TransFAT

translating fairness, accountability, and transparency into data science practice

Prof. Julia Stoyanovich

Computer Science and Engineering & Center for Data Science New York University

@stoyanoj

The power of data science

Power

unprecedented data collection capabilities

enormous computational power

ubiquity and broad acceptance

Opportunity

improve people's lives, e.g., recommendation accelerate scientific discovery, e.g., medicine boost innovation, e.g., autonomous cars transform society, e.g., open government optimize business, e.g., advertisement targeting

and now some bad news

Online price discrimination

THE WALL STREET JOURNAL.

WHAT THEY KNOW

Websites Vary Prices, Deals Based on Users' Information

By JENNIFER VALENTINO-DEVRIES, JEREMY SINGER-VINE and ASHKAN SOLTANI December 24, 2012

It was the same Swingline stapler, on the same Staples.com website. But for Kim Wamble, the price was \$15.79, while the price on Trude Frizzell's screen, just a few miles away, was \$14.29.

A key difference: where Staples seemed to think they were located.

WHAT PRICE WOULD YOU SEE?

lower prices offered to buyers who live in more affluent neighborhoods

https://www.wsj.com/articles/SB10001424127887323777204578189391813881534

Amazon same-day delivery

Bloomberg

Amazon Doesn't Consider the Race of Its Customers. Should It?

"... In six major same-day delivery cities, however, **the service area excludes predominantly black ZIP codes** to varying degrees, according to a Bloomberg analysis that compared Amazon same-day delivery areas with U.S. Census Bureau data."

https://www.bloomberg.com/graphics/2016-amazon-same-day/

Amazon same-day delivery

Bloomberg

Amazon Doesn't Consider the Race of Its Customers. Should It?

"The most striking gap in Amazon's same-day service is in Boston, where three ZIP codes encompassing the primarily black neighborhood of Roxbury are excluded from sameday service, while the neighborhoods that surround it on all sides are eligible." Boston Charlestown East Boston Nort Allston/ End Briahton South End Roxbury lamaica Plain Roslindale West Dorchester Roxbury Hyde Park

https://www.bloomberg.com/graphics/2016-amazon-same-day/

Redlining

Redlining is the practice of arbitrarily denying or limiting **financial services** to specific neighborhoods, generally because its residents are people of color or are poor.

A HOLC 1936 security map of Philadelphia showing redlining of lower income neighborhoods

https://en.wikipedia.org/wiki/Redlining

Households and businesses in the **red zones** could not get mortgages or business loans.

Job-screening tests

THE WALL STREET JOURNAL.

By LAUREN WEBER and ELIZABETH DWOSKIN

Sept. 29, 2014 10:30 p.m. ET

Are Workplace Personality Tests Fair?

Growing Use of Tests Sparks Scrutiny Amid Questions of Effectiveness and Workplace Discrimination

Kyle Behm accused Kroger and six other companies of discrimination against the mentally ill through their use of personality tests. TROY STAINS FOR THE WALL STREET JOURNAL

The Equal Employment Opportunity commission is **investigating whether personality tests discriminate against people with disabilities**.

As part of the investigation, officials are trying to determine if the tests **shut out people suffering from mental illnesses** such as depression or bipolar disorder, even if they have the right skills for the job.

http://www.wsj.com/articles/are-workplace-personality-tests-fair-1412044257

Online job ads

theguardian

Samuel Gibbs

Wednesday 8 July 2015 11.29 BST

Women less likely to be shown ads for high-paid jobs on Google, study shows

Automated testing and analysis of company's advertising system reveals male job seekers are shown far more adverts for high-paying executive jobs

One experiment showed that Google displayed adverts for a career coaching service for executive jobs 1,852 times to the male group and only 318 times to the female group. Photograph: Alamy

The AdFisher tool simulated job seekers that did not differ in browsing behavior, preferences or demographic characteristics, except in gender.

One experiment showed that Google displayed ads for a career coaching service for "\$200k+" executive jobs **1,852 times to the male group and only 318 times to the female group**. Another experiment, in July 2014, showed a similar trend but was not statistically significant.

https://www.theguardian.com/technology/2015/jul/08/women-less-likely-ads-high-paid-jobs-google-study

Racial bias in criminal sentencing

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica May 23, 2016 A commercial tool **COMPAS** automatically predicts some categories of future crime to assist in bail and sentencing decisions. It is used in courts in the US.

The tool correctly predicts recidivism 61% of the time.

Blacks are almost twice as likely as whites to be labeled a higher risk but not actually re-offend.

The tool makes **the opposite mistake among whites**: They are much more likely than blacks to be labeled lower risk but go on to commit other crimes.

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

"Bias" in predictive analytics

- Statistical bias in the model: a model is biased if it does not summarize the data correctly
- Societal bias in the data: a dataset is biased if it does not represent the world "correctly", e.g., data is not representative, there is measurement error,
- or the **world is "incorrect"?**

the world as it is or as it should be?

when data is about people, bias can lead to discrimination

The evils of discrimination

Disparate treatment is the illegal practice of treating an entity, such as a creditor or employee, differently based on a protected characteristic such as race, gender, age, religion, sexual orientation, or national origin.

Disparate impact is the result of systematic disparate treatment, where disproportionate adverse impact is observed on members of a protected class.

en-gb/Pages/Protected-characteristicsand-the-perception-reality-gap.aspx

Statistical parity

Statistical parity (a popular group fairness measure) demographics of the individuals receiving any outcome are the same as demographics of the underlying population

		SAT	positive outcomes	
		high		
race	black	Ð		20% of black
	white	$\begin{array}{c} \\ \\ \\ \\ \end{array}$	Θ	60% of white

Is statistical parity sufficient?

Statistical parity (a popular group fairness measure) demographics of the individuals receiving any outcome are the same as demographics of the underlying population

Ricci v. DeStefano (2009)

Supreme Court Finds Bias Against White Firefighters

By ADAM LIPTAK JUNE 29, 2009

The New York Times

Karen Lee Torre, left, a lawyer who represented the New Haven firefighters in their lawsuit, with her clients Monday at the federal courthouse in New Haven. Christopher Capozziello for The New York Times

an (ongoing) attempt at regulation

NYC ADS transparency law

1/11/2018

Local Law 49 of 2018 in relation to automated decision systems used by agencies

	IE NEW YORK CITY (ey Johnson, Speaker	Council	<u>Sign Ir</u> Legislative Research Center
Council Home Leo	pislation Calendar City Council	Committees	
			🔕 RSS) ⋟ Alerts
Details Reports	\		
File #:	Int 1696-2017 Version: A ᅌ	Name:	Automated decision systems used by agencies.
Туре:	Introduction	Status:	Enacted
		Committee:	Committee on Technology
On agenda:	8/24/2017		
Enactment date:	1/11/2018	Law number:	2018/049
Title:	A Local Law in relation to automated dec	ision systems used by	agencies
Sponsors:	James Vacca, Helen K. Rosenthal, Corey	D. Johnson, Rafael Sal	amanca, Jr., Vincent J. Gentile, Robert E. Cornegy, Jr., Jumaane D. Williams, Ben Kallos, Carlos Menchaca
Council Member Sponsors:	9		
Summary:	This bill would require the creation of a taken how agencies may address instances whe	ask force that provides ere people are harmed	s recommendations on how information on agency automated decision systems may be shared with the public and I by agency automated decision systems.
Indexes:	Oversight		
Attachments:	1. <u>Summary of Int. No. 1696-A</u> , 2. <u>Summ</u> <u>Hearing Testimony 10/16/17</u> , 7. <u>Hearing</u> <u>December 11, 2017 - Stated Meeting Age</u> <u>Legislative Documents - Letter to the Mag</u>	hary of Int. No. 1696, Transcript 10/16/17, 8 Enda with Links to File Yor, 16. Local Law 49,	 Int. No. 1696, 4. August 24, 2017 - Stated Meeting Agenda with Links to Files, 5. Committee Report 10/16/17, 6. Proposed Int. No. 1696-A - 12/12/17, 9. Committee Report 12/7/17, 10. Hearing Transcript 12/7/17, 11. 12. Hearing Transcript - Stated Meeting 12-11-17, 13. Int. No. 1696-A (FINAL), 14. Fiscal Impact Statement, 15. 17. Minutes of the Stated Meeting - December 11, 2017

The original draft

Int. No. 1696

8/16/2017

By Council Member Vacca

A Local Law to amend the administrative code of the city of New York, in relation to automated processing of data for the purposes of targeting services, penalties, or policing to persons

Be it enacted by the Council as follows:

- 1 Section 1. Section 23-502 of the administrative code of the city of New York is amended
- 2 to add a new subdivision g to read as follows:
- 3 g. Each agency that uses, for the purposes of targeting services to persons, imposing
- 4 penalties upon persons or policing, an algorithm or any other method of automated processing
- 5 system of data shall:
- 6 1. Publish on such agency's website, the source code of such system; and
- 7 2. Permit a user to (i) submit data into such system for self-testing and (ii) receive the
- 8 results of having such data processed by such system.
- 9 § 2. This local law takes effect 120 days after it becomes law.

MAJ LS# 10948 8/16/17 2:13 PM

this is **NOT** what was adopted

Summary of Local Law 49

1/11/2018

Form an automated decision systems (**ADS**) task force that surveys current use of algorithms and data in City agencies and develops procedures for:

- interrogating ADS for bias and discrimination against members of legally-protected groups (3(c) and 3(d))
- requesting and receiving an explanation of an algorithmic decision affecting an individual (3(b))
- allowing the **public** to **assess** how ADS function and are used (3(e)), and archiving ADS together with the data they use (3(f))

fairness is risk assessment

New Jersey bail reform

New Jersey bail reform

or subjected to onerous conditions of release.

Switching from a system based solely on instinct and experience (often referred to as "gut instinct") to one in which judges have access to scientific, objective risk assessment tools could further the criminal justice system's central goals of increasing public safety, reducing crime, and making the most effective, fair, and efficient use of public resources.

Risk Assessment and Release/Detention Decision Making in New Jersey

Julia Stoyanovich

6

Racial bias in criminal sentencing

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica May 23, 2016 A commercial tool **COMPAS** automatically predicts some categories of future crime to assist in bail and sentencing decisions. It is used in courts in the US.

Prediction Fails Differently for Black Defendants

	WHITE	AFRICAN AMERICAN
Labeled Higher Risk, But Didn't Re-Offend	23.5%	44.9%
Labeled Lower Risk, Yet Did Re-Offend	47.7%	28.0%

Overall, Northpointe's assessment tool correctly predicts recidivism 61 percent of the time. But blacks are almost twice as likely as whites to be labeled a higher risk but not actually re-offend. It makes the opposite mistake among whites: They are much more likely than blacks to be labeled lower risk but go on to commit other crimes. (Source: ProPublica analysis of data from Broward County, Fla.)

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Fairness in risk assessment

- A risk assessment tool gives a probability estimate of a future outcome
- Used in many domains:
 - insurance, criminal sentencing, medical testing, hiring, banking
 - also in less-obvious set-ups, like online advertising
- Fairness in risk assessment is concerned with how different kinds of errors are distributed among sub-populations

COMPAS as a predictive instrument

[J. Kleinberg, S. Mullainathan, M. Raghavan; ITCS 2017]

Predictive parity (also called **calibration**)

an instrument identifies a set of instances as having probability *x* of constituting positive instances, then approximately an *x* fraction of this set are indeed positive instances, over-all and in sub-populations

COMPAS is well-calibrated: in the window around 40%, the fraction of defendants who were re-arrested is ~40%, both over-all and per group.

An impossibility result

[A. Chouldechova; arXiv:1610.07524v1 (2017)]

If a predictive instrument **satisfies predictive parity**, but the **prevalence** of the phenomenon **differs between groups**, then the instrument **cannot achieve** equal false positive rates and equal false negative rates across these groups

Recidivism rates in the ProPublica dataset are higher for the black group than for the white group

Prediction Fails Differentl	y for Black Defendants
-----------------------------	------------------------

	WHITE	AFRICAN AMERICAN
Labeled Higher Risk, But Didn't Re-Offend	23.5%	44.9%
Labeled Lower Risk, Yet Did Re-Offend	47.7%	28.0%

Overall, Northpointe's assessment tool correctly predicts recidivism 61 percent of the time. But blacks are almost twice as likely as whites to be labeled a higher risk but not actually re-offend. It makes the opposite mistake among whites: They are much more likely than blacks to be labeled lower risk but go on to commit other crimes. (Source: ProPublica analysis of data from Broward County, Fla.)

Fairness for whom?

based on a slide by Arvind Narayanan

Decision-maker : of those		labeled Iow-risk	labeled high-risk
I've labeled high-risk, how many will recidivate?	did not recidivate	ΤN	FP
Defendant : how likely am I to be incorrectly classified high-risk?	recidivated	FN	TP

different metrics matter to different stakeholders https://www.propublica.org/article/propublica-responds-tocompanys-critique-of-machine-bias-story

Fairness definitions as "trolley problems"

https://www.helpage.org/silo/images/blogs/16_1391611056.gif

Fairness & diversity: zooming out

Many reasonable fairness and diversity notions have been considered in philosophy, law, social science,, computer science, data science

- Yes, we can state fairness and diversity measures mathematically and operationalize them in code
- •No, there does not exist a single measure to rule them all, so we will always need to consider trade-offs
- We should be careful to decouple our beliefs about what is or is not fair from mechanisms consistent with those beliefs

technical highlights

Diversity in set selection

Can state all these as constraints:

for each category *i*, pick K_i elements, with $floor_i \leq K_i \leq ceil_i$

joint with Yang [NYU] and Jagadish [UMich] - [EDBT 2018]

Hiring a job candidate

Goal: Hire a candidate with a high score

4 1 3 2 5 7 • • • • • • • • •

Candidates arrive one-by-one

A candidate's score is revealed when the candidate arrives

Decision to accept or reject a candidate made on the spot

Per-category warm-up is crucial

synthetic data with categories A and B, score depends on category, lower for A

diversity by design

joint with Yang [NYU] and Jagadish [UMich] - [EDBT 2018]

Fairness in ranking

Idea: Rankings are relative, fairness measures should be rank-aware

rank	gender		rank	gender		rank	gender
1	М		1	М		1	Μ
2	Μ		2	Μ		2	F
3	М		3	F		3	Μ
4	Μ		4	Μ		4	F
5	Μ		5	Μ		5	Μ
6	F		6	F		6	F
7	F		7	Μ		7	Μ
8	F		8	F		8	F
9	F		9	F		9	Μ
10	F		10	F		10	F
f = 0		- '	f =	0.3	-	<i>f</i> =	= 0.5

parity in outcomes

joint with Yang [NYU] - [FATML 2016]

More fairness in ranking

Designing Fair Ranking Schemes

Abolfazl Asudeh[†], H. V. Jagadish[†], Julia Stoyanovich[‡], Gautam Das^{††} [†]University of Michigan, [‡]Drexel University, ^{††}University of Texas at Arlington [†]{asudeh, jag}@umich.edu, [‡]stoyanovich@drexel.edu, ^{††}gdas@uta.edu

ACM SIGMOD 2019

ABSTRACT

Items from a database are often ranked based on a combination of multiple criteria. A user may have the flexibility to accept combinations that weigh these criteria differently, within limits. On the other hand, this choice of weights can greatly affect the fairness of the produced ranking. In this paper, we develop a system that helps users choose criterion weights that lead to greater fairness.

We consider ranking functions that compute the score of each item as a weighted sum of (numeric) attribute values, and then sort items on their score. Each ranking function can be expressed as a vector of weights, or as a point in a multi-dimensional space. For a broad range of fairness criteria, we show how to efficiently identify regions in this space that satisfy these criteria. Using this identification method, our system is able to tell users whether their proposed ranking function satisfies the desired fairness criteria and, if it does not, to suggest the smallest modification that does. We develop user-controllable approximation that and indexing techniques that are applied during preprocessing, and support sub-second response times during the online phase. Our extensive experiments on real detasets demonstrate that our methods are able to find solutions that impact processes that are directly designed and validated by humans. Perhaps the most immediate example of such a process is a score-based ranker. In this paper we consider the task of *designing a fair score-based ranking scheme*.

Ranking of individuals is ubiquitous, and is used, for example, to establish credit worthiness, desirability for college admissions and employment, and attractiveness as dating partners. A prominent family of ranking schemes are score-based rankers, which compute the score of each individual from some database \mathcal{D} , sort the individuals in decreasing order of score, and finally return either the full ranked list, or its highest-scoring sub-set, the top-k. Many scorebased rankers compute the score of an individual as a linear combination of attribute values, with non-negative weights. Designing a ranking scheme amounts to selecting a set of weights, one for each feature, and validating the outcome on the database \mathcal{D} .

Our goal is to assist the user in designing a ranking scheme that both reflects a user's a priori notion of quality and is fair, in the sense that it mitigates *preexisting bias with respect to a protected feature* that is embodied in the data. In line with prior work [17,27, 31-33], a protected feature denotes membership of an individual

Stability in ranking

On Obtaining Stable Rankings*

Abolfazl Asudeh[†], H. V. Jagadish[†], Gerome Miklau^{††}, Julia Stoyanovich[‡] [†]University of Michigan, ^{††}University of Massachusetts Amherst, [‡]New York University [†]{asudeh, jag}@umich.edu, ^{††}miklau@cs.umass.edu, [‡]stoyanovich@nyu.edu

VLDB 2019

ABSTRACT

Decision making is challenging when there is more than one criterion to consider. In such cases, it is common to assign a goodness score to each item as a weighted sum of its attribute values and rank them accordingly. Clearly, the ranking obtained depends on the weights used for this summation. Ideally, one would want the ranked order not to change if the weights are changed slightly. We call this property *stability* of the ranking. A consumer of a ranked list may trust the ranking more if it has high stability. A producer of a ranked list prefers to choose weights that result in a stable ranking, both to earn the trust of potential consumers and because a stable ranking is intrinsically likely to be more meaningful.

In this paper, we develop a framework that can be used to assess the stability of a provided ranking and to obtain a stable ranking within an "acceptable" range of weight values (called "the region of interest"). We address the case where the user cares about the rank order of the entire set of items, and also the case where the user cares only about the top-k items. Using a geometric interpretation, we propose algorithms that produce stable rankings. In addition measure and in their data collection methodology, not of relevance to our paper now. Our concern is that even if these deficiencies were addressed, we are compelled to obtain a single score/rank for a department by combining multiple objective measures, such as publications, citations, funding, and awards. Different ways of combining values for these attributes can lead to very different rankings. There are similar problems when we want to rank/seed sports teams, rank order cars or other products, as Malcolm Gladwell has nicely described [1].

Differences in rank order can have significant consequences. For example, a company may promote high-ranked employees and fire low-ranked employees. In university rankings, it is well-documented that the ranking formula has a significant effect on policies adopted by universities [2, 3]. In other words, it matters how we choose to combine values of multiple attributes into a scoring formula. Even when there is lack of consensus on a specific way to combine attributes, we should make sure that the method we use is robust: it should not be the case that small perturbations, such as small changes in parameter values, can change the rank order.

Looking at trade-offs

Balanced Ranking with Diversity Constraints

Ke Yang^{1*}, Vasilis Gkatzelis², Julia Stoyanovich¹

¹New York University, Department of Computer Science and Engineering ²Drexel University, Department of Computer Science ky630@nyu.edu, gkatz@drexel.edu, stoyanovich@nyu.edu

IJCAI 2019

Abstract

Many set selection and ranking algorithms have recently been enhanced with diversity constraints that aim to explicitly increase representation of historically disadvantaged populations, or to improve the overall representativeness of the selected set. An unintended consequence of these constraints, however, is reduced in-group fairness: the selected candidates from a given group may not be the best ones, and this unfairness may not be well-balanced across groups. In this paper we study this phenomenon using datasets that comprise multiple sensitive attributes. We then introduce additional constraints, aimed at balancing the in-group fairness across groups, and formalize the induced optimization problems as integer linear programs. Using these programs, we conduct an experimental evaluation with real datasets, and quantify the feasible trade-offs between balance and overall performance in the presence of diversity constraints.

parity in outcomes

are increasingly recognized by sociologists and political scientists [Page, 2008; Surowiecki, 2005]. Last but not least, diversity constraints can be used to ensure dataset representativeness, for example when selecting a group of patients to study the effectiveness of a medical treatment, or to understand the patterns of use of medical services [Cohen *et al.*, 2009], an example we will revisit in this paper.

Our goal in this paper is to evaluate and mitigate an unintended consequence that such diversity constraints may have on the outcomes of set selection and ranking algorithms. Namely, we want to ensure that these algorithms do not systematically select lower-quality items in particular groups. In what follows, we make our set-up more precise.

Given a set of items, each associated with multiple sensitive attribute labels and with a quality score (or utility), a set selection algorithm needs to select k of these items aiming to maximize the overall utility, computed as the sum of *utility scores* of selected items. The score of an item is a single scalar that may be pre-computed and stored as a physical attribute, or it may be computed on the fly. The output of traditional set selection algorithms, however, may lead to

loss balance

Looking at trade-offs

Balanced Ranking with Diversity Constraints

Ke Y ¹New York Un ²Dre ky630@ Abstract Many set selection and ranking cently been enhanced with *diver*

cently been enhanced with diver. aim to explicitly increase repres cally disadvantaged populations overall representativeness of th unintended consequence of thes ever, is reduced in-group fairnes didates from a given group m ones, and this unfairness may no across groups. In this paper v nomenon using datasets that con sitive attributes. We then introd straints, aimed at balancing the across groups, and formalize the tion problems as integer linear these programs, we conduct an uation with real datasets, and ble trade-offs between balance mance in the presence of diversi

parity in outcomes

gineering

^{du} IJCAI 2019

sociologists and political sciki, 2005]. Last but not least, ed to ensure dataset represenelecting a group of patients to edical treatment, or to underiedical services [Cohen *et al.*, isit in this paper.

evaluate and mitigate an unindiversity constraints may have tion and ranking algorithms. at these algorithms do not sys-/ items in particular groups. In -up more precise.

associated with multiple sena quality score (or utility), a to select k of these items aimtility, computed as the sum of s. The score of an item is a omputed and stored as a physnputed on the fly. The output

loss balance

Ranking with diversity constraints

Goal: pick k=4 candidates, including 2 of each gender, and at least one candidate per ethnicity, maximizing the total score of the selected candidates.

	Ma	ale	Fen	nale	
White	A (99)	B (98)	C (96)	D (95)	score=373
Black	E (91)	F (91)	G (90)	H (89)	
Asian	I (87)	J (87)	K (86)	L (83)	

Table 1: A set of 12 individuals with sensitive attributes race and gender. Each cell lists an individual's ID, and score in parentheses.

Problem: **In-group fairness fails** for Female (C and D not picked, which G and K are), Black (E and F are not picked, while G is), and Asian (I and J are not picked, while K is). **In-group fairness holds** for White and Male groups though (those with higher scores)!

Ranking with diversity constraints

Goal: pick k=4 candidates, including 2 of each gender, and at least one candidate per ethnicity, maximizing the total score of the selected candidates.

	Male		Female		
White	A (99)	B (98)	C (96)	D (95)	
Black	E (91)	F (91)	G (9())	H (89)	score - 372
Asian	I (87)	J (87)	K (86)	L (83)	30010-072

Table 1: A set of 12 individuals with sensitive attributes race and gender. Each cell lists an individual's ID, and score in parentheses.

Problem: **In-group fairness fails** for Female (C and D not picked, which G and K are), Black (E and F are not picked, while G is), and Asian (I and J are not picked, while K is). **In-group fairness holds** for White and Male groups though (those with higher scores)!

Insight: while in-group fairness will inevitably fail to some extent because of diversity constraints, this loss should be **balanced** across groups.

towards algorithmic transparency

Point 1

algorithmic transparency is not synonymous with releasing the source code

publishing source code helps, but it is sometimes unnecessary and often insufficient

The Vacca bill

Int. No. 1696

8/16/2017

By Council Member Vacca

A Local Law to amend the administrative code of the city of New York, in relation to automated processing of data for the purposes of targeting services, penalties, or policing to persons

Be it enacted by the Council as follows:

- 1 Section 1. Section 23-502 of the administrative code of the city of New York is amended
- 2 to add a new subdivision g to read as follows:
- 3 g. Each agency that uses, for the purposes of targeting services to persons, imposing
- 4 penalties upon persons or policing, an algorithm or any other method of automated processing
- 5 system of data shall:
- 6 1. Publish on such agency's website, the source code of such system; and
- 7 2. Permit a user to (i) submit data into such system for self-testing and (ii) receive the
- 8 results of having such data processed by such system.
- 9 § 2. This local law takes effect 120 days after it becomes law.

MAJ LS# 10948 8/16/17 2:13 PM

this is **NOT** what was adopted

Julia Stoyanovich

Point 2

algorithmic transparency requires data transparency

data is used in training, validation, deployment

validity, accuracy, applicability can only be understood in the data context

data transparency is necessary for all ADS, not only for ML-based systems

Point 3

data transparency is not synonymous with making all data public

release data whenever possible;

also release:

data selection, collection and pre-processing methodologies; data provenance and quality information; known sources of bias; privacypreserving statistical summaries of the data

Data Synthesizer

[Ping, Stoyanovich, Howe SSDBM 2017]

http://demo.dataresponsibly.com/synthesizer/

Julia Stoyanovich

Data Synthesizer

TOPICS GOVTECH BIZ NAVIGATOR PAPERS MAGAZINE

MetroLab "Innovation of the Month"

SECURITY

University Researchers Use 'Fake' Data for Social Good

Virtually every interaction we have with a public agency creates a data point. Amass enough data points and they can tell a story. However, factors like privacy, data storage and usability present challenges for local governments and researchers interested in helping improve services. In this installment of MetroLab's Innovation of the Month series, we highlight how researchers at Data Responsibly are addressing those challenges by creating synthetic data sets for social good.

BY BEN LEVINE / NOVEMBER 7, 2017

Since its development, the tool has been receiving a lot of attention. For example: T-Mobile is interested in generating synthetic data to better engage with researchers and improve transparency for customers, the Colorado Department of Education has asked relevant agencies to use the tool to experiment with sharing sensitive data, and Elsevier is interested in using the tool to generate synthetic citation networks for research.

http://www.govtech.com/security/University-Researchers-Use-Fake-Data-for-Social-Good.html

Data Synthesizer

[Ping, Stoyanovich, Howe SSDBM 2017]

http://demo.dataresponsibly.com/synthesizer/

An Algorithmic Approach to Correct Bias in Urban Transportation Datasets

To assuage these concerns for private urban transportation companies, researchers have <u>developed an algorithm</u> that removes selected biases from datasets while retaining the utility of the data. The researchers include **Julia Stoyanovich***, CDS Assistant Professor of Data Science, Computer Science and Engineering, along with **Luke Rodriguez**, **Babak Salimi**, and **Bill Howe** from University of Washington, and **Haoye Ping** from Drexel University.

Point 4

actionable transparency requires interpretability

explain assumptions and effects, not details of operation

engage the public - technical and non-technical

Transparency with "nutritional labels"

[Yang, Stoyanovich et al. ACM SIGMOD 2018]

|--|

Attribute

PubCount

Faculty

GRE

Top-K

Top-10

Overall

Recipe

Recipe			→
Тор 10:			
Attribute	Maximum	Median	Minimum
PubCount	18.3	9.6	6.2
Faculty	122	52.5	45
GRE	800.0	796.3	771.9
Overall:			
Attribute	Maximum	Median	Minimum
PubCount	18.3	2.9	1.4
Faculty	122	32.0	14
GRE	800.0	790.0	757.8

Stability

Stability

Stable

Stable

Weight

1.0

1.0

	Attribute	Correlation	
	PubCount	1.0	₽
	CSRankingAllArea	0.24	
	Faculty	0.12	
	Correlation strength is based on its absolu between 0.25 and 0.75 is medium, under	ute value. Correlation over 0.7 0.25 is low.	5 is higl
	Diversity overall		
=	Regional Code \equiv	DeptSizeBin	Ξ

NE
 W
 MW
 SA
 SC

FA*IR

Fair

Unfair

Unfair when p-value of corresponding statistical test <= 0.05

Fairness

DeptSizeBir

Large

Small

Large Small

 ${oldsymbol {O}}$

R

Proportion

Unfair

 \odot

(*

Ingredients

← Ingredients

⇒

Тор 10:					
Attribute	Maximum	Median	Minimum		
PubCount	18.3	9.6	6.2		
CSRankingAllArea	13	6.5	1		
Faculty	122	52.5	45		

Overall:

Maximum	Median	Minimum
18.3	2.9	1.4
48	26.0	1
122	32.0	14
	Maximum 18.3 48 122	Maximum Median 18.3 2.9 48 26.0 122 32.0

← Fairness						
	F	FA*IR	Pairw	ise	Propor	tion
DeptSizeBin	p-value	adjusted α	p-value	α	p-value	α
Large	1.0	0.87	0.99	0.05	1.0	0.05
Small	0.0	0.71	0.0	0.05	0.0	0.05

Top K = 26 in FA*IR and Proportion oracles. Setting of top K: In FA*IR and Proportion oracle, if N > 200, set top K = 100. Otherwise set top K = 50%N. Pairwise oracle takes whole ranking as input. FA*IR is computed as using code in FA*IR codes. Proportion is implemented as statistical test 4.1.3 in Proportion paper.

http://demo.dataresponsibly.com/rankingfacts/nutrition_facts/

Julia Stoyanovich

Point 5

transparency by design, not as an afterthought

provision for transparency and interpretability at every stage of the data lifecycle

useful internally during development, for communication and coordination between agencies, and for accountability to the public

Frog's eye view

but where does the data come from?

The data science lifecycle

responsible data science requires a holistic view of the data lifecycle

Fides: responsibility by design

	Sharing and Curation	Annotation Anonymization	Systems support for responsible data science
es	Integration	Triage Alignment Transformation	Responsibility by design , managed at all stages of the
Fic	Processing	Querying Ranking Analytics	lifecycle of data-intensive applications
	Verification and compliance	Provenance Explanations	Applications: data science for social good

[BIGDATA] Foundations of responsible data management 09/2017->

[HDR DIRSE-FW] Framework for integrative data equity systems 09/2019-

teaching responsible data science

DS-GA 3001.009: Special Topics in Data Science: Responsible Data Science

New York University, Center for Data Science, Spring 2019

Course Description:

The first wave of data science focused on accuracy and efficiency – on what we *can* do with data. The second wave focuses on responsibility – on what we *should* and *shouldn't* do. Irresponsible use of data science can cause harm on an unprecedented scale. Algorithmic changes in search engines can sway elections and incite violence; irreproducible results can influence global economic policy; models based on biased data can legitimize and amplify racist policies in the criminal justice system; algorithmic hiring practices can silently and scalably violate equal opportunity laws, exposing companies to lawsuits and reinforcing the feedback loops that lead to lack of diversity. Therefore, as we develop and deploy data science methods, we are compelled to think about the effects these methods have on individuals, population groups, and on society at large.

Responsible Data Science is a technical course that tackles the issues of ethics, legal compliance, data quality, algorithmic fairness and diversity, transparency of data and algorithms, privacy, and data protection. The course is developed and taught by Julia Stoyanovich, Assistant Professor at the Center for Data Science and at the Tandon School of Engineering, and member of the NYC Automated Decision Systems Task Force.

Prerequisites: Introduction to Data Science, Introduction to Computer Science, or similar courses.

Teaching RDS

- **Topic cover the data science lifecycle**, not only the final mile of data analysis
 - fairness, diversity, transparency, interpretability
 - privacy, data protection
 - data profiling, data cleaning, *plan to add data integration*
 - legal frameworks, codes of ethics, professional responsibility

Teaching RDS

- Stand-alone technical courses
 - Designed and delivered a graduate course at the Center for Data Science (CDS) at NYU, Spring 2019
 - Designed an undergraduate course at NYU CDS, a requirement of the new BS in DS, will be offered in Spring 2020
- Modules (readings, slides, assignments) integrated into undergraduate and graduate courses:
 - (M1) Intro to RDS, (M2) Fairness, (M3) Transparency, (M4) Data Protection
- All materials available at dataresponsibly.github.io

Data Science offerings at NYU

The Center for Data Science (CDS) @ NYU - an independent Provostial unit, established in 2012

Degrees: MS, PhD (started in 2017), **BS** (started in 2019)

Gender diversity: 38-49% female MS classes, 25-50% female PhD classes (representative of the proportion of female applicants)

[NSF NRT] FUTURE: Foundations, Translation, Responsibility for Data Science Impact, 09/2019-

The punchline

Data science is algorithmic, therefore it cannot be biased! And yet...

- All traditional evils of discrimination, and many new ones, exhibit themselves in the data science ecosystem
- Transparency helps prevent discrimination, enable public debate, establish trust

http://www.allenovery.com/publications/ en-gb/Pages/Protected-characteristicsand-the-perception-reality-gap.aspx

 Technology alone won't do: also need regulation and civic engagement

responsible data science is our new frontier!

Codes of ethics

ACM Code of Ethics and Professional Conduct

ACM Code of Ethics and Professional Conduct

Preamble

Computing professionals' actions change the world. To act responsibly, they should reflect upon the wider impacts of their work, consistently supporting the public good. The ACM Code of Ethics and Professional Conduct ("the Code") expresses the conscience of the profession.

The Code is designed to inspire and guide the ethical conduct of all computing professionals, including current and aspiring practitioners, instructors, students, influencers, and anyone who uses computing technology in an impactful way. Additionally, the Code serves as a basis for remediation when violations occur. The Code includes principles formulated as statements of responsibility, based on the understanding that the public good is always the primary consideration. Each principle is supplemented by guidelines, which provide explanations to assist computing professionals in understanding and applying the principle.

Section 1 outlines fundamental ethical principles that form the basis for the remainder of the Code. Section 2 addresses additional, more specific considerations of professional responsibility. Section 3 guides individuals who have a leadership role, whether in the workplace or in a volunteer professional capacity. Commitment to ethical conduct is required of every ACM member, and principles involving compliance with the Code are given in Section 4.

The Code as a whole is concerned with how fundamental ethical principles apply to a computing professional's conduct. The Code is not an algorithm for solving ethical problems; rather it serves as a basis for ethical decision-making. When thinking through a particular issue, a computing professional may find that multiple principles should be taken into account, and that different principles will have different relevance to the issue. Questions related to these kinds of issues can best be answered by thoughtful consideration of the fundamental ethical principles, understanding that the public good is the paramount consideration. The entire computing profession benefits when the ethical decision-making process is accountable to and transparent to all stakeholders. Open discussions about ethical issues promote this accountability and transparency.

PDF of the ACM Code of Ethics 🖻

On This Page

Preamble

1. GENERAL ETHICAL PRINCIPLES.

1.1 Contribute to society and to human well-being, acknowledging that all people are stakeholders in computing.

1.2 Avoid harm.

1.3 Be honest and trustworthy.

1.4 Be fair and take action not to discriminate.

1.5 Respect the work required to produce new ideas, inventions, creative works, and computing artifacts.

1.6 Respect privacy.

1.7 Honor confidentiality.

2. PROFESSIONAL RESPONSIBILITIES.

2.1 Strive to achieve high quality in both the processes and products of professional work.

2.2 Maintain high standards of

Julia Stoyanovich

Three principles

THE BELMONT REPORT

Office of the Secretary

Ethical Principles and Guidelines for the Protection of Human Subjects of Research

The National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research

April 18, 1979

Respect for persons

Beneficence

Justice

dataresponsibly.github.io

@stoyanoj

ADS example

- **Allocate** interventions: services and support mechanisms
- **Recommend** pathways through the system
- **Evaluate** effectiveness of interventions, pathways, over-all system

How do we get the data?

- A multitude of datasets gathered from local communities, data is weakly structured: inconsistencies, missing values, hidden and apparent bias
- Some data was anonymized, other data was not shared in fear of violating regulations or the trust of participants
- Shared data was **triaged**, **aligned**, **integrated** (ETL + SQL)
- Integrated data was then filtered (SQL) and prioritized (sorted/ ranked), and only then passed as input to the learning module

Mayor de Blasio Scrambles to Curb Homelessness After Years of Not Keeping Pace

By J. DAVID GOODMAN and NIKITA STEWART JAN. 13, 2017

The New York Times

https://www.nytimes.com/2017/01/13/ nyregion/mayor-de-blasio-scrambles-tocurb-homelessness-after-years-of-notkeeping-pace.html

Volunteers during the homeless census in February 2015. In a decision made by Mayor Bill de Blasio, New York City stopped opening shelters for much of that year. Stephanie Keith for The New York Times

Ms. Glen emphasized that the construction of new housing takes several years, a long-term solution whose effect on homelessness could not yet be evaluated.

Homeless Young People of New York, Overlooked and Underserved

By NIKITA STEWART FEB. 5, 2016

Abdul, 23, at Safe Horizon in Harlem, has been homeless since 2010. Jake Naughto

The New York Times

https://www.nytimes.com/ 2016/02/06/nyregion/youngand-homeless-in-new-yorkoverlooked-andunderserved.html

Last year, the total number of sheltered and unsheltered homeless people in the city was 75,323, which included 1,706 people between ages 18 and 24. The actual number of young people is significantly higher, according to the service providers, who said the census mostly captured young people who received social services. The census takers were not allowed to enter private businesses, including many of the late-night spots where young people often create an ad hoc shelter by pretending to be customers.

Mitigating urban homelessness

finding: women are underrepresented in the fix the model! favorable outcome groups (group fairness)

of course, but maybe... the input was generated with:

select * from R
where status = 'unsheltered'
and length > 2 month

10% female 40% female

Mitigating urban homelessness

finding: young people are recommended fix the model! pathways of lower effectiveness (high error rate)

of course, but maybe...

mental health info was missing for this population

go back to the data acquisition step, look for additional datasets

Mitigating urban homelessness

finding: minors are underrepresented in the input, compared to their actual proportion in the population (insufficient data)

unlikely to help!

fix the model??

minors data was not shared

go back to the data sharing step, help data providers share their data while adhering to laws and upholding the trust of the participants