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Machine Bias

There's software used across the country to predict future criminals. And it's
biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

Software can make bad decisions.
Software can discriminate!

Just as the 18-year-old girls were realizing they were too big for the tiny conveyances —
which belonged to a 6-year-old boy — a woman came running after them saying, “That’s
my kid’s stuff.” Borden and her friend immediately dropped the bike and scooter and

walked away.

But it was too late — a neighbor who witnessed the heist had already called the police.
Borden and her friend were arrested and charged with burglary and petty theft for the
items, which were valued at a total of $80.
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algorithms can exacerbate societal biases
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algorithms don’t provide the same service to all
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algorithms don’t provide the same service to all
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Rachael Tatman, "Gender and Dialect Bias in YouTube's Automatic Captions" in 2017 Workshop on Ethics in Natural Language Processing
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ow I'm fighting bias in algorithms

Joy Buolamwini
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the ML perspective
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the ML perspective
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LOAN program

this is not about policy



approaches to fairness

1. Hide the data

Ads by Google
Latanya Sweeney, Arrested?

1) Enter Name and State. 2) Access Full Background
Checks Instantly
www.instantcheckmate.com/

Ineffective because of data correlation.

[Latanya Sweeney. Discrimination in online ad delivery. CACM 201 3]




approaches to fairness

2. Compare subpopulation proportions

APPROVELD

(DENTED

1. Ineffective if race or age correlate with savings or income

2. Fails to identify discrimination against individuals

[Calders and Verwer. Three naive Bayes approaches for discrimination-free classification. Data Mining and Knowledge Discovery, 2010.]



how It can be unfair to individuals

country A country B

approve loans to all deny approve loans to all deny
loans to all applicants loans to all applicants

Country A and country B discriminations cancel each other
out, and the group discrimination measure can be 0.




approaches to fairness

3. Measure differences for individuals

Sensitive inputs should not affect
software behavior.

We want to measure causality!

[Judea Pearl. Causal inference in statistics: An overview. Statistics Surveys 2009]



causal testing

Sensitive inputs should not affect

software behavior.

APPROVED

hypothesis
testing:




 Why different definitions?

e Systems designed to be fair under one definition
may be unfair under another

e Why testing?

e Systems designed to not discriminate may still have
discrimination bugs
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Themis

How much does my software
discriminate with respect to ...?

Does my software discriminate more
than 10% of the time, and against what?

Themis generates a test suite or can use a manually written one




How does Themis work?

adaptive, confidence-driven sampling

input schema
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findings
Group discrimination is not enough.

More than 11% of the individuals had the output
flipped just by altering the individual’s gender.

Decision tree trained not to group discriminate against
gender causal discriminated against gender: 0.11.



findings

Trying to avoid group discrimination
may introduce other discrimination.

Training a decision tree not to discriminate against gender
made it discriminate against race 38.4% of the time.



what’s next?

e Software with complex inputs, such as
natural language or photographs and videos.

e What definition is right for what software requirements
context?

e Efficiency in testing.



what’s next?

e Software with complex inputs, such as
natural language or photographs and videos.

e How to do causal testing?

e What definition is right for what software requirements
context?

e |nfrastructure that adjusts to new definitions

e Efficiency in testing.
e Comparative behavior explodes search space
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data



“What If data I1s biased?”

“What If my view of the data Is skewed?"
“What If the data is sensitive!”
“What If data I1s missing?”

“What If data I1s dirty?”

"“What if | don't understand the data or results?”




¥ . L ~diversification
What If data Is biased! ckew

visualization
“What It my view of the data Is skewed?"

“What if the data is sensitive?”  Privacy
“What if data 1s missing!”  completeness
“\What if data is dirty?”  quality  repair

"“What if | don't understand the data or results?”

explanations  provenance




data understanding

and repair




