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Abstract
Big data technology offers unprecedented opportunities to society as a whole and also to its individual mem-
bers. At the same time, this technology poses significant risks to those it overlooks. In this article, we give an
overview of recent technical work on diversity, particularly in selection tasks, discuss connections between diver-
sity and fairness, and identify promising directions for future work that will position diversity as an important
component of a data-responsible society. We argue that diversity should come to the forefront of our discourse,
for reasons that are both ethical—to mitigate the risks of exclusion—and utilitarian, to enable more powerful,
accurate, and engaging data analysis and use.
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Introduction
Big data technology holds incredible promise of im-
proving people’s lives, accelerating scientific discovery
and innovation, and bringing about positive societal
change. However, if not used responsibly, the same
technology can exacerbate economic inequality, desta-
bilize global markets, and reaffirm systemic bias. Con-
siderable research attention is being paid to aspects of
responsible data analysis and use such as fairness, ac-
countability, transparency, and privacy. An important
aspect that is often overlooked is diversity: ensuring
that different kinds of objects are represented in the out-
put of an algorithmic process. Unlike properties such as
accuracy and relevance, which are usually assigned to in-
dividual items, diversity is an aspect of quality of a col-
lection of items.

Diversity is widely acknowledged to be important in
a range of contexts: It has been studied extensively in
the social and biological sciences, with index of diversi-
ty, ‘‘a measure of the degree of concentration or diver-
sity achieved when the individuals of a population are
classified into groups,’’ appearing as one of the first def-
initions in 1949.1 More recently, sociologists and polit-
ical scientists are studying the benefits of diversity both
to small groups and to society as a whole,2,3 whereas
policy and legal scholars are drawing attention to the

risks that big data technology poses to those it over-
looks.4–6 Diversity also appears in technical contexts
as a means for ‘‘hedging bets.’’ For example, search en-
gines and recommender systems prefer to return a col-
lection of diverse results rather than of very similar
high-scoring results. Consequently, diversity has been
considered extensively in information retrieval (IR)7–11

and content recommendation.12–15

Diversity is a critical topic for big data systems re-
search, for reasons that are both ethical—to mitigate
the risks of exclusion—and utilitarian, to make human-
centered data-intensive methods more powerful, accu-
rate, and engaging. Consider the following scenarios
where a lack of diversity among the results of an algorith-
mic task can cause significant harms.

Hiring
Statistical models are now routinely employed to select
job candidates from a pool of resumes. As team diver-
sity is increasingly recognized as a hiring goal,16–19

these models need to be adapted to enforce diversity.
Diversity of the workforce is desirable because it affords
economic opportunity and leads to social mobility
for people with varying demographic characteristics,
and cultural and educational backgrounds. Impor-
tantly, diversity can also lead to higher productivity
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and enhance the problem-solving ability of teams.
According to Diaz-Uda et al.,16 ‘‘Diversity’s definition
has changed: In addition to creating a workplace inclu-
sive of race, gender, and sexual orientation (to name a
few), many organizations are seeking value in some-
thing even simpler, diversity of thought.’’

Crowdsourcing
Similar to hiring, crowdsourcing tasks benefit from di-
versity among the workers. Diversity of opinion, the re-
quirement that each person has private information
even if it is just an interpretation of the known facts,3

is one of the necessary conditions for a ‘‘wise crowd.’’
The extent to which diversity matters, in utilitarian
terms, depends on the specifics of the task. It has been
shown in Ref.2 that, for problem-solving tasks, diversity
is more important than the average ability of individuals,
a phenomenon known as the ‘‘Diversity trumps ability’’
theorem.

Matchmaking
Consider an online application in which users search
for dating partners. A common issue in such systems
is that, because of subtle correlations between item at-
tributes and the ranking function, top-ranked results
are very similar to each other (e.g., are all between 35
and 40 years old), and they are not representative of
the user’s preferences (e.g., matches between 20 and
40 years old).20 This is problematic because users do
not find the results engaging. Perhaps a more severe ef-
fect is that opportunities are limited for the individuals
who appear low in the list, despite matching the user’s
search criteria and being of potential interest.

Search and content recommendation
Poor diversity in algorithmic news feeds exacerbates
‘‘bubble effects’’21 that can polarize public opinion,
increase ideological segregation, and, ultimately, un-
dermine the democratic process. In Web search,7,9

poor result diversity leads to poor user engagement,
caters only to the most common information needs
and fails to address less typical ones, and limits ex-
posure of the ‘‘long tail’’ of results. In both domains,
result diversity should be enforced to mitigate these
problems.

Lack of diversity can have legal and ethical implica-
tions, and additional work is needed to support diver-
sity in a data-responsible society. The goal of this
survey is to initiate a discussion of a research agenda
to mitigate the risks that a lack of diversity poses.

At the same time, we recognize that there are some
circumstances where diversity may not be desired—
for example, diverse opinions may not be helpful in de-
termining answers to questions of fact. Even otherwise,
there is usually some measure of utility or goodness
that has to be combined with diversity. Although sim-
ply maximizing a utility score and ignoring diversity is
usually not desirable, it is also usually not desirable to
maximize diversity and ignore utility completely.

The remainder of this article is organized as follows.
We outline the scope of this survey in Section 2. In Sec-
tion 3, we present methodologies and results of empir-
ical studies that measure the diversity of information
produced and consumed by users in online social net-
works. In Sections 4 and 5, we discuss the state of the
art in diversity models and algorithms. We discuss
the trade-off between diversity and fairness in Section
6. We conclude this survey in Section 7, where we
also outline directions for future work.

Scope
Diversity is a general term used to capture the quality of
a collection of items, or of a composite item, S, with
regards to the variety of its constituent elements.
Depending on the application, S may stand for a set
of people in a crowd-formation application, a bundle
of items in a recommendation system, or a ranked
list of Web search results. The elements of S may be un-
structured (e.g., documents or news articles), struc-
tured (e.g., database tuples), or even complex objects
(e.g., subgraphs).

The main focus of our survey is on the selection
task—identifying a set or a bundle of elements that
meet the quality or relevance criteria and that are
also diverse. In many applications, the collection is or-
dered on a per-item quality score. We present diversity
models in Section 4, and we explain how they are used
for both unordered and ordered collections of results.

In this article, we survey models and algorithms that
enforce diversity in the output of an algorithmic task.
This is in contrast to diversity of the input, an impor-
tant topic in machine learning that has been studied
as volume-based diversity.22 In volume-based diversity,
the goal is to generate a diverse sub-sample from which
to train a predictive model, or a diverse summary of a
dataset. Input dataset X is made up of points in a con-
tinuous multi-dimensional space, and the objective is
to select a set S of k points that maximizes the volume
of the k-dimensional parallelepiped formed by the cor-
responding vectors in S. This problem formulation
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gives rise to a probability distribution over subsets of X
known as determinantal point processes, for which
efficient sampling methods were developed in recent
literature.23,24 A recent approach has been proposed
to combine volume-based diversity with so-called com-
binatorial diversity—a measure of entropy over a single
discrete low-cardinality attribute.25

There is a rich body of literature in IR on diversity-
based and novelty-based ranking of text documents or
Web search results.7–11 The primary motivation behind
diversity work in IR is resolving query ambiguity:10

When a user specifies the query ‘‘jaguar,’’ which mean-
ing of the term do they have in mind? Beyond resolving
query ambiguity, novelty and serendipity are also con-
sidered important in user satisfaction with search
results. Diversity work in IR uses a wide variety of tech-
niques, including modifications of relevance and utility
models, query reformulation, and optimization frame-
works that directly incorporate diversity and novelty
objectives. We use several examples from the IR do-
main, and also discuss some important models and
algorithms. However, a comprehensive treatment of di-
versity in the IR literature is out of scope of the present
survey.

Like fairness,26–28 diversity is inherently a socio-
technical concept that gives rise to a multitude of inter-
pretations. Consequently, it is unlikely that a universal
technical definition of diversity will emerge. An ap-
propriate way to represent diversity requirements, to
compute a result that meets those requirements, and
to define the trade-offs between competing diversity
objectives, and between diversity, utility, and fairness,
depends on the application, and on the context of use.

Empirical Studies
Diversity is important in many scenarios, and it is dis-
cussed and studied in many contexts.

One scenario of particular interest is in employee
hiring, especially when selection is at least partially
based on algorithmic scoring of applicants, whether
based on a supplied resume, on aptitude tests, or on
other big data sources, such as social media presence.
Many companies, particularly in high-tech industries,
use big data tools to shortlist employment candidates,
and they are also concerned about increasing the diver-
sity of their workforce. See, for example, a popular
press survey.29

Unfortunately, systematic investigation of diversity
in data-rich algorithmic environments is in its early
stages. We are not aware of rigorous empirical work

on diversity in data-driven hiring algorithms. However,
a number of empirical studies have been conducted to
investigate diversity in the way that people are exposed
to (what they see) and interact with (what they propa-
gate, or ‘‘share’’) online information. We outline a few
such studies in this section.

A common concern is that users tend to be con-
nected with like-minded people in social networks, a
practice possibly leading to the creation of ‘‘informa-
tion bubbles’’ or ‘‘echo chambers’’—a situation where
users are not exposed to diverse information in their
feeds. Facebook recently conducted a study on the mat-
ter21 by using a subset of its users who self-identified as
liberals or conservatives. Users share content, such as
news articles or opinions. The authors of the study clas-
sified stories as either ‘‘hard’’ (such as politics, national
news, or world affairs) or ‘‘soft’’ content (such as sports,
entertainment, or travel) by training a support vector
machine on unigram, bigram, and trigram text fea-
tures. Self-reported ideological affiliations of the users
who shared a particular piece of content were averaged
to derive ideological alignment of the piece.

The authors of the study observed substantial polar-
ization among hard content shared by users, with the
most frequently shared links clearly aligned with
largely liberal or conservative populations. One of the
striking findings of the study was that, of the hard
news stories shared by liberals’ friends, 24% were
cross-cutting, compared with 35% for conservatives.
To provide context, consider that if an individual ac-
quired information from random others, between
40% and 45% of the content would be cross-cutting.
Overall, it was established that about 30% of shared
news content and about 29% of consumed (seen) con-
tent cuts across ideological lines. Finally, about 25% of
the content on which users click in their feeds cuts
across ideological lines.

According to the authors of the study, ‘‘Although
partisans tend to maintain relationships with like-
minded contacts, on average more than 20% of an in-
dividual’s Facebook friends who report an ideological
affiliation are from the opposing party, leaving substan-
tial room for exposure to opposing viewpoints.’’ Fur-
ther, on comparing both availability of content and
content consumption, the authors concluded that indi-
vidual choices, more than algorithms, limit exposure to
attitude-changing content in the context of Facebook.
That said, additional studies are needed to inform the
discussion about how our media exposure and attitude
formation are shaped by our social networks.
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Even if one assumes that all content generated by
a user’s friends is satisfactorily propagated and seen
throughout the network, there is still the concern of
how diverse the social network around a specific user
actually is.30 A 2009 study on Facebook data31 deter-
mined that users maintain a relationship with no
more than 10% of their friends, irrespective of the size
of their friendship group. Here, maintaining a relation-
ship is broadly construed, and it corresponds primarily
to consuming content shared by a user’s friends.

Another study32 investigated the diversity of content
to which social media users are exposed. The study
found that people who actively seek out news and in-
formation from social media are at a higher risk of
becoming trapped in ‘‘information bubbles’’ compared
with those who use search engines, in the sense that
they are exposed to a significantly narrower spectrum
of information sources. The study was conducted on
a large collection of Web click data spanning a three-
and-a-half-year period, and it showed that the diversity
of information sources reached from social media is
significantly lower than that of those reached from
search engines. Diversity of an information source s
was measured by considering all targets (Websites) t
reachable from s, and factoring in the amount of traffic
(clicks) from s to t. That is, the study was based on traf-
fic patterns rather than on content analysis.

The Web click data used in Ref.32 were anonymized
and so did not distinguish between users, and they were
used to establish the presence of a collective ‘‘informa-
tion bubble.’’ However, low collective diversity does not
necessarily mean that individual diversity is also low.
That is, low collective diversity could be consistent
with high individual diversity, and vice versa. To inves-
tigate individual diversity further, the authors used two
additional datasets—link shares on Twitter and AOL—
and showed a strong correlation between collective di-
versity and average user diversity. This finding suggests
that information sharing and consumption in social
media give rise to both a ‘‘collective bubble’’ and ‘‘indi-
vidual bubbles.’’

Another important question is: How and by whom is
diverse content being generated? Does the popularity of
the sources generating diverse content affect its propa-
gation? A study on Twitter data33 showed that hashtags
(or topics) that become popular are those being adop-
ted by a diverse audience at the same time. One interpre-
tation of this finding is that audience diversity makes it
more likely that a hashtag will reach more users. On
the other hand, the study found that users gain more

followers—and greater social impact—by tweeting only
on a specific topic. In other words, highly popular users
are not likely to contribute toward diversity. As summa-
rized by the authors of the study: ‘‘In short, diverse mes-
sages and focused messengers are more likely to gain
impact.’’ In this study, as observed in Refs.21,32 topical di-
versity of content and of users was determined based on
network structure and on information directly reported
by the users, and not on content analysis.

The studies discussed here are important both be-
cause of the specific insights they bring and because
they develop methodologies for measuring diversity
of information in the social Web environment. Addi-
tional studies are certainly warranted in this space,
proposing alternative methodologies and focusing on
other contexts, such as hiring and matchmaking.
Such studies contribute to making large-scale algorith-
mic processes transparent and help hold the dominant
online platforms that are accountable for the societal
effects they create.34

Importantly, conclusions that can be drawn from
studies that are based solely on data traces, and that
have no knowledge of the underlying algorithmic pro-
cess, are limited. We discuss the state of the art in diver-
sity models and algorithms in the following sections.

Models
In this section, we present several formal models of
diversity. Different applications pose different diversifi-
cation objectives, but let us start with the following
simple formulation of the diversification problem for
the selection task. Given a measure of diversity div, a
set I of n elements, and an integer k, k £ n, we want
to form a set S containing k of the n elements of I ,
such that:

S = argmax
S¢�I , jS¢j = k

div(S¢) (1)

In the rest of this section, we first discuss extensions
of this problem that incorporate utility, ranking, and
aggregate diversity. Then, we present alternative defini-
tions for the diversity measure div. Although there is no
single formal definition of div, the various measures
can be roughly classified as (a) distance based, (b) cov-
erage based, and (c) novelty based.35

Utility and ranking
In most cases, diversity is just one of many require-
ments. For example, in a search, we want results that
are not only diverse but also relevant to the information
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needs of the user. In recommendation systems, besides
being diverse, recommendations should also be accu-
rate, meaning that the predicted user rating of an
item must be close to the actual user rating. When
forming crowds or teams, the appropriateness of a can-
didate for the specific task is also central to the selection
process, in addition to diversity.

Thus, in general, a compromise must be made be-
tween diversity and some form of application-dependent
quality or utility. Then, given a measure of utility u(S),
the overall objective for forming S should combine
requirements regarding both the utility u(S) and the di-
versity div(S). Observe that, although utility is a prop-
erty of a single item, this is not the case for diversity.
For example, we can measure the relevance of a single
document, the accuracy of a single recommendation,
or the aptitude of a single job candidate; whereas mea-
suring diversity must be done with respect to one or
more other documents, recommendations, or candi-
dates, respectively.

In the presence of utility, the input I in our problem
formulation (Equation 1) may not be a set but instead a
ranked list of elements that are ordered by utility. Fur-
thermore, the output elements in S must be selected so
that they have both high utility and high diversity.
Diversity measures presented in the remainder of this
section and diversification algorithms in Section 5
refer to a set of results S. Clearly, the results in S can
be sorted by utility. Furthermore, in some cases, S is
formed incrementally by selecting at each step an
item that, if added to the current set, will maximize
some measure f. The order in which items are added
to S induces a ranking.

A common way of combining utility and diversity is
through a function f on both u and div. A function that
is used frequently is some linear combination of u and
div, for example, f (S) = a u(S) + (1� a) div(S), where
parameter a, 0� a�1, controls the relative importance
of diversity and utility. Setting a = 1 results in selecting
elements solely on utility, whereas setting a = 0 selects
elements solely on diversity. The authors cited in
Ref.36 consider a set of natural axioms that an appro-
priate function f for combining utility and diversity
must satisfy. Interestingly, they show that there exists
no function f that satisfies all of them.

Note, that it may also be possible to define a goodness
measure f that captures both utility and diversity with-
out explicitly referring to a separate measure of utility
and a separate measure of diversity. When a com-
bined measure f of utility and diversity is used, we

can formulate our problem as selecting the set of k
elements with the largest f value.

Besides looking for a single unified measure, an-
other way to combine utility and diversity is by max-
imizing one of the two desired properties, subject to a
threshold on the other side. For example, given a con-
stant threshold on the minimum utility that the se-
lected elements must satisfy, we look for the set S
that maximizes diversity. Conversely, given a thresh-
old on the value of diversity, we may ask for the set
S with the maximum utility. As a specific example,
take hiring, where we may be given as input the num-
ber of qualifying candidates (i.e., candidates with ac-
ceptable utility) and want to select a diverse subset
of them. As another example, in crowdsourcing, we
may express a requirement regarding the diversity of
our workers, and then select the best among those
who satisfy the diversity requirement.

Aggregate diversity
So far, we considered forming a single set (or ranked
list) S. An interesting type of diversity is aggregate di-
versity, where the goal is to return several such sets.
For example, take recommendations, where each user
receives a different ordered list S of recommended
items. In this case, we may want to increase both the
diversity of the items recommended to each individual
user and the diversity of the recommended items across
users, to avoid recommending the same items to all
users.37 Other possible examples include matchmaking,
where we may want to diversify the proposed dating
partners across users, and graduate school admissions,
where we may opt to diversify across schools to avoid
having the exact same admissions lists.

In these cases, the elements of I in Equation 1 are not
individual items but sets (or ranked lists) of items, and
we ask to select the k most diverse among them.

Distance-based measures
Distance-based diversity measures rely on a pairwise
distance (or similarity) measure between the elements
of S (see Refs.9,14,15,38,39 and the S-model in Ref.40).
Given such a pairwise measure d(i, j) between two ele-
ments i and j of S, the diversity div(S) is expressed by
using an aggregation function of the pairwise distances
between its elements. Specifically, the diversity of S is
most commonly defined as either the average

div(S) =
1
jSj +

i, j2S, i 6¼j
d(i, j), (2)
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or the minimum

div(S) = min
i, j2S, i 6¼j

d(i, j) (3)

distance between the elements of S.
Maximizing the average diversity is known as MAX-

SUM diversification, whereas maximizing the minimum
diversity is known as MAXMIN diversification. MAXMIN

diversification can be seen as an instance of the
p-dispersion problem, a well-studied problem in oper-
ations research. The goal of the p-dispersion problem is
selecting p out of n given locations for placing facilities,
so that the minimum distance between any pair of the
chosen locations is maximized.38

The definition of an appropriate pairwise distance
measure is key for effective diversification and is highly
application dependent. For example, distance d may
correspond to a distance between feature vectors
under a mapping of I into a feature space. The defini-
tion of the distance measure also affects the efficiency
of the diversification algorithm. For example, it has
been shown that when div is a metric, there are effi-
cient approximation algorithms for the diversification
problem.36

To showcase the flexibility of distance-based mea-
sures, we present two examples. In the first one, diver-
sification is considered in the context of structured
databases, where each element of the ground set I is
a tuple with m attributes A.39 For instance, take a set
I of cars, where attributes correspond to features
such as color, brand, the existence of cruise control,
navigation system, etc. The goal is to present to the
user a subset S of k cars that not only satisfy the re-
quirements of the user (i.e., the utility requirements)
but also have different feature values. The interesting
aspect of this model is that the attributes are ordered,
say A1 � � � � � Am, based on their importance with
regards to diversification. For example, brand � color
means that the user would like to see cars of all differ-
ent brands and then, when all brands are covered, cars
with different colors. Similarity is defined by using pre-
fixes. A prefix with respect to �, denoted q, is a se-
quence of attribute values in the order given by �,
moving from higher to lower priority. If q is a prefix
of length l, the similarity simq(i, j) between two tuples
i and j is equal to 1 if i and j agree on their l + 1 attri-
bute, and it is 0 otherwise. A set S � I is called diverse
with respect to q if

S = argmin
S¢�I , jS¢j = k

+
i, j2S¢

simq(i, j) (4)

S is called a diverse result set if it is diverse with respect
to every prefix.

The second example comes from recommendation
systems and measures the distance between recommen-
dations based on their explanations.14 To recommend
an item i to a user u, content-based recommenders ex-
ploit how u has rated items that are similar to i, whereas
recommenders based on collaborative filtering exploit
the ratings of i by users similar to u. Thus, given a set
of items I and a set of users U , the explanation
expl(u, i) of an item i 2 I recommended to a user
u 2 U is defined as: (a) the set of items similar to i
that user u rated in the past, in a content-based ap-
proach, and (b) the set of users similar to u who rated
item i, in a collaborative filtering approach. The pairwise
distance between two items i and j recommended to user
u is defined as the distance (e.g., Jaccard or cosine) be-
tween expl(u, i) and expl(u, j). The more diverse the ex-
planations based on which the recommendation of an
item is made, the more diverse the item.

Coverage-based measures
Coverage-based diversity measures rely on the exis-
tence of a predefined number of aspects, that is, topics,
interpretations, or opinions (see Refs.7,10,41,42 and the
T-model in Ref.40). For example, these aspects may cor-
respond to interpretations of a keyword in a query, or
to different skills in team formation. In coverage-based
approaches, the diversity div(S) of S measures the extent
to which the elements of S cover these aspects. The
coverage of an aspect is often represented by using a
probabilistic model, for example, in Refs.7,10,43 and the
T-model in Ref.40 Consequently, the corresponding
measure of diversity is a probabilistic one.

Coverage-based models differ along several dimen-
sions, including (a) what are the aspects to be covered,
and (b) how coverage is measured. We now present a
few examples. The first two examples refer to a search
in IR, where the ground set I is a set of documents.

In the first example, the authors assume the exis-
tence of topic categories.7 Given a user search query
q, P(cjq) denotes the probability that query q belongs
to topic c, and V(ijq, c) denotes the probability that
document i satisfies user intent c given query q. In a
sense, V captures how well document i covers topic c.
Analogously, p expresses the popularity of the different
interpretations (topics) of query q. Note that in this ex-
ample of coverage-based diversity, covering more com-
mon interpretations (topics) of a query is considered
more important than covering less popular ones. The
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overall goal is to maximize the probability that the av-
erage user finds at least one useful result in the selected
set. This is expressed by the following objective: Given
a query q, the set of documents I , and an integer k, find
S � I , jSj = k, with the maximum

+
c

P(cjq)(1�
Y

i2S

(1�V(ijq, c))) (5)

In the second example, the authors consider S as an
ordered list of documents.10 Both documents and
queries are modeled as sets of information nuggets. A
document i is considered relevant to a given query q
if i contains at least one of the nuggets of q. Given an
ordered list S of documents for q, the probability that
the m-th document is diverse from the m� 1 preceding
ones is equal to the probability that document m con-
tains a nugget that cannot be found in the previous
m� 1 documents.

In the final example, diversity is seen as a means to
counteract the ‘‘tyranny of the majority.’’ The authors
consider diversity in the context of news and opinions
aggregators, where news articles are ordered by the
number of users who have voted for them.41 Three
measures of diversity are proposed, based on how
many users are covered by the presented articles. Intui-
tively, a user is covered by an ordered list S of articles,
if S contains articles voted for by the user. Inclusion
diversity measures the proportion of users who have
at least one voted-for item in S. Alienation diversity
counts, for each user u, the position of u’s first voted-
for item in S, and outputs the sum of these counts for
all users. Finally, proportional representation considers
that users and articles are partitioned into groups, and
asks that groups are proportionally covered by the ar-
ticles in S. This is achieved through a divergence scor-
ing function that is minimized when the result set S has
votes from different groups in proportion to the repre-
sentation of the group in the voter population.

Hybrid distance-based and coverage-based
measures
The distinction between distance-based and coverage-
based approaches is not absolute. In some cases, it
may be possible to express coverage with an appropri-
ately defined pairwise distance function. Furthermore,
coverage-based and distance-based approaches may
be combined.

An example that combines distance and coverage is
r-DisC diversity.44,45 Instead of specifying the required
size k for the set S, r-DisC takes as input a real number

r, r � 0, called radius. Given a pairwise distance mea-
sure d between the elements of I , the diverse set S is
formed such that (i) (coverage condition) for each
i 2 I , there is a j 2 S, such that d(i, j) � r and (ii) (dis-
similarity condition) for each pair i, j 2 S with i 6¼ j, it
holds that d(i, j) > r. The first condition ensures that
all items in I are represented by at least one similar
item in S, and the second condition ensures that the
items in S are dissimilar to each other. By decreasing
the value of r, we get larger sets of items with less diver-
sity; whereas by increasing the value of r, we get sets
that are smaller and more diverse.

Novelty-based measures
Novelty-based diversity measures define diversity with
respect to the elements seen in the past (Refs.9,15,46).
Given the past, we select elements that are diverse (dis-
tance based or coverage based) from these past ele-
ments. The main goal of novelty-based diversity in
search and recommendation is to reduce redundancy.

In novelty-based approaches, the elements are often
selected one at a time. Let us denote with div(S, i) the
diversity of an element i with respect to a set S. Similar
to the definition of diversity of a set S, div(S, i) may
be distance based (defined as either the average or
the minimum distance of i from the elements in S) or
coverage based.

A common formulation of a novelty-based approach
is as follows. Given a measure of diversity div between
an element and a set, a set I of n elements, and a set
p of previously selected items, select the element e
such that

e = argmax
i2 InP

div(P, i) (6)

An early example of novelty-based diversity used in
IR is maximal marginal relevance (MMR).9 Given a
query q and a set p of already seen documents, MMR
selects a document d based on the utility of d, expressed
as its similarity with query q, and the diversity between
d and the previously seen documents in p, expressed as
the negative of its similarity with p. The utility and di-
versity scores of d are combined in a weighted manner,
with k (0 � k � 1).

d = argmax
i=2P
fksim(i, q)� (1� k) max

j2P
fsim(i, j)gg (7)

Sometimes, novelty is related with popularity. For in-
stance, one can approximate novelty by selecting the
most unpopular item, since this is an item that the
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user has probably not seen in the past.15 A special type
of novelty is serendipity,47 where the goal is to select the
most unusual or surprising elements.

Algorithms
Several algorithms have been proposed for locating
diverse elements. Often, the proposed algorithms ex-
ploit specific properties of the underlying diversity
problem and/or application. However, we can distin-
guish two major groups of algorithms that are widely
used throughout the literature, namely, greedy algo-
rithms and interchange algorithms. Next, we present
such approaches along with others found in the litera-
ture, such as methods exploiting graphs or optimiza-
tion techniques.

In most cases, locating an optimal diverse subset is
an NP-hard problem (e.g., S-model in Refs.7,38, 40,42,48).
Therefore, the vast majority of algorithms used in the
literature do not produce optimal solutions. How-
ever, in some special cases, such as the 1-dimensional
p-dispersion problem49 or the T-model in Ref.40 the
selection of diverse subsets can be solved optimally in
polynomial time.

Greedy algorithms
Greedy approaches are the most commonly used for all
diversity definitions, that is, distance based, coverage
based, and novelty based, either when aiming at maxi-
mizing diversity alone or along with some notion of
utility or ranking.

Algorithm 1 presents a generic greedy algorithm
that employs two sets of elements, namely (i) the
set I of all n available elements and (ii) the set S
of selected (or diverse) elements. Elements are it-
eratively moved from I to S until Sj j= k and
Ij j = n� k.

At first, S is initialized with some elements. A num-
ber of variations exist, such as selecting a random ele-
ment, as in Algorithm 1, the pair of the most distant
elements or the element maximizing utility. Then, ele-
ments are moved, one at a time, from I to S until k of
them have been selected. The element that is moved
each time is the element i that has the maximum
div(S, i) from S, where div(S, i) is defined based on
the model. Ties are usually broken arbitrarily or
according to the elements’ utility if such information
is available.

Greedy algorithms have been used, for example, in
Ref.38 and in the S-model in Ref.40 considering div(S, i)
as simply the minimum or average distance of i

from S. In Ref.7 a greedy algorithm is used for the
coverage-based model that bases div(S, i) on diver-
sity and relevance, whereas in Ref.41 a greedy algorithm
is used for the coverage-based model that bases
div (S, i) on diversity and popularity. Greedy algo-
rithms have been used for novelty-based models as
well, as in Refs.9,15 where diversity is combined with
utility and ranking.

Algorithm 1 Generic Greedy Algorithm.

Require: I , an integer k.
Ensure: A set S with the k most diverse items of I .

1: i) random element in I
2: S)fig
3: while Sj j < k do
4: i	)argmax i 2 I div(S, i)
5: S)S [ fi	g
6: end while
7: return S

Neighborhood algorithms. Neighborhood algorithms
constitute a special case of greedy algorithms. Algo-
rithm 2 presents a generic algorithm in this class that
starts with a solution S initialized in some way and
then iteratively adds elements to S until jSj = k. In this
case, however, the elements to be considered at each it-
eration are limited based on the notion of the r-
neighborhood of an element i 2 I , N(i, I , r), defined as:

N(i, I , r) = fj 2 I : d(i, j) � rg

In a nutshell, at each iteration, elements that are
inside the r-neighborhoods of any already selected
elements (i.e., are ‘‘close’’ to the already selected ele-
ments) are disqualified from further consideration.
Out of the remaining elements, one is selected to be
added to S. Again, there are a number of variations;
for example, we may select an element with (i) the
highest average distance to the already selected ele-
ments (as in MAXSUM) or (ii) the largest minimum of
distances to the already selected elements (as in MAX-

MIN). Note that, given a specific value of r, a solution
S with Sj j= k may not exist.

Neighborhood algorithms have been mainly used
with distance-based models, for example, in Ref.38 A
similar approach is also used in Ref.45 where elements
are selected in rounds, and each selected element
leads to the disqualification of its neighborhood. How-
ever, in that case, r may be different for each element
and period. The employed neighborhood algorithm
implementation used spatial indexes (M-Trees) and
pruning rules to speed up computation.
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Algorithm 2 Generic Neighborhood Algorithm.

Require: A set of items I , r.
Ensure: A set S with the most diverse items of I .

1: i) random element in I
2: S)fig
3: I)Infj : j 2 N(i, I , r)g
4: while Ij j > 0 do
5: i) select element in I
6: I)Infj : j 2 N(i, I , r)g
7: S)S [ fig
8: end while
9: return S

Interchange algorithms
Another major category of diversity algorithms used
for all types of diversity models are the interchange
(or swap) algorithms, which are shown in Algorithm
3. Such algorithms are typically initialized with a ran-
dom solution S of size k, and they then iteratively at-
tempt to improve that solution by interchanging an
element in S with an element in InS. Again, different
variations exist, such as selecting (i) the first located el-
ement that improves the diversity of S or (ii) the element
that improves the diversity of S the most. Thus, inter-
change algorithms are, in essence, local search algo-
rithms that aim at identifying a locally optimal solution.

For example, in Ref.14 an interchange algorithm is
used for a distance-based model that combines diver-
sity with utility (in the form of relevance). S is initial-
ized with the k most relevant elements. Then, at each
iteration, the element of S that contributes the least
to the diversity of S, that is, the one with the minimum
div(S, i), is interchanged with the most relevant element
in InS. Interchanges stop when there are no more ele-
ments in InS with higher relevance than a given thresh-
old. As another example, Ref.48 uses an interchange
algorithm to achieve coverage-based diversity over
structured data. The goal is to find a subset of attributes
that can best differentiate between tuples, by starting
with a random subset of attributes and iteratively inter-
changing one of the attributes with a better candidate.

Algorithm 3 Generic Interchange Algorithm.

Require: A set of items I , an integer k.
Ensure: A set S with the k most diverse items of I .

1: S ) random solution
2: while changes are made to S do
3: i	)argmini2Sdiv(Snfig, i)
4: for all z 2 InS do
5: S¢)fSnfi	gg [ fzg
6: If div(S¢) > div(S) then
7: S)S¢;
8: end if
9: end for

10: end while
11: return S

Graph algorithms

A graph-based algorithm based on random walks,
called GRASSHOPPER, is presented in Ref.50 as an al-
ternative to the novelty-based MMR model. GRASS-
HOPPER employs a weighted graph, which models
both diversity and relevance of data items. Nodes are
annotated with a weight representing their relevance,
whereas edges are annotated with a weight represent-
ing the similarity of their adjacent nodes. This graph
serves as the representation of states and transitions
of an absorbing Markov chain. At each iteration, a ran-
dom walk is performed. The walker either moves,
with some probability, to a neighbor state according
to similarity—represented by edge weights—or tele-
ports to a random state according to relevance. At
the end of the walk, the selected node is turned into
an absorbing state and the walk is repeated.

Another graph-based approach is considered in
Ref.51 A graph, called Affinity Graph, is constructed,
in which nodes correspond to elements and edges be-
tween nodes are weighted based on the affinity between
elements, which is, in turn, based on their similarity
but is defined in an asymmetrical way. Generally,
groups of heavily connected nodes correspond to ele-
ments containing information on some specific topic,
that is, a coverage-based model is used. A Markov
chain is employed to initialize the algorithm, which
later uses the graph to select k elements.

Optimization algorithms
In Ref.52 the diversification problem is formulated as an
optimization one under certain constraints. A distance-
based model is employed in which feasible solutions
are represented with binary vectors, and both the ob-
jective and the constraints are quadratic or linear ex-
pressions over the binary vector. Utility, in the form
of relevance, is also considered. More specifically,
three different problems are considered: (i) Maximize
diversity under the constraint that the selected items
exhibit relevance greater than some threshold, (ii) max-
imize relevance exhibited under the constraint that di-
versity is greater than some threshold, and (iii) express
the trade-off between the two objectives explicitly in
a linear combination by using a parameter a that rep-
resents the importance given to diversity in compari-
son to that given to relevance.

The authors referred to in Ref.52 use algorithms
for solving binary vector optimization problems. The
first and third variations correspond to binary qua-
dratic programming problems with linear constraints,
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whereas the second variation is a binary linear pro-
gramming problem with quadratic and linear constraints.
Thus, known optimization algorithms are employed to
search the solution space, where the solutions are gener-
ated by solving relaxations of the binary problems to
problems with real-valued solutions.

Another approach for the distance-based model is
used in Ref.38 where dimensionality reduction is used
to project elements in one dimension. Then, a solution
is approximated via problem relaxation and quantiza-
tion. However, the approximation does not come
with any guarantees and also does not perform well
empirically, and so it can only be used in a multiple-
tries setting in practice.

In Ref.40 the introduced coverage-based T-model is
formed as an optimization problem in which the user
sets specific demands on the coverage of the various
topics. The optimization is to select the best subset
of elements such that the user’s demand is satisfied.
The problem is shown to be equivalent to the Exact
k-item Knapsack Problem (E-kKP) and, thus, can be
solved by various algorithms, that is, a backtracking ap-
proach, dynamic programming, or linear program-
ming, as described in Ref.53

Other algorithms
Next, we present some other algorithms found in the
literature.

In Ref.20 the authors address the problem of lack of
diversity in rankings over structured datasets. Lack of
diversity at top ranks is due to subtle interactions be-
tween item attributes and the ranking function. The au-
thors develop a rank-aware clustering framework that
groups together items that are comparable with respect
to the ranking function, computes a concise and infor-
mative description for each group, and, finally, ranks
items within each group. Diverse ranked results keep
the user more engaged, as demonstrated with a large-
scale user study in a dating application.

A number of approaches, mainly aiming at achieving
diversity in database systems, are based on tree index
structures. For example, in Ref.39 a Dewey tree is
employed. Each tuple of a database relation is repre-
sented by a path in the tree. Higher levels of the
tree represent more important attributes, according
to some diversity ordering of the relation, and di-
verse tuples are retrieved by traversing this tree.
This approach can be used only with a specific di-
versity function on structured data that defines the
diversity ordering.

A more general approach that can be used with any
diversity function is presented in Ref.54 The spatial
indexing properties of Cover trees are employed for
selecting items that are dissimilar to each other. This
approach can also be used for the dynamic diversifica-
tion problem, where I is not static but insertions and
deletions of elements are allowed and, thus, the diverse
set needs to be refreshed to reflect such updates.

Finally, a hybrid greedy/interchange heuristic is used
in Ref.55 in the context of dynamic data as well. In this
case, a diverse subset S is located by using a greedy ap-
proach and then its diversity is further improved by
performing interchanges.

Related Concepts
The term fairness has recently been increasingly used
in the context of big data, much more so than the
term diversity. One usually expects that fairness to
under-represented groups will lead to greater diversity.
For this reason, the two concepts are related.

However, fairness has multiple interpretations. For
example, a recent paper by Celis et al.25 considered a
trade-off that concerns diversity of an input dataset,
rather than of the result of an algorithmic task. The au-
thors proposed a sampling method that combines com-
binatorial diversity, which measures the entropy along
a low-dimensional categorical attribute, and volume-
based diversity, briefly discussed in Section 2. The
authors refer to combinatorial diversity as ‘‘fairness,’’
but this use of the term is nonstandard, since fairness
is typically measured with respect to an outcome,
rather than quantified over the input.

The more common notions of algorithmic fairness
have a problem setup that is similar to diversity. For
example, when selecting job applicants to interview,
or college applicants to admit, both qualifications of
the candidates and fair treatment of members of le-
gally protected groups must be considered alongside
diversity. A useful dichotomy is between individual
fairness—a requirement that similar individuals be
treated similarly—and group fairness, also known as
statistical parity, a requirement that demographics
of those receiving a particular positive (or negative)
outcome, for example, a positive or negative classifi-
cation, are identical to the demographics of the popu-
lation as a whole.26

In what follows, we will compare and contrast the
statistical parity interpretation of fairness with diver-
sity, since, like diversity, statistical parity is stated as a
property of a collection of items. Let us assume that
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membership in a protected group is represented by a
so-called sensitive attribute. Further, to start, let us as-
sume that this attribute is binary, using gender as an
example and hiring as the selection task.

Statistical parity requires that the distribution of val-
ues of gender in the result of the task be the same as its
distribution in the input population. Assuming that
there is an approximately equal number of men and
women in the input, a fair algorithm will produce an
approximately equal number of men and women in
the result. This outcome is the same as what most di-
versity models would produce.

It is, however, not always the case that fairness
and diversity objectives are in agreement. Suppose
that women are under-represented in the input, for ex-
ample, that among the job applicants 10% are women
and 90% are men. Although a fair algorithm will pre-
serve the same gender ratio in the result, as is seen
in the input, a distance-based diversity objective may
require that one half of the individuals in the output
belong to each gender.

Determining conditions under which fairness leads
to diversity, and diversity leads to fairness, is an open
research question that warrants further investigation.
Casting these two objectives as part of the same frame-
work may allow to optimize them simultaneously, lead-
ing to solutions that meet both objectives better and
that are more efficient to compute.

Conclusions
In this article, we argued that diversity is an important
aspect of responsible data analysis and use. We de-
scribed recent empirical studies that consider the diver-
sity of information in the social sphere, and gave an
overview of existing diversity models and algorithms,
with a focus on diversity of elements in the output of
an algorithm.

We focused our attention primarily on diversity in a
selection task. To a limited extent, we also considered
diversity in the closely related ranking task. Diversity
can be important in many other contexts. Further con-
sideration is required to identify these contexts and to
expand on the relevant technical work.

An important direction for future work is developing
a holistic treatment of diversity through different stages
of the data management and analysis life-cycle—from
data cleaning, integration, and preprocessing, through
selection and ranking, to result interpretation. An as-
pect of such a framework is support for enforcing di-
versity incrementally through individual independent

choices, rather than as a constraint on the set of final re-
sults. Interestingly, because diversity is measured over
a set, the addition or deletion of a single element to
the input could radically alter the composition of the
output. An important line of work, thus, concerns en-
abling incremental maintenance of diversity properties
of a result, under monotonicity guarantees, and reason-
ing about stability of the selected set in response to in-
cremental changes in the input.
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