

FAT Databases

Bill Howe

University of Washington

The next ~10 minutes...

- Some more examples of the problems
- Some topics for DB research

Amazon Prime Now Delivery Area: Atlanta

Bloomberg, 2016

The northern half of Atlanta, home to 96% of the city's white residents, has same-day delivery. The southern half, where 90% of the residents are black, is excluded.

Percentage of residents living in ZIP codes with same-day delivery

Population percentages are based on American Community Survey estimates and have a 90% confidence interval.

Amazon Prime Now Delivery Area: Chicago

Eligible area for same-day delivery

City limit

Aurora

Bloomberg, 2016

Black residents

Percentage of residents living in ZIP codes with same-day delivery

Amazon Prime Now Delivery Area: Boston

Bloomberg, 2016

Bill Howe, UW

Data source selection:

Bias in transportation measurements

Databases are becoming "training set management systems"

- Claim: Query results are increasingly being used to train models
- So the exact answer to the query result is not that important. It's important that the trained model gets the right answer on unseen data
- We need declarative specification (i.e., SQL) and management of highquality training sets
- What's a high-quality training set?
 - It's a bad training set if the resulting classifier doesn't work, or overfits
 - It's a bad training set if it deviates too far from the specification (fidelity)
 - It's a bad training set if it's too small (significance), and it *might* be a bad training set if it's too big (scale)
 - It's a bad training set if it leaks private information (privacy-preserving)
 - It's a bad training set if you can't tell where it came from (provenance)
 - It's a bad training set if it reinforces discrimination (bias-correcting)

Fides: Responsible Data Management

Fairness Accountability Transparency Privacy Reproducibility

joint with Stoyanovich [US], Abiteboul [FR], Miklau [US], Sahuguet [US], Weikum [DE]

Data Synthesizer: Privacy-preserving synthetic data

With Stoyanovich (Drexel), Gee (Chicago), Ping (Drexel), Herman (UW)

A Nutritional Label for Rankings

[Yang, Stoyanovich, Asudeh, Howe, Jagadish, Miklau SIGMOD 2018 demo]

				Banking Fa	acts									
Recipe			→	Training T	4010	_				- ÷	Ingredie	ents		
Top 10:				← Recipe		Ingredier	nts			> Тор	10:			
Attribute	Maximum	Median	Minimum	Attribute	Weight	Attribute		Importan	ce .	Attr	bute	Maxim	um Mediar	Minimum
PubCount	18.3	9.6	6.2	PubCount	1.0	PubCount		1.0		Pub	Count	18.3	9.6	6.2
Faculty	122	52.5	45	Faculty	1.0	CSRankingAlA	68	0.24	0	CSP	ankingAlAn	na 13	6.5	1
GRE	800.0	796.3	771.9	GRE	1.0	Faculty		0.12	Q	Face	ity	122	52.5	45
Overall:						Importance of a	in attribute	in a ranking is g	uantified by the	Ove	rall:			
Attribute	Maximum	Median	Minimum			correlation coef	ficient bety	veen attribute val	ues and items	Attr	bute	Maxim	um Mediar	Minimum
PubCount	18.3	2.9	1.4			high if the abso	scores, computed by a linear regression model. Importance is high if the absolute value of the correlation coefficient is over 0.75, medium if this value falls between 0.25 and 0.75, and low otherwise.					18.3	2.9	1.4
Faculty	122	32.0	14			0.75, medium it						na 48	26.0	1
GRE	800.0	790.0	757.8			otherwise.						122	32.0	14
Stability			*	Deptazes				•NI		÷	Fairnes	15		
050	Stal	bility		GLarge ØSmi	ene @w @ww @sa @	SC	•Small _	•9C	-	_		FA1B	Pairwise	Proportio
900				🗲 Stability		Fairness	0			-> Dep	p- tSizeBin val	ue adjusted	a p-value a	p-value a
8850				Тор-К	Stability	DeptSizeBip	EA11B	Pairwise	Properties	Larg	e 1.0	0.87	0.98 0.0	5 1.0 0.
750 0 5 10 15 20 25 30 35 40 45 50 Rank Position				Top-10	Stable	Large	Fair	G Fair	Fair (Sme	II 0.0	0.71	0.0 0.0	5 0.0 0.
			40 45 50	Overall	Stable	Small	Unfair	C Untair (Unfair (E With	and difference espect to 26	e in proportion highest-scorin	ns (Proportion) g items (the to	are measured p-K). The top
Slope at top-10: -6.91. over-alt: -1.61. A ranking is unstable when the absolute value of the slope of the line that is fit to the score distribution falls below 0.25.						A ranking is co corresponding	A ranking is considered unfair when the p-value of the corresponding statistical test fails below 0.05.					or one half of	the input, while	mever is small

UW TRANSPORTATION DATA COLLABORATIVE

INTRO ABOUT PARTNERS OUR TEAM RESOURCES

CONTACT US

A linked data repository with strong data governance.

THE BIKE SHARE WAR IS SHAKING UP SEATTLE LIKE NOWHERE ELSE

Residents are divided over whether the city's dockless bike share program is revolutionizing transit—or creating an unwieldy, dangerous mess.

BY MARK HARRIS

Example: Bike Share data

- Companies need to release trip data to comply with Seattle permits and civic transparency
- But there are concerns about privacy, misuse, and competitive advantage

• Setup:

Trip(time, userid, company, orig, dest, gender, helmet)

Domain info: company in {Lime, Spin, Ofo} origin, dest one of 94 neighborhoods in Seattle} gender in {M, F, other, null} Helmetuser in {true, false}

OD(company, origin, dest, gender, helmet, count)

W UNIVERSITY of WASHINGTON

We can release the joint distribution of company, origin, dest, gender, helmet

To release plots like this:

For privacy we can add noise to the counts.

But we also want to remove bias...

Bias-Corrected Data Sharing by Breaking Causal Relationships

Babak Salimi

Luke Rodriguez

Ex: We don't want race to influence hiring, so set the mutual information between, say, race and GPA to zero before releasing the dataset.

Different strategies:

- You could remove and insert tuples
- You could directly edit the GPA
- You could change the "weight" of each tuple

UNIVERSITY of WASHINGTON

Bias-Corrected Data Sharing by Breaking Causal Relationships

Babak Salimi

Luke Rodriguez

Back to bike share: Hiding competitive advantage

Company doesn't mind releasing data, but doesn't want to reveal that they have a marketing campaign targeting women.

Set the mutual information between company (X) and gender (Y) to zero, conditioned on the other attributes (Z).

Compute a new joint distribution of trips, asserting independence between X and Y conditioned on Z

$$P_{R'}(\mathbf{A}) = P_{R'}(X\mathbf{Z})P_{R'}(Y|\mathbf{Z})P_{R'}(\mathbf{U}|XY\mathbf{Z})$$

FAT* 2019 Call for Papers

Important Dates and Links

TBD				
pre-registration at 11:59PM August 16, 2018 AoE				
11:59PM August 23, 2018 AoE				
October 12, 2018				
late January/early February 2019				

FAT* is an international and interdisciplinary peer-reviewed conference that seeks to publish and present work examining the fairness, accountability, and transparency of algorithmic systems.

Topics of Interest

The FAT* conference solicits work from a wide variety of disciplines, including computer science, statistics, the humanities, and law. FAT* welcomes submissions that touch on any of the following topics (broadly construed):

Fairness

- Techniques and models for fairness-aware data mining, information retrieval, recommendation, etc.
- · Formalizations of fairness, bias, discrimination; trade-offs and relationships between them
- Defining, measuring and mitigating biases in data sets; improving data collection processes; combining different sources of information
- o Translation of legal, social, and philosophical models of fairness into mathematical objectives
- · Qualitative, quantitative, and experimental studies on perceptions of algorithmic bias and unfairness
- Design interventions to mitigate biases in systems, or discourage biased behavior from users
- Measurement and data collection regarding potential unfairness in systems
- Understanding how tools from causal inference can help us to better reason about fairness and the interplay between prediction and intervention
- · Analyses of the impact of algorithmic experimentation and exploration