fairness in this paper. While our techniques apply to
a broad range of group fairness criteria, to make our discus-
sion concrete we will define fairness in terms of minimum
bounds on the number of selected members of a protected
group at the top-k , for some reasonable value of k [10].

Designing a ranking scheme amounts to selecting a set of
weights, one for each attribute. In some situations, we may
have access to good labeled training data, and be able to use
machine learning techniques. But in many situations, such
as to rank tennis players, research proposals, or academic
departments, we do not have access to any ground truth.
Therefore, we resort to subjectively selected weights in a
simple additive scoring function. Such a function is typically
defined over a handful of attributes, due to the cognitive
burden of selecting the scoring criteria and coming up with
an appropriate weight vector. The question we address in
this paper is how to introduce fairness into this subjective
weight selection process. Consider an example.

Example 1. A college admissions officer is designing a rank-

ing scheme to evaluate a pool of applicants, each with several

potentially relevant attributes. For simplicity, let us focus on

two of these attributes — high school GPA and SAT score. Sup-

pose that our fairness criterion is that the admitted class com-

prise at least 40% women. As the first step, to make the score

components comparable, GPA and SAT scores may be normal-

ized and standardized. We will denote the resulting values д for

GPA and s for SAT. The admissions officer may believe a priori

that д and s should have an approximately equal weight, com-

puting the score of an applicant t ∈ D as f (t) = 0.5×s+0.5×д,
ranking the applicants, and returning the top 500 individuals.

Upon inspection, it may be determined that an insufficient

number of women is returned among the top-k : at least 200

women were expected to be among the top-500, and only 150

were returned, violating our fairness constraint. This violation

may be due to a gender disparity in the data: in 2014, women

scored about 25 points lower on average than men in the SAT

test [11]. Note that the admissions officer was not looking at

the sensitive attribute (gender, in our example), and proposed

a scoring function that is not obviously biased against women:

the lack of fairness is only observed in the outcome.

Our goal in this paper is to build a system that will assist the

admissions officer in identifying alternative scoring functions

that meet the fairness constraint and are close to the original

function f in terms of attribute weights, thereby reflecting the

admission officer’s a priori notion of quality. After a few cycles

of such interaction with the system, the admissions officer may

choose f ′(t) = 0.45× s + 0.55×д as the final scoring function.

As underscored by Example 1, we wish to produce results
that are both fair — as stated by the fairness constraints, and
of high quality — as stated by the initial scoring function
weights. These initial scoring function weights will only
approximate quality, for two reasons. First, observational
data usually contains imperfect proxies of ”true” aspects of
quality (e.g., SAT score vs. intelligence, and GPA vs. grit) [9].
Second, future outcomes cannot be perfectly predicted based
on present observations, irrespective of whether a simple
score-based ranker or a complex learned model is used.

Rather than adjusting the scoring function, one could meet
fairness constraints by having different cutoff scores for dif-
ferent demographic groups. For example, the admissions
officer in Example 1 could have stuck with the original func-
tion, and used a lower score threshold for admitting women
compared to the one for men. While such a fix is technically
easy, it is illegal in many jurisdictions, because it amounts
to disparate treatment — to the explicit use of a protected
characteristic such as gender or race to make decisions. Our
proposal in this paper navigates the trade-off between dis-
parate treatment and disparate impact — providing outputs
that hurt members of a protected group more frequently
than members of other groups. If a small adjustment to the
weights of the scoring function can achieve fairness, that may
be both preferable for legal reasons, and acceptable from
the point of view of utility, particularly since the original
weights likely were approximate values chosen subjectively.

One may also argue that if a scoring function is specified
by a human expert, algorithmic bias is not an issue. Yet,
there is a long history of people using justifiable models
to be able to discriminate. For example, legacy was added
to the variables considered at admission, and given a high
weight, to keep down the number of Jewish students, since
“too many” of them would have been admitted considering
academic achievement alone [12, 13].

Of course, our proposed methods will not prevent institu-
tional racism and other kinds of intentional discrimination.
That said, it is increasingly recognized that this challenge
cannot be addressed by technology alone, and that respon-
sibility to determine the context of use of a tool should fall
squarely on legal and policy frameworks. Rather than dictat-
ing a particular choice of policy, we enable decisionmakers to
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transparently enact a policy of their choosing, by supporting
an explicit specification of fairness constraints, and incor-
porating them into ranking scheme design. Transparency by

design is now required by legal frameworks like the New
York City algorithmic transparency law [14].

Whether a fairness criterion is met can only be assessed
with respect to a specific dataset. However, we can assess the
fairness of a scoring function if we have a characterization
of the distribution of data points in any data set to which the
function will be applied. In other words, we can work with
a representative “training” data set to design a fair scoring
function. We can then expect this scoring function to remain
fair until the data distribution changes substantially.
Our technical goal is to build a system to assist a human

designer of a scoring function in tuning attribute weights to
achieve fairness. Since this tuning process does not occur too
often, it may be acceptable for it to take some time. However,
we know that humans are able to produce superior results
when they get quick feedback in a design or analysis loop.
Indeed, it is precisely this need that is a central motivation
for OLAP, rather than having only long-running analytics
queries. Ideally, a designer of a ranking scheme would want
the system to support her work through interactive response
times. Our goal is to meet this need, to the extent possible.

As we will later show, it is computationally challenging to
find a scoring function that is both fair and close to the user-
specified scoring function, particularly when more than two
scoring attributes must be considered. In order to overcome
this challenge, we introduce techniques from combinato-
rial geometry and, since the direct application of existing
algorithm does not scale in practice, we propose the arrange-
ment tree data structure. We then propose a grid-partitioning
preprocessing method that enables approximate query an-
swering. Preprocessed data can be reused if the dataset does
not change significantly over time, thus amortizing the cost
of pre-computation. In addition to the offline preprocessing
method, we also study sampling for on-the-fly query answer-
ing based on it. We provide a negative result that states that
methods based on function sampling cannot provide any
guarantees for the discovery of an approximate solution.
In the remainder of this paper, we will present a query

answering system that assists the user in designing fair score-
based rankers. The system first preprocesses a dataset of
candidates off-line and then handles user requests in real
time. The user specifies a query in the form of a scoring
function f that associates non-negative weights with item
attributes and computes items scores. Items are then sorted
on their scores. We assume the existence of a fairness oracle
that, given an ordered list of items, returns true if the list
meets fairness criteria and so is satisfactory, and returns
f alse otherwise. The fairness oracle relies on its knowledge
about the supported fairness definitions to achieve scalability.

If the list of items is found to be unsatisfactory, we suggest
to the user an alternative scoring function f ′ that is both
satisfactory and close to the query f . The user may accept f ′,
or she may decide to manually adjust the query and invoke
our system once again.

Summary of contributions: We propose a system that as-
sists the user in designing fair score-based ranking schemes.

• We characterize the space of linear scoring functions (with
their corresponding weight vectors), and characterize por-
tions of this space based on the ordering of items induced
by these functions. We develop algorithms to determine
boundaries that partition the space into regions where the
desired fairness constraint is satisfied, called satisfactory

regions, and regions where the constraint is not satisfied.
Given a user’s query, in the form of a scoring function f ,
we develop efficient exact algorithms to find the nearest
scoring function f ′ that satisfies the constraint, or to state
that the constraint is not satisfiable.

• We develop approximation algorithms for efficiently iden-
tifying and indexing satisfactory regions. We also intro-
duce sampling heuristics for on-the-fly query processing
in large-scale settings.

• We conduct an extensive experimental evaluation on real
datasets that validates our proposal.

While fairness in algorithmic systems is an active area of
research [7], our work is among a small handful of studies
that focus on fairness in ranking [5, 6, 10], and is the first to
support the user in designing fair ranking schemes.

Finally, we note that the methods of this paper have appli-
cations beyond fairness, and can be used more generally to
engineer ranking functions that satisfy input constraints. We
choose to focus on fairness to make our discussion concrete,
and to contribute to the important emerging area of research
in fairness, accountability and transparency (FAT).

2 PRELIMINARIES

Data model:We consider a dataset D of n items, each with
d scalar scoring attributes. (Additional non-scalar attributes
are considered in the fairness model.) We represent an item t

as a d-long vector of scoring attributes, 〈t[1], t[2], . . . , t[d]〉.
Without loss of generality, we assume that each scoring
attribute is a non-negative number and that larger values
are preferred. This assumption is straightforward to relax
with some additional notation and bookkeeping.

Ranking model: We focus on the class of linear scoring
functions that use a weight vector ®w = 〈w1,w2, . . . ,wd 〉 to
compute a goodness score f ®w (t) of item t as Σdj=1w jt[j]. To

simplify notation, we use f (t) to refer to f ®w (t). Without loss
of generality, we assume each weightw j ≥ 0. The scores of
items are used for ranking them. We assume that an item
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(a) function f = x + y (b) function f = 0.97x + 1.3y

Figure 1: Effect of weight choice on output fairness

with a higher score outranks an item with a lower score. We
denote the ranking of items in D based on f with ∇f (D).
Our ranking model has an intuitive geometric interpre-

tation: items are represented by points in Rd , and a linear
scoring function f is represented by a ray starting from the
origin and passing through the point ®w = 〈w1,w2, . . . ,wd 〉.
The score-based ordering of the points induced by f cor-
responds to the ordering of their projections onto the ray
for ®w . Figure 1 shows the items of an example dataset with
d = 2 as points in R2. The function f = x + y is represented
in Figure 1a as a ray stating from the origin and passing
through the point 〈1, 1〉. Projections of the points onto the
ray specify their ordering based on f .
Note that the rays corresponding to functions f and f ′

are the same if the weight vector of f ′ is a linear scaling
of the weight vector of f . This is because a weight vector
®w = 〈w1,w2, . . . ,wd 〉 induces the same ordering on the items

as does its linear scaling ®w ′
= 〈c ×w1, c ×w2, . . . , c ×wd 〉,

for any c > 0. Hence, the distance between two functions f

and f ′ is considered as the angular distance between their
corresponding rays in Rd . For example, the distance between
f = x + y and f ′ = 100x + 100y is 0, while the distance
between f = x + y and f ′′ = x is π

4
, the angular distance

between the ray corresponding to f in Figure 1a and the
x-axis. For every item t ∈ D, contour of t on f is the value
combinations in Rd with the same score as f (t) [15, 16]. For
linear functions, the contour of an item t is the hyperplane
h that is perpendicular to the ray of f and passes through t .

Fairness model:We adopt a general ranked fairness model,
in which a fairness oracle O takes as input an ordered list of
items fromD, and determines whether the list meets fairness
constraints: O : ∇f (D) → {⊤,⊥}. A scoring function f that
gives rise to a fair ordering over D is said to be satisfactory.
In addition to scoring attributes, discussed in the data

model, items are associated with one or several type at-
tributes. A type corresponds to a protected feature such as
gender or race. We discussed bias with respect to a protected
feature in the introduction. In the example in Figure 1, there
is a single binary type attribute, denoted by blue and orange

colors. Suppose that the fairness oracle returns true if the
top-4 items contain an equal number of items of each type.
Function f = x + y in Figure 1a is not satisfactory as it
has 3 orange points and one blue point in its top-4, while
f ′ = 0.97x + 1.3y in Figure 1b contains two points of each
type in its top-4 and is satisfactory.
While our fairness model is general, in our experimen-

tal evaluation we focus on fairness constraints that were
considered in recent literature [4, 6, 10]. We work with pro-
portionality constraints that bound the number of items
belonging to a particular demographic group (as represented
by an assignment of a value to a categorical type attribute)
at the top-k , for some given value of k .

2.1 Problem statement

A given query f , with a weight vector ®w , may not satisfy the
required fairness constraints. Our problem is to propose a
scoring function f ′, with a weight vector similar to that of
f , that does satisfy the constraints, if one exists.
Of course, the user may not accept our proposal. Instead,

she may try a different weight vector of her liking, which
we can again examine and either approve or propose an
alternative. The final choice of an acceptable scoring function
is up to the user. We now formally state our problem.

Closest Satisfactory Function: Given a dataset D with n

items over d scalar scoring attributes, a fairness oracle O :

∇f (D) → {⊤,⊥}, and a linear scoring function f with the

weight vector ®w = 〈w1,w2, · · · ,wd 〉, find the function f ′ with

the weight vector ®w ′ such thatO(∇f ′(D)) = ⊤ and the angular

distance between ®w and ®w ′ is minimized.

High-level idea: From the system’s viewpoint, the chal-
lenge is to propose similar weight vectors that satisfy the
fairness constraints, in interactive time. To accomplish this,
our solution will operate with an offline phase and then
an online phase. In the offline phase, we will process the
(representative sample) dataset, and develop data structures
that will be useful in the online phase. In the online phase,
we will exploit these data structures to interactively pro-
pose similar satisfactory weight vectors to assist the human
designer. Once the human designer has selected the satisfac-
tory weights, it may continue to be satisfactory, as long as
the datasets have roughly the same distribution. (Later, we
also develop a function sampling technique that removes the
need for pre-processing and can sometimes be effective).

In the next section, we consider the easier to visualize 2D
case, in which the dataset contains 2 scalar scoring attributes.
The terms and techniques discussed in § 3 will help us in § 4
for developing algorithms for the general multi-dimensional
case, where the number of scalar scoring attributes is d > 2.
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Figure 2: ordering exchange between a pair of points

3 THE TWO-DIMENSIONAL CASE

In this section we consider a simplified version of the prob-
lem in which only two scalar attributes (x and y) participate
in the ranking. We begin by introducing the central notion
of ordering exchange that partitions the space of linear func-
tions into disjoint regions. Then, we use this concept to
develop two algorithms: an offline algorithm to identify and
index the satisfactory regions, and an online algorithms that
can be used repeatedly, as the domain expert interactively
tunes weights, to obtain a desired ranking function.

3.1 Ordering exchange

Each item in a 2-dimensional dataset can be represented as a
point in R2, and each ranking function f can be represented
as a ray starting from the origin. The ordering of the items is
the ordering of their projections on the ray of f . For instance,
Figure 1 specifies the projection of the points on the ray of
f = x + y. One can see that the set of rays between the x
and y axes represents the set of possible ranking functions in
2D. Even though an infinite number of rays exists between x
and y, the number of possible orderings of n items is limited
to n!, the number of their permutations. Our central insight
is that we do not need to consider every possible ranking
function: we only need to consider at most as many as there
are orderings of the items, as we discuss next.

Consider two points t1〈1, 2〉 and t2〈2, 1〉, shown in Figure 2.
The projections of t1 and t2 on the x-axis are the points
x = 1 and x = 2, respectively. Hence, the ordering based on
f = x is t2 ≻ t1, which denotes that t2 is preferred to t1 by f .
Moving away from the x-axis towards they-axis, the distance
between the projections of t1 and t2 on the ray decreases,
and becomes zero at f = x +y. Then, moving from f = x +y

to the y-axis, the ordering between these two points changes
to t1 ≻ t2. As we continue moving towards the y-axis, the
distance between the projections of t1 and t2 increases, and
their order remains t1 ≻ t2. Using this observation, we can
partition the set of scoring functions based on their angle
with the x-axis into F1 = [0,π/4] and F2 = [π/4,π/2], such
that for every f ∈ F1 the ordering is t2 � t1 and for every
f ′ ∈ F2 the ordering is t1 � t2.

We define the ordering exchange as the ranking functions
that score t1 and t2 equally. In 2D, the ordering exchange of
a pair of points is at most a single function.

For any specified ordering of items, the fairness constraint
either is satisfied or it is not. If this ordering is changed, the
satisfaction of the fairness constraint may change as well.
Therefore, in the space of possible ranking functions, every
boundary between a satisfactory region and an unsatisfac-
tory region must comprise ordering exchange functions.

3.2 Offline processing

Offline processing is for identifying and indexing the satis-
factory functions, for efficient answering of online queries.
Following the example in Figure 2, we propose a ray sweeping
algorithm for identifying satisfactory functions in 2D.
To identify the ordering exchanges of pairs of items, we

transform items into a dual space [17], where every item t is
transformed into the line d(t), as follows:

d(t) : t[1]x + t[2]y = 1 (1)

The ordering of the items based on a function f with the
weight vector 〈w1,w2〉 is the ordering of the intersections
of the lines d(t) with the ray starting from the origin and
passing through the point 〈w1,w2〉, where the closer intersec-
tions to the origin are ranked higher. For example, Figure 4
shows the dual transformation (using Equation 1) of the
2D dataset provided in Figure 3. Therefore, the ordering ex-
change of a pair ti and tj is the intersection of d(ti ) and d(tj ).
For example, in Figure 4, the ordering exchange of t1 and t2
is the top-left intersection (of lines d(t1) and d(t2)).
Using Equation 1, the intersection of the lines d(ti ) and

d(tj ) can be computed by the following system of equations:

×d(ti ),d(tj ) :

{

ti [1]x + ti [2]y = 1

tj [1]x + tj [2]y = 1

The ordering exchange is identified by the angle:

θti ,tj = arctan
tj [1] − ti [1]

ti [2] − tj [2]
(2)

Now, we use ordering exchanges to design the ray sweep-
ing algorithm 2draysweep (Algorithm 1). The algorithm
uses a min-heap to maintain the ordering exchanges. It uses
the fact that, sweeping from the x to y-axis, at any moment
a pair of items that are adjacent in the ordered list may ex-
change ordering. Therefore, it first orders the items based on
the x-axis and gradually updates the order as it sweeps the
ray toward the y-axis (angle π/2), by swapping the order of
pairs of items in their ordering exchanges.

The algorithm initially computes the ordering exchanges
between all pairs of adjacent items that do not dominate
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t1 1 3.5

t2 1.5 3.1

t3 1.91 2.3

t4 2.3 1.8

t5 3.2 0.9

Figure 3: A 2D dataset Figure 4: Fig. 3 in dual space Figure 5: Satisfactory sectors Figure 6: Satisfactory regions

Algorithm 1 2draysweep

Input: dataset D and fairness oracle O

Output: sorted satisfactory regions S

1: Ω = ∇f{1,0} (D)

2: heap = new min-heap()

3: for i = 1 to n − 1 do

4: if Ω[i][2] ≥ Ω[i + 1][2] then continue

5: heap.push(
Ω[i+1][1]−Ω[i ][1]
Ω[i ][2]−Ω[i+1][2]

, Ω[i], Ω[i + 1])

6: end for

7: θ = 0;

8: while heap is not empty do

9: if O(Ω) = ⊤ then append(S , 〈θ, 0〉); break

10: (θ, a, b) = heap.pop()

11: swap a and b in Ω; add the new intersection to heap

12: end while

13: if heap is empty then return ∅ else flag = ⊤

14: while heap is not empty do

15: (θ, a, b) = heap.pop()

16: swap a and b in Ω; add the new intersection to heap

17: sign = O(Ω)

18: if flag = ⊤ and sign = ⊥ then append(S , 〈θ, 1〉)

19: else if flag = ⊥ and sign = ⊤ then append(S , 〈θ, 0〉)

20: flag = sign

21: end while

22: if flag = ⊤ then append(S , 〈π /2, 1〉)

23: return S

each other1 using Equation 2, and adds them to the heap.
Next, the algorithm starts sweeping toward the y-axis by
removing the ordering exchangewith the smallest angle from
the heap. Upon visiting an ordering exchange, the algorithm
swaps the items that exchange order in the ordered list Ω.
The two swapped items can exchange order with their new
neighbors in Ω. The algorithm updates the heap by adding
these new ordering exchanges. Upon finding a satisfactory
sector, the algorithm continues attaching neighboring sectors
as long as they are satisfactory, to generate a satisfactory
region. Algorithm 1 stores the borders of satisfactory regions
in S as pairs 〈θ , 0/1〉, where 〈θ , 0〉 represents that θ is the
start of a satisfactory region, while 〈θ , 1〉 represents that θ
is the end of the region. Consider Figure 5 and suppose that
the green sectors are labeled as satisfactory by the fairness

1t dominates t ′ if ∄i ∈ [1, d ], t ′[i] > t [i] and ∃j ∈ [1, d ] such that

t [j] > t ′[j]. [18]

oracle. Figure 6 shows the satisfactory regions produced by
Algorithm 1. Note that the third region from the left is the
union of two neighboring satisfactory sectors in Figure 5.

Theorem 1. Algorithm 1 has time complexityO(n2(logn+
ϒn)), where ϒn is the time complexity of the fairness oracle for

input of size of n.

The proofs of all theorems are provided in Appendix F.
In our experiments we focus on fairness constraints that

bound the number of items belonging to a particular type at
the top-k . In general, we expect the fairness oracle to decide
in a single pass over the ranking, and so ϒn is typically O(n).

3.3 Online processing

Having the sorted list of 2D satisfactory regions constructed
in the offline phase allows us to design an efficient algorithm
for online answering of queries. Recall that a query is a
proposed set of weights for a linear ranking function. Our
task is to determine whether these weights result in a fair
ranking, and to suggest weight modifications if they do not.
Online processing is implemented by Algorithm 2 that, given
f , applies binary search on the sorted list of satisfactory re-
gions. If f falls in a satisfactory region, the algorithm returns
f , otherwise it returns the satisfactory border closest to f .

Algorithm 2 2donline

Input: sorted satisfactory regions S , function f : 〈w1, w2 〉

Output: weight vector 〈w ′
1, w

′
2 〉

1: (r, θ ) = (
√

w2
1 +w

2
2, arctan

w2
w1

); low = 1; high = |S |

2: while (high−low) > 1 do

3: mid = (low+high)/2

4: if S [mid][1] < θ then low = mid

5: else high = mid

6: end while

7: if S [low][2] = 0 then

8: return 〈w1, w2 〉 // input vector is satisfactory

9: end if

10: if (θ − S [low][1]) < (S [high][1] − θ ) then

11: return 〈r cos(S [low][1]), r sin(S [low][1])〉

12: end if

13: return 〈r cos(S [high][1]), r sin(S [high][1])〉

Theorem 2. Algorithm 2 has time complexity O(logn).

Research 13: Fairness, Uncertainty  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1264



4 THE MULTI-DIMENSIONAL CASE

If two attributes are used for ranking, we only have one
degree of freedom— the relative weights of the two attributes
— so the problem is simple. When there are three or more
attributes, there are many ways in which we can perturb a
given weight vector. We now extend the basic framework
introduced in § 3 to handle multi-dimensional cases.
Regions of interest are no longer simple planar wedges,

as in the 2D case. Rather, they are high-dimensional objects,
with multiple bounding facets. To manage the geometry bet-
ter, we first introduce an angle coordinate system, and show
that ordering exchanges form hyperplanes in this system.
Identifying and indexing satisfactory regions during offline
processing is similar to constructing the arrangement of these
hyperplanes [17]. We then propose an exact online algorithm
that works based on the indexed satisfactory regions.

4.1 The geometry of ordering exchanges

Consider function f withweight vector ®w = 〈w1,w2, · · · ,wd 〉.
The score of each tuple ti based on f is Σd

k=1
wkti [k]. For ev-

ery pair of items ti and tj , the ordering exchange is the set
of functions that give the same score to both items. As in the
previous section, we consider the dual space, transforming
item t into a (d − 1)-dimensional hyperplane in Rd :

d(t) :

d
∑

k=1

t[k].xk = 1 (3)

For a pair of items ti and tj , the intersection of d(ti ) and d(tj )
is a (d−2)-dimensional structure. For instance, in R3 the dual
transformation of an item is a plane, and the intersection of
two planes is a line. The intersection between d(ti ) and d(tj )
can be computed using the system of equations:

×d(ti ),d(tj ) :

{
∑d

k=1 ti [k].xk = 1
∑d

k=1 tj [k].xk = 1
(4)

The set of origin-starting rays passing through the points
p ∈ ×d(ti ),d(tj ) represents the ordering exchange of ti and
tj . Hence, the (d − 1)-dimensional hyperplane defined by
×d(ti ),d(tj ) and the origin (Equation 5) contains these rays.

d
∑

k=1

(ti [k] − tj [k])wk = 0 (5)

Consider items t1 = {1, 2, 3} and t2 = {2, 4, 1} in Figure 7. Us-
ing Equation 5, the ordering exchange of t1 and t2 is defined
by the magenta planew1 + 2w2 − 2w3 = 0 in Figure 8.

As explained in § 2, linear functions over d attributes (rays
in Rd ) are identified by d − 1 angles, each between 0 and
π/2. For instance, in § 3, we identify every function in 2D
by an angle θ ∈ [0,π/2]. Similarly, in multiple dimensions,
we identify the functions by their angles. We now introduce
the angle coordinate system for this purpose.

Angle coordinate system: Consider the Rd−1 coordinate
system, where every axis θi ∈ [0,π/2] stands for the angle
θi in the polar representation of points in Rd . Every function
(ray in Rd ) is represented by the point 〈θ1,θ2, · · · ,θd−1〉 in
the angle coordinate system. For example, as depicted in
Figure 9, a function f in R3 is the combination of two angles
θ1 and θ2, each over the range [0,π/2].

Following Equation 5, the ordering exchange of a pair of
items forms a (d − 2)-dimensional hyperplane in the angle
coordinate system. For example, in 3D, the ordering exchange
of ti and tj forms a line. We use hi, j to refer to the ordering
exchange of ti and tj in the angle coordinate system. In
Appendix A, we discuss how to compute ordering exchanges
in the angle coordinate system.

4.2 Construction of satisfactory regions

The construction of satisfactory regions relates to the ar-
rangement [17] of ordering exchange hyperplanes in the
angle coordinate system. Consider the arrangement of hi, j ,
∀ti , tj ∈ D. Items ti and tj switch order on the two sides
of hi, j , while inside each convex region in the arrangement
their relative ordering does not change. In the following, we
construct all convex regions in the arrangement and check
if the ordering inside each is satisfactory.
A convex region is defined as the intersection of a set of

half-spaces [17]. Every hyperplane h divides the space into
two half-spaces h+ and h−. The ordering between ti and tj
switches for each hyperplane hi, j , moving from h+i, j to h

−
i, j .

Inspired by the algorithm proposed in [17], we develop
the function satregions (Algorithm 5 in Appendix A), an
incremental algorithm for discovering the convex regions
in the arrangement. Intuitively, the algorithm adds the hy-
perplanes one after the other to the arrangement. At every
iteration, it finds the set of regions in the arrangement with
which the new hyperplane intersects. Recall that hi, j is in

the form of
∑d−1

k=1 hi, j [k]θk = 1. Hence, the half-space h+i, j
can be considered as the constraint

∑d−1
k=1 hi, j [k]θk ≥ 1 and

h−i, j as
∑d−1

k=1 hi, j [k]θk ≤ 1. The set of points inside a convex

region R = {(hR1,+/−), (hR2,+/−), · · · } satisfy constraints
σR as defined in Equation 6.

σR :

{

∀ half-space(h′
,+) ∈ R,

∑d−1
k=1 h

′[k]θk ≥ 1

∀ half-space(h′
,−) ∈ R,

∑d−1
k=1 h

′[k]θk ≤ 1
(6)

Using Equation 6, a hyperplane h intersects with a convex
region R if there exists a point p ∈ h such that the con-
straints in σR are satisfied. The existence of such a point can
be determined using linear programming (LP). If the new
hyperplane intersects with R, Algorithm 5 breaks it down
into two convex regions that represent the intersections of
R with half-spaces h+ and h−.
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Having constructed the arrangement, satregions uses
linear programming to find a point θ that satisfies σR , and
uses θ to check if R is satisfactory. If R is not satisfactory, it
is removed from the set of satisfactory regions R.

Theorem 3. For a fixed number of dimensions, the time

complexity of the function satregions (Algorithm 5) is

O
(

n2d−1(n Lp(n2)+ϒn logn)
)

, where Lp(n2) is the time of solv-

ing a linear programming problem of n2 constrains and a fixed

number of variables, and ϒn is the time complexity of the fair-

ness oracle for an input of size n.

To add a newhyperplane, the algorithm satregions checks
the intersection of every region with the hyperplane. But in
practice most regions do not intersect with it. We define the
arrangement tree (Appendix B), which keeps tracks of the
space partitioning in a hierarchical manner, and can quickly
rule out many regions. While this does not change the as-
ymptotic worst case complexity, we find that it greatly helps
in practice, as we will demonstrate experimentally in § 7.4.

4.3 Online processing

Thus far in this section, we studied how to preprocess the
data and construct satisfactory regions R in multiple dimen-
sions. Next, given a query (a function f ) and R, we aim to
find the closest satisfactory function f ′ to f . To do so, md-
baseline (Algorithm 6 in Appendix C) solves a non-linear
programming problem for each satisfactory region to find
the closest point of the region to f , and returns the function
with the minimum angle distance with f .

Theorem 4. For a constant number of dimensions, the time

complexity of Algorithm 6 isO(n2(d−1)NLp(n2)), whereNLp(n2)
is the time for solving a non-linear programming problem of

n2 constraints and a fixed number of variables.

5 APPROXIMATION

A user developing a scoring function requires interactive
response time from the system. mdbaseline is not practi-
cal for query answering as it needs to solve a non-linear
programming problem for each satisfactory region, before
answering each query. In this section, we propose an efficient
algorithm for obtaining approximate answers quickly. Our
approach relies on first partitioning the angle space, based

on a user-controlled parameter N , into N cells, where each
cell c is a hypercube of (d − 1)-dimensions. To do so, we
use the equi-volume partitioning proposed in [19]. During
preprocessing, we assign a satisfactory function f ′c to every
cell c such that, for every function f , the angle between f

and f ′c is within a bounded threshold (based on the value of
N ) from f and its optimal answer. To do so, we first identify
the cells that intersect with a satisfactory region, and assign
the corresponding satisfactory function to each such cell.
Then, we assign the cells that are outside of the satisfactory
regions to the nearest discovered satisfactory function.

5.1 Identifying cells in satisfactory regions

After partitioning the angle space, our objective here is to
find cells in Cells , the set of all cells, that intersect with at
least one satisfactory region R ∈ R. Formally,

C = {c ∈ Cells | ∃R ∈ R s.t. R ∩ c , ∅} (7)

A brute force algorithm follows Equation 7 literally. This
algorithm needs to first construct a complete arrangement
and then check the intersection of all N × |R| pairs of cells
and satisfactory regions. This is inefficient when N and the
size of R are large. As discussed in § 4, and experimentally
shown in § 7, the complexity of the arrangement and the run-
ning time of the algorithm satregions highly depends on
the number of hyperplanes in the arrangement. Even though
the first few hyperplanes are quickly added to the arrange-
ment, adding the later hyperplanes is more time consuming.
This observation motivates us to limit the construction of
the arrangement to subsets of hyperplanes, as opposed to
constructing the complete arrangement all at once. Besides,
the changes in the ordering in every cell is limited to the hy-
perplanes passing through it. As a result, for finding out if a
cell intersects with a satisfactory region, it is enough to only
consider the arrangement of these hyperplanes. In Appen-
dix D, we explain how to efficiently identify the hyperplanes
passing through each cell.
After identifying HC (the sets of hyperplanes passing

through the cells), for each cell c ∈ Cells , we limit the ar-
rangement to HC[c]. Moreover, note that in this step our
goal is to find a satisfactory function inside c . This is differ-
ent from our objective in satregions , where we wanted to
find all satisfactory regions. This gives us the opportunity
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Figure 11: Cells that

intersect a plane

Figure 12: Early stopping in

arrangement construction

to apply a stop early strategy, as follows: at every iteration,
while using the arrangement tree for construction, check a
function inside the newly added regions, and stop as soon
as a satisfactory function is discovered.
We develop the algorithm markcell (Algorithm 7 in Ap-

pendix D) that assigns a satisfactory function to the cells
that intersect with a satisfactory region R. Using an arrange-
ment tree, the algorithm iteratively adds the hyperplanes
passing through each cell and checks if a function inside
the new regions is satisfactory. Upon finding a satisfactory
function, the algorithm stops and assigns the function to
the cell. Figure 12 illustrates how markcell finds a satisfac-
tory function for a cell c . After adding hyperplanes hc1 and
hc2, since functions f1 to f6 are unsatisfactory (denoted by
red color), markcell adds hc3 to the construction. In this
example, hc3 does not pass through {hc−1 ,hc

−
2 }, but it passes

through R = {hc−1 ,hc
+

2 }, dividing it into Rl = R ∪ hc−3 and
Rr = R ∪ hc+3 . Although f7 ∈ Rl is unsatisfactory, f8 ∈ Rr is
satisfactory. The algorithm assigns f8 to c and stops.

Let |HC[c]| be the number of hyperplanes passing through
cell c ; the complexity of the arrangement of c isO(|HC[c]|d−1).
Then the complexity ofmarkcell isO

(

|HC[c]|dLp(|HC[c]|)+

|HC[c]|d−1n lognOn
)

when d is fixed, following Theorem 3.
So far, we identified cells C that intersect with some satis-

factory region, and assigned a satisfactory function to each
of them. Next, we consider the cells C̄ that do not contain a
satisfactory function and assign them to the closest discov-
ered satisfactory function. To do so, we use monotonicity
of the angular distance and adopt Dijkstra’s algorithm [20],
see Appendix E for details. After this step, and assuming the
existence of at least one satisfactory region, every cell in the
partitioned angle space is assigned a satisfactory function.
We store the cell coordinates, together with the assigned
satisfactory functions, as an index that enables online an-
swering of user queries, discussed next.

5.2 Online processing

Given an unsatisfactory function f , we need to find the cell
to which f belongs, and to return its satisfactory function.
This is implemented in mdonline (Algorithm 3) that trans-
forms the weight vector of f to polar coordinates, performs

Algorithm 3 mdonline

Input: partitioned spaceT , assigned functions F , dataset D, fairness oracle

O, and weight vector ®w

Output: satisfactory weight vector ®w ′

1: if O(∇f ®w (D)) = True then return ®w

2: (r, Θ) = ToPolar( ®w )

3: for k = 1 to d − 1 do

4: T = apply binary search and find the child to which Θk belongs

5: end for

6: return F [T ]

binary search on each dimension to identify cell c to which
f belongs, and return its satisfactory function F [c].

Theorem 5. Algorithm mdonline runs in O(logN ) time.

Theorem 6. Let fopt and θopt be the closest function and

its angle distance to a queried function f . Also, let fapp and

θapp be the function and its angle distance that the algorithm

mdonline returns for f , and θr the diameter the cells. Then,

θapp ≤ θopt + 2θr .

6 SAMPLING

In this section, we describe two sampling-based approaches
that improve the performance of our preprocessing and on-
line processing: item sampling, and function sampling, re-
spectively. A critical requirement of our system is to be effi-
cient during online query processing, and it is fine for it to
spend more time during offline preprocessing. As discussed
in § 4 and § 5, the running time of proposed offline algo-
rithms is polynomial for a fixed value of d . In addition, the
arrangement tree (c.f. § 4) and the techniques of § 5 speed up
preprocessing in practice. However, preprocessing can still
be slow, particularly for a large number of items. We reduce
preprocessing time using item sampling. We also present a
negative result about function sampling, and show how it
provides a practical method for on-the-fly query processing.

6.1 Item Sampling

The arrangement construction cost increases significantly for
a large number of items in the dataset. On the other hand, in
practice, fairness criteria often allow some degree of freedom
in the ranking between the items. For example, a popular
class of fairness models treat the top-k items in the ranking
as a set, and if the proportion of protected group members
in the set is within an acceptable range, they consider the
over-all ranking to be fair. Having at least 20% minorities
and at least 30% females in the top-20% of the ranking is an
example of such a fairness model. We propose to use item
sampling for these situations.
The main idea is that a uniform sample of the data main-

tains the properties of the underlying data distribution. There-
fore, if a function is satisfactory for a datasetD, it is expected
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to be satisfactory for a uniformly sampled subset ofD. Hence,
for a datasets with a large number of items, one can do pre-
processing on a uniformly sampled subset to find functions
that are expected to be satisfactory for each cell. We confirm
the efficiency and effectiveness of this method experimen-
tally on a dataset with over one million items in § 7.

6.2 Function sampling

Every origin-starting ray passes through one and only one
point on the surface of the unit d-dimensional hyper-sphere
(known as the d-sphere). This maps the universe of origin-
starting rays (linear functions) to the surface of the first
quadrant of the unit d-sphere. As a result, uniform sampling
from this surface provides uniform samples from the func-
tion space. Using this observation, [21, 22] propose uniform
sampling of the function space, by adopting the methods
of [23, 24]. The idea is that, since the Normal distribution
has a constant probability on the surfaces of d-spheres with
common centers, taking samples based on this distribution
from the weight space provides uniform samples from the
function space. This idea is extended in [22] for taking unbi-
ased samples in the θ -vicinity of a specific ray. We can use
this for on-the-fly query processing.
In this paper, we conduct preprocessing that enables an

efficient way of answering user queries. The alternative sce-
nario is on-the-fly processing of the queries, without any
preprocessing. Consider the case where the objective is to
find a satisfactory function that has at most the angle dis-
tance of θ with the user-provided function, called the region

of interest in [22]. Constructing the arrangement at query
time is intractable. Instead, one can use uniform random
samples for exploring the neighborhood. To do so, we take
a uniform random function sample in the θ -vicinity of the
input function and return it if satisfactory. Otherwise, we
take another sample, and continue until a budget of s sam-
ples is exhausted. Unfortunately, the negative result is that,
based on Theorem 7, function sampling cannot provide any
guarantees for the discovery of an approximation solution.

Theorem 7. For any arbitrarily small probability p > 0

and any arbitrarily large number s , one cannot guarantee the

discovery of a satisfactory function with probability at least p,

using s uniform random function samples.

Although function sampling is efficient in drawing a func-
tion from large satisfactory regions, one cannot guarantee
that all possible rankings will be discovered and, therefore,
cannot ensure the non-existence of a satisfactory function.
On the other hand, as studied in [22], the rankings sup-

ported by small regions are unstable, and thus question-
able. Following the function sampling strategy for on-the-fly
query processing, we expect to find a satisfactory function, if
the volume ratio of the satisfactory regions to the volume of

the region of interest is more than 1/s . Taking more samples
increases the chance of hitting smaller satisfactory regions,
but reduces efficiency. Given that we stop exploring as soon
as a satisfactory function is discovered, as we shall show in
§ 7, this method is efficient in practice, for the cases in which
it finds a satisfactory function. However, in other cases, it
may fail to find a satisfactory function although one exists.

7 EXPERIMENTAL EVALUATION

7.1 Experimental Setup

Datasets. COMPAS: a dataset collected and published by
ProPublica as part of their investigation into racial bias in
criminal risk assessment software [25]. The dataset con-
tains demographics, recidivism scores produced by the COM-
PAS software, and criminal offense information for 6,889
individuals. We used c_days_from_compas, juv_other_count,
days_b_screening_arrest, start, end, age, and priors_count

as scoring attributes.We normalized attribute values as (val−
min)/(max − min). For all attributes except age, a higher
value corresponded to a higher score. In addition to the scor-
ing attributes, we consider attributes sex (0:male, 1: female),
age_binary (0: less than 35 yo, 1: more than 36 yo), race (0:
AfricanAmerican, 1: Caucasian, 2: Other), and age_bucketized
(0: less than 30 yo, 1: 31 to 40 yo, 2: more than 40 yo), as the
type attributes. COMPAS is our default experimental dataset.

US Department of Transportation (DOT): the flight on-time
database published by DOT is widely used by third-party
websites [26]. We collected 1.3M records, for the flights con-
ducted by 14 US carriers in the first three months of 2016.
We use this to study sampling for large-scale settings, and
to showcase the application of our techniques for diversity.

Hardware andplatform.The experiments were performed
on a Linux machine with a 2.6 GHz Core I7 CPU and 8GB
memory. The algorithms were implemented using Python2.7,
with scipy.optimize package for LP optimizations.

Fairnessmodels.We evaluate the performance of our meth-
ods over two general fairness models, see § 2.

FM1, proportional representation on a single type attribute,
is the default fairness model in our experiments. This model
can express common proportionality constraints from the
literature [3, 7, 8], including also for ranked outputs [6] and
for set selection [4]. The distinguishing features of FM1 are
(1) that the type attribute partitions the input dataset D into
groups and (2) that the proportion of members of a particular
group is bounded from below, from above, or both. For the
COMPAS dataset, unless noted otherwise, we state FM1 over
the type attribute race as follows: African Americans consti-
tute about 50% of the dataset; a fairness oracle will consider a
ranking to be satisfactory if at most 60% (or about 10% more
than in D) of the top-ranked 30% are African American.
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FM2, proportional representation on multiple, possibly
overlapping, type attributes, is a generalization of FM1 that
can express proportionality constraints of [10]. As in [10],
we bound the number of members of a group from above. For
example, for COMPAS, we specify the maximum number of
items among the top-ranked 30% based on sex (80% of D are
male), race (50% are African American), and age_bucketized

(42% are 30 years old or younger, 34% are between 31 and 50,
and 24% are over 50). A ranking is considered satisfactory
if the proportion of members of a particular demographic
group is no more than 10% higher than its proportion in D.

7.2 Validation experiments

In our first experiment, we show that our methods are ef-
fective — that they can identify scoring functions that are
both satisfactory and similar to the user’s query. We use
COMPAS with d = 3 (scoring attributes c_days_from_compas,
juv_other_count, start), and with fairness model FM1 on
race (at most 60% African Americans among the top 30%).
We issued 100 random queries, and observed that 52 of

them were satisfactory, and so no further intervention was
needed. For the remaining 48 functions, we used our meth-
ods to suggest the nearest satisfactory function. Figure 13
presents a cumulative plot of the results for these 48 cases,
showing the angle distance θ (f , f ′) between the input f and
the output f ′ on the x-axis, and the number of queries with
at most that distance on the y-axis.

We observe that a satisfactory function f ′ was found close
to the input function f in all cases. Specifically, note that
θ (f , f ′) < 0.6 in all cases, and recall that θ ∈ [0,π/2], with
lower values corresponding to higher similarity. (For a more
intuitive measure: the value of θ = 0.6 corresponds to cosine
similarity of 0.82, where 1 is best, and 0 is worst). Among
the 48 cases, 38 had θ (f , f ′) < 0.4 (cosine similarity 0.92).

Next, we give an intuitive understanding of the layout of
satisfactory regions in the space of ranking functions. We
use COMPAS with age (lower is better) and juv_other_count

(higher is better) for scoring. The intuition behind this scor-
ing function is that individuals who are younger, and who
have a higher number of juvenile offenses, are considered
to be more likely to re-offend, and so may be given higher
priority for particular supportive services or interventions.

Naturally, a scoring function that associates a high weight
with age will include mostly members of the younger age
group at top ranks. About 60% of COMPAS are 35 years old
or younger. Consider a fairness oracle that uses FM1 over
age_binary (with groups д1: 35 year old or younger, and д2:
over 35 years old), and that considers a ranking satisfactory
if at most 70% of the top-100 results are in д1. Because of the
correlation (by design) between one of the scoring attributes
and the type attribute, there is only one satisfactory region
for this problem set-up — it corresponds to the set of func-
tions in which the weight on age is close to 0, and whose
angle with the x-axis (juv_other_count) is at most 0.31.

Next, suppose that we use the same scoring attributes, but
a different fairness oracle — one that applies FM1 on the
attribute race, requiring that at most 60 of the top-100 are
African American. This time, there exist several satisfactory
regions. For any assignment of weights to the two scoring
attributes, there exists a satisfactory function f ′ such that
θ (f , f ′) < 0.11 (cosine similarity is more than 0.99).

Finally, we use juv_other_count and c_days_from_compas

for scoring, with fairness model FM2 that considers a ranking
satisfactory if there are at most 90 males, at most 60 African
Americans, and at most 52 persons who are 30 years old or
younger at the top-100. This fairness model is stricter than
in the preceding experiment (with FM1 on race), making
the gaps between the satisfactory regions wider. Still, the
maximum angle between f and f ′ was less than 0.28, which
corresponds to the minimum cosine similarity of 0.96.

7.3 Performance of query answering

While preprocessing can take more time, a critical require-
ment of our system is to be fast when answering users’
queries. In this section, we use the COMPAS dataset and
evaluate the performance of 2donline and mdonline , the
2D and MD algorithms for online query answering. We show
that queries can be answered in interactive time. We use the
default fairness model (i.e., at most 60% African Americans in
the top-30%) and the scoring attributes in the same ordering
provided in the description of COMPAS dataset.

2D. 2donline does not need to access the raw data at query
time. It only needs to apply binary search on the sorted
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list of satisfactory ranges to locate the position of the input
function f . In this experiment, we compare the required
time for ordering the results based on the input function,
averaged over 30 runs of 2donline on random inputs. Con-
firming the theoretical O(logn) complexity of 2donline v.s.
the O(n logn) for the ordering, 2donline only required 30

µsec on average, while even ordering the results based on f

(to check if f is satisfactory) required 25 msec to complete.

MD. In this experiment, just as for 2D, we took the average
running time of 30 random queries. Upon arrival of a query
function f , mdonline finds the cell to which f belongs in
O(logN ), where N is the number of cells, and returns the
proper satisfactory function f ′. In all experiments the run-
ning time was less than 200 µsec whereas the time required
to order the items was 25 msec.

7.4 Performance of preprocessing

To study preprocessing performance, we again use the COM-
PAS dataset, with the default fairness model (at most 60%
African Americans at the top 30%).

2D. We start by evaluating the efficiency of 2draysweep,
the 2D preprocessing algorithm proposed in § 3. We study
the effect of n (the number of items in the dataset) on the
performance of the algorithm 2draysweep and evaluate the
number of ordering exchanges and the running time of it.
Figure 14 shows the experiment results for varying the num-
ber of items from 200 to 6,800. The x-axis shows the values
of n (in log-scale), and the left and right y-axes show the
running time of 2draysweep and the number of ordering
exchanges, respectively. Looking at the right y-axis, one

can observe that the number of ordering exchanges is much
smaller than the theoreticalO(n2) upper-bound. For example,
while the upper-bound on the number of ordering exchanges
for n = 4k is 16M, the observed number in this experiment
was around 400k. This is because the pairs of items in which
one dominates the other do not have an ordering exchange.
Also, looking at the left y-axis, one can confirm that the
algorithm managed to finish the preprocessing within the
reasonable time of 80 sec, even for the largest setting.

MD, the effect of using arrangement tree. In § 4, we pro-
posed the arrangement tree data structure for constructing
the arrangement of hyperplanes, in order to skip compar-
ing a new hyperplane with all current regions. Here, as the
first MD experiment, we run the algorithm satregions as
the baseline and also use AT+ for adding the hyperplanes
using the arrangement tree. Figure 15 shows the incremental
cost of adding hyperplanes to the arrangement when d = 3.
While the baseline (satregions) needed 8,000 sec for adding
the first 250 hyperplanes, using the arrangement tree helped
save around 7,740 secs. Fixing the budget to 8,000 sec, the
baseline could construct the arrangement for the first 250
hyperplanes, while using the arrangement tree allowed us
to extend the construction to 1,200 hyperplanes.
Recall from §4 that the number of regions at step i is

O(i2(d−1)), and hence, adding the subsequent hyperplanes is
more expensive. This is presented in Figure 16, where the
y-axis shows the number of regions in the arrangement (|R |)
for different number of hyperplanes. Observe that the num-
ber of regions for the first 50 hyperplanes is less than 200; it
increases to more than 5,000 regions for the hyperplanes that
are added after 250th iteration. As a result, while adding a hy-
perplane (without using the arrangement tree) at the first 50
iterations requires checking fewer than 200 regions, adding
a hyperplane after iteration 250 requires checking more than
5,000 regions, and so is significantly more expensive.

MD, preprocessing.We now evaluate the algorithms pro-
posed in § 5 for preprocessing. Recall that in § 5, we partition
the angle space intoN cells and assign a satisfactory function
to each cell. This enables interactive query processing, since,
for each query f , we simply return the satisfactory func-
tion of the cell to which f belongs. Theorem 6 provides an
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upper-bound on the quality of the approximation introduced
by the algorithm. Following the upper-bound for d = 3 and
N = 40k, for example, the maximum distance of the approx-
imate output to the input function is about 0.004 degrees
more than the optimal distance. We could not evaluate an
average approximation, as the exact baseline solution did
not finish for any of the settings.
First, similar to the 2D experiments, varying n from 200

to 6,000, in Figure 17 we observe |H | (the number of hyper-
planes) as well as the time for constructing the hyperplanes
in the angle coordinate system. Comparing this figure with
Figure 14 (remember that intersections in 2D and hyper-
planes in MD refer to the ordering exchanges), we observe
that |H | gets closer to n2 as the number of dimensions in-
crease. This is because, as the number of dimensions in-
creases, the probability that one in a pair of items dominate
the other decreases, and therefore |H | gets closer to n2. Also,
looking at the right y-axis and the dashed orange line, and
comparing it with |H | (the left y-axis) confirms that the total
running time is linear to the number of hyperplanes.

In the previous experiment, we observed the major effect
of the number of hyperplanes on the construction time. Thus,
in § 5, we limit the arrangement construction for each cell
to the hyperplanes passing through it. In Figure 18, setting
n = 100 and d = 4, we evaluated the number of hyperplanes
passing through the cells. The x-axis in Figure 18 is the
cells sorted by |HC[c]| (the number of hyperplanes passing
through a cell c), and the y-axis shows |HC[c]|. More than
80% of the cells have fewer than 100 hyperplanes passing
through them, and even the complete arrangement construc-
tion inside them is reasonable. Also, recall from § 5 that
markcell stops arrangement construction as soon as a satis-
factory function is identified.
Figures 19 and 20 show the required time for different

steps of preprocessing, as well as the total preprocessing
time. Figure 19 shows the cost for varying n, with d = 3 and
N = 40, 000. We note that in practice, humans tend to define
rankings over a limited number of attributes on account of
the cognitive burden involved. Even then, coming up with
a weight vector for a limited set of attributes is challenging.
Still, there are situations with more attributes, and it makes
sense to study the performance of our proposals for these
cases. Hence, in Figure 20 we vary d from 3 to 11.
Since the number of attributes in COMPAS and DOT is

limited, we executed the experiment in Figure 20 on synthetic
data, generated using the Zipfian distribution.We normalized
attribute values in the range [0, 1] and added a binary type
attribute with values values assigned uniformly at random.
Similarly to our default fairness oracle FM1, we consider a
ranking to be fair if at most 60% of its top-30% are of type 1.
The yellow line in both figures shows the required time

for identifying the hyperplanes passing through each cell.

Applying cellplane× for finding the cells for each hyper-
plane helps skip a large portion of the cells. Still its running
time increases significantly as n increases. This is because
the number of ordering exchanges |H | is inO(n2). Similarly,
as the number of attributes increases, the chance that items
dominate each other decreases and hence |H | increases. Also,
for a fixed N , the hyperplanes intersect with more cells. As a
result, the time taken by cellplane× increases by the num-
ber of attributes. The red dashed line shows the arrangement
construction cost. As expected, in most settings the majority
of the time is taken by this step. Still, the optimizations pro-
posed in § 4 and 5 result in reasonable performance of this
step. First, limiting the construction of the arrangement for
each cell c , to the hyperplanes passing through it, reduces
the complexity of the arrangement to |HC[c]|d−1. Second,
as shown in Figure 15, the arrangement tree data structure
helps rule out checking the intersection of the hyperplanes
with all regions. Finally, the early stop condition is effective
at reducing the running time. The final step is to assign the
function of the closest satisfactory cell to each unsatisfactory
cell. This step uses a priority queue, and is observed in all
the settings in Figures 19 and 20 to be be fast, as expected.

7.5 Performance of sampling

Item sampling for a large-scale setting. As explained in
§ 6.1, item sampling can be used for reducing preprocess-
ing time for large datasets. In this experiment, we use the
DOT dataset, with three scoring attributes, departure delay,
arrival delay, and taxi in. The fairness oracle uses FM1
with airline name as the type attribute. A ranking is satis-
factory if the percentage of outcomes from each of four ma-
jor companies Delta Airlines (DL), American Airlines (AA),
Southwest (WN), and United Airlines (UA) in the top 10% is
at most 5% higher than their proportion in the dataset. We
sample 1K records uniformly at random from the dataset of
1.3M records and use it for preprocessing with N = 40K. Pre-
processing took 20 min. Next, we used the complete dataset
and checked if the function assigned to the cells using the
sample are in fact satisfactory. For all assigned functions the
percentage of results from each of four major airlines in the
top 10% was at most 5% higher than their proportion in the
whole dataset — all of them were satisfactory.

Function sampling for on-the-fly query processing. In
§ 6.2, we discussed function sampling for our problem. Unfor-
tunately, as stated in Theorem 7, function sampling cannot
provide a guarantee on finding an approximation solution for
the problem. Still, we suggest it for on-the-fly query process-
ing in order to explore the θ -vicinity of the input function.
We choose the COMPAS dataset and set n = 6, 000 and

d = 3. First, we generate 100 random queries and use a budget
of 500 random functions to explore the (π/20)-vicinity of
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the input functions. For 27 of those, the algorithm exhausted
its budget but could not find a satisfactory function, taking
about 11 sec. We plotted the running time of the algorithm
for the other cases in Figure 21. Around 60% of the successful
queries finished in less than 0.1 sec. Those are the ones that
are either satisfactory, or are in mostly satisfactory regions.
There are a few cases in which the exploration was successful
but it took a few seconds to find a satisfactory function. In
summary, in most cases the algorithm either quickly finds a
satisfactory function or it never finds one.

Next, we evaluate the effect of the width of θ -vicinity. To
do so, we draw 30 random functions, vary θ from π/50 to
π/10, and use a budget of 500 function samples for explo-
ration for each input function. The results are provided in
Figure 22. The left y-axis shows the percentage of queries in
which the algorithm could find a satisfactory result. In gen-
eral, the wider the exploration space, the higher the chance
of finding a satisfactory result. This is reflected in the figure,
as the success rate increased from around 50% at θ = π/50 to
around 90% at θ = π/10. The right y-axis of the plot shows
the average running time of the algorithm for each setting.
The running time drops from around 5.5 sec at θ = π/50
to less than 2 sec at θ = π/10. The reason is that for wider
vicinities, the algorithm has a higher chance of finding a
satisfactory function and stopping early.

8 RELATEDWORK

There is a robust body of prior work on computing prefer-
ences over datasets, divided into two major categories: (1)
ranking and top-k [27] query processing for cases where the
user has a scoring function in mind, and (2) finding represen-
tatives such as skyline [18, 28, 29], and its subsets such as
regret minimizing sets [16, 21, 30], in the absence of a scoring
function. The primary focus of this work is on efficient query
processing, for which methods include threshold-based [31],
view-based [32], and indexing-based [33]. Subsequent work
considered efficient query processing for computing pref-
erences over spatial [34] and noisy [35] databases. None of
these consider adjusting the scoring function.
Our work is among a small handful of studies that focus

on fairness in ranking [5, 6, 10]. Several recent papers focus
on measuring fairness in ranked lists [5, 6], on constructing
ranked lists that meet fairness criteria [10], and on fair and
diverse set selection [4]. Fairness in top-k over a single binary
type attribute (such as gender, ethnicity, or disability status)
is studied in Zehlike et al. [6], where the goal is to ensure that
the proportion of members of a protected group in every
prefix of the ranking remains statistically above a given
minimum. Celis et al. [10] provide a theoretical investigation
of ranking with fairness constraints. In their work, fairness
in a ranked list is quantified as an upper bound or a lower

bound on the number of items at the top-k that belong to
multiple, possibly overlapping, types. In contrast, our goal
is to assist in designing fair rankers by adjusting scoring
function weights.

Diversification of query results has always been important
in data retrieval [36–38]. Different definitions of diversity
include similarity function-based [39] and topic-based [38].
General background on diversity and a connection to fair-
ness are provided in [36]. An advantage of the techniques
proposed in our paper is that they are independent of the
choice of a fairness function. In fact, one can replace the fair-
ness oracle with any binary-output function that takes an
ordering of the items as the input. This makes our techniques
suitable for a general range of diversity definitions.
The techniques of this paper mainly follow the concepts

in combinatorial geometry. The general background and the
terms are provided in [17, 40]. In addition, [17] discussed the
complexity bounds and proposes the incremental algorithm
for constructing the lattice of arrangement. Arrangement of
hyperplanes is also studied in [41–43]. Applications of ar-
rangements such as motion planner in robotics are discussed
by Agarwal et. al. [44].
Finally, our work in this paper is synergistic with our re-

cent work on obtaining stable rankings [22], where we also
build on combinatorial geometry techniques, and are moti-
vated by supporting responsible decision making practices
in ranked contexts.

9 FINAL REMARKS

In this paper, we studied the problem of designing fair rank-
ing schemes. Our system computes the score of each item
as a weighted linear combination of its attribute values, and
assists users in choosing attribute weights that lead to fair
ranked outcomes. Creating proper indexes in an offline man-
ner enables interactive response to user queries. We carried
out theoretical analysis and empirical experiments, and con-
firmed that our methods are both efficient and effective.

We designed techniques for a general fairness model that
takes an ordering of the items as input and decides whether
it meets the fairness requirements. Additional information
about the fairness model may help optimize the techniques,
which we will explore in our future work.
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A ORDERING EXCHANGES IN MD

Before one can construct satisfactory regions, we first need to
compute ordering exchanges in the angle coordinate system.
Algorithm 4 computes hi, j for a given pair of items ti and
tj . The algorithm uses (d − 1) linearly independent points
in the hyperplane of Equation 5, and finds the angles of
the ray from the origin through each of the points, using
their polar representations. To find the points, one can start
with an arbitrary non-zero point on the plane and scale
each dimension independently to get the other points. After
this step, each row of the (d − 1) × (d − 1) matrix Θ shows a
point in the angle coordinate system. hyperpolar represents

hyperplanes as
∑d−1

k=1 hi, j [k]θk = 1. Since all (d−1) points inΘ
fall inhi, j , this forms a linear system of equationsΘ×hi, j = ι,
where ι is the unit vector of size (d − 1). Solving this system
of equations, we get hi, j = Θ

−1 × ι. Given that computing
Θ
−1 is the bottleneck in Algorithm 4, it is easy to see that

hyperpolar is in O(d3), which is O(1) for a fixed d .
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Algorithm 4 hyperpolar

Input: items ti and tj
Output: ordering exchange hi, j

1: V = [ti [k ] − tj [k ] , ∀1 ≤ k ≤ d ] // Equation 5

2: Θ = {}

3: p = d − 1 linearly independent points satisfying Equation 5

4: for k = 1 to d − 1 do

5: (r, θ ) = ToPolar(p[k ])

6: add θ to Θ

7: end for

// Find the hyperplane containing the points in Θ

8: ι = [1, 1, · · · , 1]

9: return Θ
−1 × ι

Algorithm 5 satregions

Input: dataset D and fairness oracle O

Output: satisfactory regions R

1: H = {}

2: for i = 1 to n − 1 do

3: for j = i + 1 to n do

4: if ti or tj dominates the other then continue

5: add hyperpolar (ti ,tj ) to H

6: end for

7: end for

8: R = { {(H [1], +)}, {(H [1], −)} }

// add hyperplanes incrementally to the arrangement

9: for h ∈ (H\{H [1]}) do

10: ℓR = |R |

11: for i = 1 to ℓR do

12: if ∃p ∈ h s.t. σR[i ] then

13: R′
= R[i]

14: append R[i] by (h, +); append R′ by (h, −)

15: add R′ to R

16: end if

17: end for

18: end for

19: for R ∈ R do

20: θ = a point that σR is satisfied; ®w = ToCartesian(1,θ )

21: if O(∇f ®w (D)) = False then remove R from R

22: end for

23: return R

B ARRANGEMENT TREE

Consider a binary tree where every vertex v is associated
with a hyperplane hi , while its left and right edges refer to
h−i and h+i , respectively. Every vertex of the tree corresponds
to a region R that is the set of half-spaces specified by the
edges from the root to it. As a result, the left (resp. right)
child of v shows the regions in R that fall in h− (resp. h+).
Figure 10 shows a sample arrangement tree for a set of 6
hyperplanes {h1,2,h1,3,h1,4,h2,3,h2,4,h3,4}. The leaves of the
tree are the regions of the arrangement. The region R3, for ex-
ample, is the intersection of the half-spaces {h−1,2,h

+

1,3,h
+

2,4}.
In this figure, consider the left child of the root. Let us assume
that a new hyperplane h does not intersect with the right
child of this node, i.e., it does not intersect with the region

{h−1,2,h
+

1,3}. Then we can prune the whole subtree and skip
checking the intersection of h with the regions R3, R6, and
R7, because all these regions are inside the region {h−1,2,h

+

1,3}.

C ONLINE PROCESSING BASELINE

We now present a baseline algorithm for identifying satis-
factory regions in the multidimensional case.

Algorithm 6 mdbaseline

Input: Satisfactory regions R, dataset D, fairness oracle O, function f : ®w

Output: the satisfactory weight vector ®w ′

1: if O(∇f ®w (D)) = True then return ®w

2: (r, Θ(i )) = ToPolar( ®w )

3: mindist=∞

4: for R ∈ R do

5: (dist,Θ(j )) = the minimum θi, j such that CR is satisfied

6: if dist<mindist then Θ
o
= Θ

(j ), mindist=dist

7: end for

8: return ToCartesian(1,Θo )

D IDENTIFYING THE HYPERPLANES
PASSING THROUGH EACH CELL

Given a hyperplane h and a cell c , checking if h passes
through c is simple, using the “bottom-left” (bl) and “top-
right” (tr ) corners of the cell, i.e., the corners that have
the minimum and maximum values of the cell ranges in
each dimensions. Recall that hyperpolar constructs the hy-

perplane h in the form of
∑d−1

k=1 h[k]θk = 1. Thus, for ev-

ery point p in h−,
∑d−1

k=1 pkθk ≤ 1 while for every point

p ′ in h+,
∑d−1

k=1 p
′
k
θk ≥ 1.Therefore, h passes through c , iff

∑d−1
k=1 bl[k]θk ≤ 1 and

∑d−1
k=1 tr [k]θk ≥ 1.

The complete pairwise check between each hyperplane
and each cell takes O(N × |H |) time. Instead, we use the fol-
lowing observation to skip some of the operations: consider
a hyperrectangle specified by its bottom-left corner bl and
the top-right corner tr ; also consider a hyperplane h that
does not pass through this hyperrectangle. For every cell c
for which its bottom-left dominates bl (for each dimension
i its value is greater than or equal to bl[i]) and its top-right
corner is dominated by tr , h does not pass through c .
As a result, for checking the cells that intersect with hy-

perplane h, one can start from the complete angle space,
partition the space in a hierarchical manner, and prune the
cells inside the hyperrectangles that do not intersect with h.
We adopt the quadtree [45] data structure for this purpose. To
do so, we develop a recursive algorithm (cellplane× ) that
iterates over the dimensions in a round robin manner and,
at every step, if h passes through the current hyperrectangle,
divides it in two equi-size hyperrectangles on the current
dimension. Figure 11 illustrates cellplane× for finding the
cells that intersect with the drawn line h. The algorithm
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prunes all cells in the bottom-right quadrant, since h does
not pass through it.

Algorithm 7 markcell

Input: cell c , HC

1: if |HC[c] | = 0 then

2: p = a point inside c

3: if O(∇fp (D)) = True then Marked[c]= p

4: return

5: end if

6: p = a point in HC[c][1]− ∩ c

7: if O(∇fp (D)) = True thenMarked[c]= p ; return

8: p = a point in HC[c][1]+ ∩ c

9: if O(∇fp (D)) = True thenMarked[c]= p ; return

10: T =new ArrangementTree(HC[c][1])

11: for h ∈ HC[c]\HC[c][1] do

12: if p =ATC+ (T ,h,c ,null) is not null then

13: Marked[c]= p ; return

14: end if

15: end for

Algorithm 8 ATC+

Input: arrangement tree T , hyperplane h, cell c , constraints path to root σ

1: if T is null then

2: T = new ArrangementTree(h)

3: σl = σ ∪ {
∑d−1
k=1

h[k ]θk ≤ 1}

4: p = a point in c s.t. σl is satisfied

5: if O(∇fp (D)) = True then return p

6: σr = σ ∪ {
∑d−1
k=1

h[k ]θk ≥ 1}

7: p = a point in c s.t. σr is satisfied

8: if O(∇fp (D)) = True then return p

9: return

10: end if

11: σl = σ ∪ {
∑d−1
k=1

T .h[k ]θk ≤ 1}

12: if h passes through σl then

13: if p =ATC+ (T ,h,c ,σl ) is not null then return p

14: end if

15: σr = σ ∪ {
∑d−1
k=1

T .h[k ]θk ≤ 1}

16: if h passes through σr then

17: if p =ATC+ (T ,h,c ,σr ) is not null then return p

18: end if

E COLORING CELLS OUTSIDE
SATISFACTORY REGIONS

After identifying the cells C that intersect with some satis-
factory region, and assigned a satisfactory function to each
of them, here we focus on cells C̄ that do not contain a satis-
factory function. For ease of explanation, we will represent
the satisfactory function assigned to cell c ∈ C with the color
of c (see Figure 23). For each cell c ′ ∈ C̄, our objective is to
find the closest satisfactory function to the center of c ′, and
to color c ′ accordingly (see Figure 24).
To do so, we implement an algorithm (cellcoloring )

that uses monotonicity of the angular distance and adopts

Figure 23: Satisfactory

cells example

Figure 24: Coloring unsat-

isfactory cells in Fig. 23

Dijkstra’s algorithm [20]. The algorithm initially sets the
distance of the satisfactory cells to zero, and the distance
of all other cells to ∞, and adds them to a priority queue
Q . Then, while Q is not empty, it visits the cell c with the
minimum distance, and remove it from Q . For all neighbors
of c that are still not visited and their distances are more than
the angular distance of their center with F [c], the algorithm
updates their distance and position in the queue, and sets
their color to F [c].
Since the number of neighbors of each cell is fixed, it is

easy to see that cellcoloring is in O(N logN ) [20].

F PROOFS

Theorem 1.
Proof. The proof is straightforward, following the num-

ber of ordering exchanges. Ordering the items and adding
the initial ordering exchanges is in O(n logn). Since every
pair of items in 2D has at most one ordering exchange, the to-
tal number of ordering exchanges is inO(n2). The algorithm
sweeps over the ordering exchanges and for each of them
spendsO(logn) for the heap operations and ϒn for accessing
the oracle. Therefore 2draysweep is inO(n2(logn+ϒn)). �

Theorem 2.
Proof. There totally are O(n2) ordering exchanges for n

items. Therefore, the number of satisfactory regions in 2D is
in O(n2). Applying binary search on this list is O(logn). �

Theorem 3.
Proof. Lines 2 to 6 of satregions construct hi, j for each

pair of the items ti and tj (in the dual space). Since Algo-
rithm 4 has a constant complexity for a fixed number of di-
mensions, constructing the ordering exchanges in the angle
coordinate system is inO(n2). The next step of the algorithm
is constructing the arrangement of hyperplanes. Using re-
sults from combinatorial geometry, the complexity of the

arrangement of n2 hyperplanes in Rd−1 is O(n2(d−1)) [17].
The bottleneck in Algorithm 5 is the construction of the
arrangement: at iteration i , add the ith hyperplane to the
arrangement. To do so, identify the set of regions with which
the current hyperplane intersects, by applying a linear scan
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Figure 25: Illustration of θapp v.s. θopt

over the set of regions to find intersections. Furthermore, for
each region, Algorithm 5 solves an LP with i2 constraints
over a fixed number of variables. The number of regions at

iteration i is i2(d−1). Thus the total cost is:

O(

n2
∑

i=1

(i2(d−1)Lp(i2))) ≤ O(n2dLp(n2))

After constructing the arrangement, the algorithm removes
the unsatisfactory regions from R. To do so, for each region,
it chooses a function inside the regions, orders the items
based on it, and calls the oracle to check if it is satisfactory.

There areO(n2(d−1)) regions in the arrangement and ordering
the items in each region is in O(n logn). Hence, this step is
in O(n2d−1 logn ϒn). The time complexity of the algorithm,
therefore, is: O

(

n2d−1(n Lp(n2) + ϒn logn)
)

�

Theorem 4.
Proof. Given that the upper-bound on the total number

of satisfactory regions, is O(n2(d−1)), the proof is straightfor-
ward. For every satisfactory region, mdbaseline needs to
solve a non-linear programming problem of size O(n2) con-
straints over fixed number of variables. Thus, Algorithm 6 is

in O(n2(d−1)NLp(n2)). �

Theorem 5.
Proof. The proof follows the fact that ordering the items

based on the input function is in O(n logn) while finding its
corresponding cell, using binary search is in O(logN ). �

Theorem 6.
Proof. Let capp and copt be the cells fapp and fopt belong

to. First, there should exists a satisfactory function f ′ inside
copt that is assigned to it. That is because fopt belongs to copt
and thus its intersection with the satisfactory regions is not
empty. Figure 25 illustrates such a setting. The point c in the
figure shows the center of the cell that f belongs to. Since
fapp is assigned to this cell, the angle distance between fapp
and c (θ1 in the figure) is less than the angle distance between
f ′ and c (θ2 in the figure). Let θ3, θ4, and θ5 (as specified in
the figure) be the angle distance between c and f , f and
f ′, and f ′ and fopt , respectively. Following the triangular
inequality:

θapp ≤ θ1 + θ3, θ4 ≥ θ2 − θ3

⇒ θapp + θ2 − θ3 ≤ θ1 + θ3 + θ4

⇒ θapp ≤ θ4 + 2θ3

id x y color

t1 1 0 blue

t2 0.95 0.1 tan((pπ )/(2s) − ̀) red

t3 0.9 0.1 tan((pπ )/(2s) − ̀) red

t4 0 1 red

Figure 26: The contradictory dataset; ̀ → 0+

Similarly:

θ4 ≤ θ5 + θopt

⇒ θapp ≤ θopt + θ5 + 2θ3

Let θr be the diameter of each cell. Looking at the figure,
θ5 ≤ θr and θ3 ≤ θr /2. Thus: θapp ≤ θopt + 2θr �

Theorem 7.

Proof. We provide the proof by contradiction. Assume
there exist a number s and a probability p such that the
probability of finding a satisfactory function after s samples
is at least p. We construct the dataset D shown in Figure 26
with two attributes x and y and a binary protected attribute
color and four items. We define a ranking to be fair, if with
its top-2 there are one red and one blue item. Note that
ranking D based on the x attribute (θ = 0) generates the
same ordering shown in the figure, in which t1 and t2 are
the top-2. Based on our fairness criteria, this ranking is fair,
as its top-2 contains one blue and one red item. Following
Algorithm 1 (moving a ray from x-axis toward y-axis), t1 and
t2 quickly exchange ordering, but the top-2 does not change
and, hence, remains fair. Next, t1 exchanges ordering with t3
at:

θt1,t3 = arctan(tan(
pπ

2s
− ̀)) =

pπ

2s
− ̀

Note that at this point the ordering changes to 〈t2, t3, t1, t4〉
and is no longer fair, since both items in its top-2 are red.
Also, after this point t1 never appears in the top-2, hence,
there exists no fair region after this point.
Therefore, the only satisfactory region in this dataset is

〈0,
pπ

2s
− ̀〉. The probability that a uniformly drawn sample

function will land in this region is:

pπ/(2s) − ̀

π/2
<

p

s

By the union bound from probability, the probability that at
least one of these samples land into the satisfactory region
is at most:

s
pπ/(2s) − ̀

π/2
< p

This contradicts with the assumption that the probability
of finding a satisfactory function after s samples is at least
p. �

Research 13: Fairness, Uncertainty  SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1276




