
DS-GA 3001.009: Responsible Data Science 

Algorithmic Fairness (continued)

Prof. Julia Stoyanovich
Center for Data Science

Computer Science and Engineering at Tandon

@stoyanoj

http://stoyanovich.org/
https://dataresponsibly.github.io/

https://dataresponsibly.github.io/courses/spring20/ 



fairness in risk 
assessment

 2



Title Text

Julia Stoyanovich

Title Text

�3

New Jersey bail reform
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• A risk assessment tool gives a probability estimate of a 
future outcome 

• Used in many domains:  

• insurance, criminal sentencing, medical testing, hiring, 
banking 

• also in less-obvious set-ups, like online advertising 

• Fairness is concerned with how different kinds of error are 
distributed among sub-populations

• Recall our discussion on fairness in classification - similar? 
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Fairness in risk assessment
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https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Racial bias in criminal sentencing
A commercial tool COMPAS 
automatically predicts some 
categories of future crime to assist in 
bail and sentencing decisions.  It is 
used in courts in the US.
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• Calibration 

• Balance for the positive class 

• Balance for the negative class
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Desirable properties of risk tools
[J. Kleinberg, S. Mullainathan, M. Raghavan; ITCS (2017)]

can we have all these properties?

“risk assessment tool / instrument” = “risk tool / instrument” 
for brevity in the rest of today’s slides
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Calibration

given the output of a risk tool, likelihood of belonging to 
the positive class is independent of group membership

positive
outcomes:

do recidivate

risk score
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0.6 means 0.6 for any defendant - likelihood of recidivism

why do we want calibration?
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COMPAS is well-calibrated: in the window around 40%, 
the fraction of defendants who were re-arrested is ~40%, 
both over-all and per group.

�8

Calibration in COMPAS

Figure 1: Top: distribution of risk scores for Broward
County data (le�), and simulated data drawn from two beta
distributions with equal means (right). Bottom: using a sin-
gle threshold which detains 30% of defendants in Broward
County violates statistical parity (as measured by detention
rate), predictive equality (false positive rate), and condi-
tional statistical parity (detention rate conditional on num-
ber of prior arrests). We omit the last measure for the sim-
ulated data since that would require making additional as-
sumptions about the relationship of priors and risk in the
hypothetical populations.

�e reason for these disparities is that white and black defen-
dants in Broward County have di�erent distributions of risk, pY |X ,
as shown in Figure 1. In particular, a greater fraction of black de-
fendants have relatively high risk scores, in part because black
defendants are more likely to have prior arrests, which is a strong
indicator of reo�ending. Importantly, while an algorithm designer
can choose di�erent decision rules based on these risk scores, the
algorithm cannot alter the risk scores themselves, which re�ect
underlying features of the population of Broward County.

Once a decision threshold is speci�ed, these risk distributions
determine the statistical properties of the decision rule, including
the group-speci�c detention and false positive rates. In theory, it is
possible that these distributions line up in a way that achieves sta-
tistical parity or predictive equality, but in practice that is unlikely.
Consequently, any decision rule that guarantees these various fair-
ness criteria are met will in practice deviate from the unconstrained
optimum.

Kleinberg et al. [29] establish the incompatibility of di�erent
fairness measures when the overall risk Pr(Y = 1 | �(X ) = �i ) dif-
fers between groups �i . However, the tension we identify between
maximizing public safety and satisfying various notions of algorith-
mic fairness typically persists even if groups have the same overall
risk. To demonstrate this phenomenon, Figure 1 shows risk score
distributions for two hypothetical populations with equal average
risk. Even though their means are the same, the tail of the red dis-
tribution is heavier than the tail of the blue distribution, resulting
in higher detention and false positive rates in the red group.

�at a single decision threshold can, and generally does, result in
racial disparities is closely related to the notion of infra-marginality

Figure 2: Recidivism rate by COMPAS risk score and race.
White and black defendants with the same risk score are
roughly equally likely to reo�end, indicating that the scores
are calibrated. �e �-axis shows the proportion of defen-
dants re-arrested for any crime, including non-violent of-
fenses; the gray bands show 95% con�dence intervals.

in the econometric literature on taste-based discrimination [3, 4,
34, 37]. In that work, taste-based discrimination [6] is equated
with applying decision thresholds that di�er by race. �eir se�ing
is human, not algorithmic, decision making, and so one cannot
directly observe the thresholds being applied; the goal is thus to
infer the thresholds from observable statistics. �ough intuitively
appealing, detention rates and false positive rates are poor proxies
for the thresholds: these infra-marginal statistics consider average
risk above the thresholds, and so can di�er even if the thresholds
are identical (as shown in Figure 1). In the algorithmic se�ing, past
fairness measures notably focus on these infra-marginal statistics,
even though the thresholds themselves are directly observable.

6 DETECTING DISCRIMINATION
�e algorithms we have thus far considered output a decision d(x)
for each individual. In practice, however, algorithms like COMPAS
typically output a score s(x) that is claimed to indicate a defendant’s
risk pY |X ; decision makers then use these risk estimates to select
an action (e.g., release or detain).

In some cases, neither the procedure nor the data used to gener-
ate these scores is disclosed, prompting worry that the scores are
themselves discriminatory. To address this concern, researchers
o�en examine whether scores are calibrated [29], as de�ned by
Eq. (4).10 Since the true probabilities pY |X are necessarily cali-
brated, it is reasonable to expect risk estimates that approximate
these probabilities to be calibrated as well. Figure 2 shows that the
COMPAS scores indeed satisfy this property. For example, among
defendants who scored a seven on the COMPAS scale, 60% of white
defendants reo�ended, which is nearly identical to the 61% percent
of black defendants who reo�ended.

However, given only scores s(x) and outcomes �, it is impossible
to determine whether the scores are accurate estimates of pY |X
10Some researchers also check whether the AUC of scores is similar across race
groups [38]. �e theoretical motivation for examining AUC is less clear, since the true
risk distributions might have di�erent AUCs, a pa�ern that would be reproduced in
scores that approximate these probabilities. In practice, however, one might expect
the true risk distributions to yield similar AUCs across race groups—and indeed this is
the case for the Broward County data.

[plot from Corbett-Davies et al.; KDD 2017]

Predictive parity (also called calibration) 
an risk tool identifies a set of instances as having probability x of 

constituting positive instances, then approximately an x fraction of this 
set are indeed positive instances, over-all and in sub-populations

[J. Kleinberg, S. Mullainathan, M. Raghavan; ITCS 2017]
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• Balance for the positive class: Positive instances are those who 
go on to re-offend. The average score of positive instances 
should be the same across groups. 

• Balance for the negative class: Negative instances are those 
who do not go on to re-offend. The average score of negative 
instances should be the same across groups.  

• Generalization of: Both groups should have equal false positive 
rates and equal false negative rates.

• Different from statistical parity!

�9

Balance
[J. Kleinberg, S. Mullainathan, M. Raghavan; ITCS 2017]

the chance of making a mistake does not depend on race
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• For each group, a vb fraction in each bin b is positive 

• Average score of positive class same across groups 

• Average score of negative class same across groups

�10

Desiderata, re-stated
[J. Kleinberg, S. Mullainathan, M. Raghavan; ITCS (2017)]

can we have all these properties?
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• Perfect information: the tool knows who recidivates 
(score 1) and who does not (score 0)

• Equal base rates: the fraction of positive-class people 
is the same for both groups

�11

Achievable only in trivial cases 
[J. Kleinberg, S. Mullainathan, M. Raghavan; ITCS (2017)]

a negative result, need tradeoffs 

https://www.youtube.com/watch?v=UUC8tMNxwV8
proof sketched out in (starts 12 min in)

cannot even find a good approximate solution
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Group fairness impossibility result
[A. Chouldechova; arXiv:1610.07524v1 (2017)]

If a predictive instrument satisfies predictive parity, but the prevalence of the 
phenomenon differs between groups, then the instrument cannot achieve equal 

false positive rates and equal false negative rates across these groups

What is recidivism?: Northpointe [the maker of COMPAS] defined 
recidivism as “a finger-printable arrest involving a charge and a filing 
for any uniform crime reporting (UCR) code.”

https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm

Recidivism rates in the ProPublica dataset are higher for 
the black group than for the white group
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Fairness for whom?

labeled 
low-risk

labeled 
high-risk

did not 
recidivate TN FP

recidivated FN TP

Decision-maker: of those 
I’ve labeled high-risk, how 
many will recidivate? 

Defendant: how likely am I 
to be incorrectly classified 
high-risk? 

Society: (think positive 
interventions) is the 
selected set 
demographically 
balanced?

different metrics matter to different stakeholders

based on a slide by Arvind Narayanan

h"ps://www.propublica.org/ar2cle/propublica-responds-to-
companys-cri2que-of-machine-bias-story	
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Impossibility theorem
based on a slide by Arvind Narayanan

Metric Equalized under 

Selection probability Demographic parity 

Pos. predictive value Predictive parity 

Neg. predictive value 

False positive rate Error rate balance 

False negative rate Error rate balance 

Accuracy Accuracy equity 

Chouldechova 
paper 

All these metrics can be expressed in terms of FP, FN, TP, TN 

If these metrics are equal for 2 groups, some trivial algebra shows 
that the prevalence (in the COMPAS example, of recidivism, as 
measured by re-arrest) is also the same for 2 groups 

Nothing special about these metrics, can pick any 3!
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Ways to evaluate binary classifiers
based on a slide by Arvind Narayanan

364 impossibility theorems :)
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Individual fairness
based slides by Arvind Narayanan

Individual fairness: assuming 
scores are calibrated, we cannot 
pick a single threshold for 2 
groups that equalizes both the 
False Positives Rate and the 
False Negatives Rate
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What’s the right answer? 

• Consider harms and benefits to different stakeholders 

• Being transparent about which fairness criteria we use, how we 
trade them off 

• Recall “Learning Fair Representations”: a typical ML approach

There is no single answer!  

Need transparency and public debate

L = Az ⋅Lz + Ax ⋅Lx + Ay ⋅Ly
group 

fairness
individual
fairness utility

apples + oranges + fairness = ?



causal interpretations 
of fairness
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Effect on sub-populations

grad school admissions
admitted denied

F 1512 2809

M 3715 4727ge
nd

er

positive 
outcomes

35%  
of women 

44%  
of men

Simpson’s paradox
disparate impact at the full population level disappears or reverses 

when looking at sub-populations!

UC Berkeley 1973: it appears men were admitted at higher rate.
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Effect on sub-populations
Simpson’s paradox

disparate impact at the full population level disappears or reverses 
when looking at sub-populations!

ge
nd

er
whole

population

35%  
of women 

44%  
of men

women

favored group

women
men

women
men

women

UC Berkeley 1973: women applied to more competitive departments,  
with low rates of admission among qualified applicants.  
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Cannot claim a causal relationship based on 
observational data alone.  Need a story.

from Pearl’s “Causality”, page 129

X2 (choice)  - “resolving variable”, 
then the effect of X1 on Y through X2 is “fair”

the direct effect of X1 on Y is unfair
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Causal interpretations of fairness

arrows represent possible causal relationships

we (society) decide which of these are “OK”

[T.J. VanderWeele and W.R. Robinson; Epidemiology (2014)]



fairness in ranking
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Fairness in ranking

       Input: database of items (individuals, colleges, cars, …) 

Score-based ranker: computes the score of each item using a 
known formula, then sorts items on score 

Output: permutation of the items (complete or top-k)

id sex race age cat

a F W 25 T

b F B 23 S

c M W 27 T

d M B 45 S

e M W 60 U

ranker

What is a positive outcome in a ranking?
Idea: Rankings are relative, fairness measures should be rank-aware

[K. Yang & J. Stoyanovich, FATML (2016)]
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The order of things
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Rankings are not benign. They enshrine very particular ideologies, 
and, at a time when American higher education is facing a crisis of 
accessibility and affordability, we have adopted a de-facto standard of 
college quality that is uninterested in both of those factors. And why? 
Because a group of magazine analysts in an office building in 
Washington, D.C., decided twenty years ago to value selectivity over 
efficacy, to use proxies that scarcely relate to what they’re meant to be 
proxies for, and to pretend that they can compare a large, diverse, 
low-cost land-grant university in rural Pennsylvania with a small, 
expensive, private Jewish university on two campuses in Manhattan. 

Rankings are not benign!
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Location-location-location

gender is the sensitive attribute, input is balanced

rank% gender%
1" M"
2" M"
3" F"
4" M"
5" M"
6" F"
7" M"
8" F"
9" F"
10" F"

rank% gender%
1" M"
2" M"
3" M"
4" M"
5" M"
6" F"
7" F"
8" F"
9" F"
10" F"

rank% gender%
1" M"
2" F"
3" M"
4" F"
5" M"
6" F"
7" M"
8" F"
9" M"
10" F"

f = 0.3 f = 0.5f = 0

[K. Yang & J. Stoyanovich, FATML (2016)]

parity in outcomes
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Rank-aware fairness
[K. Yang & J. Stoyanovich, FATML (2016)]



Title Text

Julia Stoyanovich

Title Text

�29

In an optimization framework
[K. Yang & J. Stoyanovich, FATML (2016)]
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Designing fair rankers
[A. Asudeh, HV Jagadish, J. Stoyanovich, G. Das; ACM SIGMOD (2019)]

id sex race age cat

a F W 25 T

b F B 23 S

c M W 27 T

d M B 45 S

e M W 60 U

ranker

oracle

1 2

3
4

4
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More fairness in ranking

�31

ACM SIGMOD 2019

parity in outcomes
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Score-based rankers
[A. Asudeh, HV Jagadish, J. Stoyanovich, G. Das; ACM SIGMOD (2019)]

•  tuple x in D; score(x): sum of attribute values, with non-negative 
weights (a common special case of monotone aggregation) 

•  weights subjectively chosen by a user: 0.5 g+ 0.5s, where g - 
normalized GPA, s - normalized SAT; why not 0.45 g + 0.55 s?

6 
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Geometry of a (2D) ranker
[A. Asudeh, HV Jagadish, J. Stoyanovich, G. Das; ACM SIGMOD (2019)]

6 

• tuples are points in 2D, scoring functions are rays starting from the origin  

•  to determine a ranking of the points, we read it off from the projections of the 
points onto the ray of the scoring function, walking the ray towards the origin 

•  examples: f (x) = x1 + x2 f (x) = x1 f (x) = x2
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Goal: find a satisfactory function
[A. Asudeh, HV Jagadish, J. Stoyanovich, G. Das; ACM SIGMOD (2019)]

How might we approach this?  Why is this difficult?
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Ordering exchange
[A. Asudeh, HV Jagadish, J. Stoyanovich, G. Das; ACM SIGMOD (2019)]

Key idea: only look at scoring functions that change the relative 
order between some pair of points.  These are the only points where 
the fairness oracle may change its mind!

t1 1,2 t2 2,1 t2 ≻x t1 t2 ≺ y t1t2 = x+ y t1

An ordering exchange is a set of functions that score a pair of 
points equally.  In 2D, it corresponds to a single function.



Title Text

Julia Stoyanovich

Title Text

�36

Outline of approach
[A. Asudeh, HV Jagadish, J. Stoyanovich, G. Das; ACM SIGMOD (2019)]

Pre-processing

• Transform the original space into the dual 
space (in 2D, points become lines)  

• Sort points per f(x)=x; compute ordering 
exchanges between adjacent pairs of 
points 

• Sweep the space with a ray from the x-axis 
to the y-axis, find satisfactory regions
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Outline of approach
[A. Asudeh, HV Jagadish, J. Stoyanovich, G. Das; ACM SIGMOD (2019)]

At query time

• Look for a satisfactory region closest to the 
query function 

• In 2D, this is simply binary search 

• Beyond 2D, everything is hard, and expensive 
to compute
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And lots more algorithmic + systems work
[A. Asudeh, HV Jagadish, J. Stoyanovich, G. Das; ACM SIGMOD (2019)]

• Multi-dimensional indexing methods for “arrangement 
construction” 

• Sampling of items (does work), sampling of functions (doesn’t 
work) to speed up index construction 

• Experiments on COMPAS and on US Department of 
Transportation (DOT) - flights / airlines - datasets 

Follow-up work on designing fair ranking functions
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Looking at trade-offs
[K. Yang,  V. Gkatzelis, J. Stoyanovich, IJCAI (2019)]

Balanced Ranking with Diversity Constraints

Ke Yang
1˚ , Vasilis Gkatzelis

2 , Julia Stoyanovich
1

1New York University, Department of Computer Science and Engineering
2Drexel University, Department of Computer Science

ky630@nyu.edu, gkatz@drexel.edu, stoyanovich@nyu.edu

Abstract

Many set selection and ranking algorithms have re-
cently been enhanced with diversity constraints that
aim to explicitly increase representation of histori-
cally disadvantaged populations, or to improve the
overall representativeness of the selected set. An
unintended consequence of these constraints, how-
ever, is reduced in-group fairness: the selected can-
didates from a given group may not be the best
ones, and this unfairness may not be well-balanced
across groups. In this paper we study this phe-
nomenon using datasets that comprise multiple sen-
sitive attributes. We then introduce additional con-
straints, aimed at balancing the in-group fairness
across groups, and formalize the induced optimiza-
tion problems as integer linear programs. Using
these programs, we conduct an experimental eval-
uation with real datasets, and quantify the feasi-
ble trade-offs between balance and overall perfor-
mance in the presence of diversity constraints.

1 Introduction

The desire for diversity and fairness in many contexts, rang-
ing from results of a Web search to admissions at a univer-
sity, has recently introduced the need to revisit algorithm de-
sign in these settings. Prominent examples include set selec-
tion and ranking algorithms, which have recently been en-
hanced with diversity constraints [Celis et al., 2018; Drosou
et al., 2017; Stoyanovich et al., 2018; Zehlike et al., 2017;
Zliobaite, 2017]. Such constraints focus on groups of items
in the input that satisfy a given sensitive attribute label, typi-
cally denoting membership in a demographic group, and seek
to ensure that these groups are appropriately represented in
the selected set or ranking. Notably, each item will often be
associated with multiple attribute labels (e.g., an individual
may be both female and Asian).

Diversity constraints may be imposed for legal reasons,
such as for compliance with Title VII of the Civil Rights Act
of 1964 [(EEOC), 2019]. Beyond legal requirements, benefits
of diversity, both to small groups and to society as a whole,

˚Contact Author

are increasingly recognized by sociologists and political sci-
entists [Page, 2008; Surowiecki, 2005]. Last but not least,
diversity constraints can be used to ensure dataset represen-
tativeness, for example when selecting a group of patients to
study the effectiveness of a medical treatment, or to under-
stand the patterns of use of medical services [Cohen et al.,
2009], an example we will revisit in this paper.

Our goal in this paper is to evaluate and mitigate an unin-
tended consequence that such diversity constraints may have
on the outcomes of set selection and ranking algorithms.
Namely, we want to ensure that these algorithms do not sys-
tematically select lower-quality items in particular groups. In
what follows, we make our set-up more precise.

Given a set of items, each associated with multiple sen-
sitive attribute labels and with a quality score (or utility), a
set selection algorithm needs to select k of these items aim-
ing to maximize the overall utility, computed as the sum of
utility scores of selected items. The score of an item is a
single scalar that may be pre-computed and stored as a phys-
ical attribute, or it may be computed on the fly. The output
of traditional set selection algorithms, however, may lead to
an underrepresentation of items with a specific sensitive at-
tribute. As a result, recent work has aimed to modify these
algorithms with the goal of introducing diversity.

There are numerous ways to define diversity. For set selec-
tion, a unifying formulation for a rich class of proportional
representation fairness [Zliobaite, 2017] and coverage-based
diversity [Drosou et al., 2017] measures is to specify a lower
bound `v for each sensitive attribute value v, and to enforce it
as the minimum cardinality of items satisfying v in the output
[Stoyanovich et al., 2018]. If the k selected candidates need
to also be ranked in the output, this formulation can be ex-
tended to specify a lower bound `v,p for every attribute v and
every prefix p of the returned ranked list, with p § k [Celis et

al., 2018]. Then, at least `v,p items satisfying v should appear
in the top p positions of the output. We refer to all of these
as diversity constraints in the remainder of this paper. Given
a set of diversity constraints, one can then seek to maximize
the utility of the selected set, subject to these constraints.

As expected, enforcing diversity constraints often comes at
a price in terms of overall utility. Furthermore, the following
simple example exhibits that, when faced with a combination
of diversity constraints, maximizing utility subject to these
constraints can lead to another form of imbalance.

IJCAI 2019

parity in outcomes loss balance
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Ranking with diversity constraints
[K. Yang,  V. Gkatzelis, J. Stoyanovich, IJCAI (2019)]

Male Female

White A (99) B (98) C (96) D (95)
Black E (91) F (91) G (90) H (89)
Asian I (87) J (87) K (86) L (83)

Table 1: A set of 12 individuals with sensitive attributes race and
gender. Each cell lists an individual’s ID, and score in parentheses.

Example 1 Consider 12 candidates who are applying for

k “ 4 committee positions. Table 1 illustrates this example

using a letter from A to L as the candidate ID and specifying

the ethnicity, gender, and score of each candidate (e.g., can-

didate E is a Black male with a score of 91). Suppose that the

following diversity constraints are imposed: the committee

should include two male and two female candidates, and at

least one candidate from each race. In this example both race

and gender are strongly correlated with the score: White can-

didates have the highest scores, followed by Black and then

by Asian. Further, male candidates of each race have higher

scores than female candidates of the same race.

The committee that maximizes utility while satisfying the

diversity constraints is tA, B, G, Ku, with utility score 373.

Note that this outcome fails to select the highest-scoring fe-

male candidates (C and D), as well as the highest-scoring

Black (E and F) and Asian (I and J) candidates. This is in

contrast to the fact that it selects the best male and the best

White candidates (A and B). This type of “unfairness” is un-

avoidable due to the diversity constraints, but in this outcome

it hurts historically disadvantaged groups (e.g., females and

Black candidates) more. However, one can still try to dis-

tribute this unfairness in a more “balanced” way across dif-

ferent sensitive attribute values. For instance, an alternative

committee selection could be tA, C, E, Ku, with utility 372.

For only a small drop in utility, this ensures that the top fe-

male, male, White, and Black candidates are selected.

Example 1 illustrates that diversity constraints may in-
evitably lead to unfairness within groups of candidates. An
important concern is that, unless appropriately managed, this
unfairness may disproportionately affect demographic groups
with lower scores. This is particularly problematic when
lower scores are the result of historical disadvantage, as may,
for example, be the case in standardized testing [Brunn-Bevel
and Byrd, 2015]. In this paper, we focus on this phenomenon
and our goal is to provide measures for quantifying fairness
in this context, to which we refer as in-group fairness, and to
study the extent to which its impact can be balanced across
groups rather than disproportionately affect a few groups.

Contributions We make the following contributions:

• We observe that diversity constraints can impact in-
group fairness, and introduce two novel measures that
quantify this impact.

• We observe that the extent to which in-group fairness
is violated in datasets with multiple sensitive attributes
may be quite different for different attribute values.

• We translate each of our in-group fairness measures into
a set of constraints for an integer linear program.

• We experimentally evaluate the feasible trade-offs be-
tween balance and utility, under diversity constraints.

Organization. After providing the required definitions and
notation in Section 2, we introduce our notions of in-group
fairness in Section 3. We translate in-group fairness into con-
straints for an integer linear program in Section 4, and use the
leximin criterion to select the best feasible parameters. We
present experiments on real datsets in Section 5, discuss re-
lated work in Section 6, and conclude in Section 7.

2 Preliminaries and Notation

Both the set selection and the ranking problem are defined
given a set I of n items (or candidates), along with a score
si associated with each item i P I; this score summarizes the
qualifications or the relevance of each item. The goal of the
set selection problem is to choose a subset A Ñ I of k ! n
of these items aiming to maximize the total score

∞
iPA si.

The ranking problem, apart from selecting the items, also re-
quires that the items are ranked — assigned to distinct posi-
tions 1, 2, . . . , k. In this paper we study the impact of diver-
sity constraints that may be enforced on the outcome.

Each item is labeled based on a set Y of sensitive attributes.
For instance, if the items correspond to job candidates, the
sensitive attributes could be “race”, “gender”, or “national-
ity”. Each attribute y P Y may take one of a predefined
set (or domain) of values, or labels, Ly; for the attribute
“gender”, the set of values would include “male” and “fe-
male”. We refer to attributes that have only two values (e.g.,
the values tmale, femaleu for “gender”) as binary. We use
L “ î

yPY Ly to denote the set of all the attribute values
related to attributes in the set Y . (To simplify notation, we
assume that domains of attribute values do not overlap.)

Given a sensitive attribute value v P L, we let Iv Ñ I
denote the set of items that satisfy this label. For instance, if
v corresponds to the label “female”, then Iv is the set of all
female candidates. We refer to such a set Iv as a group (e.g.,
the group of female candidates). For each attribute value v
and item i P Iv , we let Ii,v “ tj P Iv : sj • siu be the
set of items with attribute value v that have a score greater
than or equal to si (including i); for simplicity, and without
loss of generality, we assume that no two scores are exactly
equal. In Example 1 if we let v correspond to the attribute
value “Black” and let i be candidate G, then Ii,v “ tE, F, Gu
and Si,v “ 272. We also use smax “ maxiPItsiu and smin “
miniPItsiu to denote the maximum and minimum scores over
all available items. Let � “ smax{smin be the ratio of the
maximum over the minimum score.

For a given selection, A, of k items, we use Av Ñ Iv to
denote the subset of items in Iv that are in A, and Bv Ñ Iv for
those that are not. Also, av “ miniPAvtsiu is the lowest score
among the ones that were accepted and bv “ maxiPBvtsiu
the highest score among the items in Iv that were rejected. We
say that a set selection of k items is in-group fair with respect
to v if bv § av , i.e., no rejected candidate in Iv is better than
an accepted one. In Section 3 we define two measures for
quantifying how in-group fair a solution is. Finally, we use
Ai,v “ Av X Ii,v to denote the set of selected items in Iv
whose score is at least si for some i P Av .

Goal: pick k=4 candidates, including 2 of each gender, and at 
least one candidate per ethnicity, maximizing the total score of the 
selected candidates.

score=373

Problem: In-group fairness fails for Female (C and D not picked, which 
G and K are), Black (E and F are not picked, while G is), and Asian (I and 
J are not picked, while K is). In-group fairness holds for White and Male 
groups though (those with higher scores)!  

Insight: while in-group fairness will inevitably fail to some extent because 
of diversity constraints, this loss should be balanced across groups.



Title Text

Julia Stoyanovich

Title Text

�41

[K. Yang,  V. Gkatzelis, J. Stoyanovich, IJCAI (2019)]

Male Female

White A (99) B (98) C (96) D (95)
Black E (91) F (91) G (90) H (89)
Asian I (87) J (87) K (86) L (83)

Table 1: A set of 12 individuals with sensitive attributes race and
gender. Each cell lists an individual’s ID, and score in parentheses.

Example 1 Consider 12 candidates who are applying for

k “ 4 committee positions. Table 1 illustrates this example

using a letter from A to L as the candidate ID and specifying

the ethnicity, gender, and score of each candidate (e.g., can-

didate E is a Black male with a score of 91). Suppose that the

following diversity constraints are imposed: the committee

should include two male and two female candidates, and at

least one candidate from each race. In this example both race

and gender are strongly correlated with the score: White can-

didates have the highest scores, followed by Black and then

by Asian. Further, male candidates of each race have higher

scores than female candidates of the same race.

The committee that maximizes utility while satisfying the

diversity constraints is tA, B, G, Ku, with utility score 373.

Note that this outcome fails to select the highest-scoring fe-

male candidates (C and D), as well as the highest-scoring

Black (E and F) and Asian (I and J) candidates. This is in

contrast to the fact that it selects the best male and the best

White candidates (A and B). This type of “unfairness” is un-

avoidable due to the diversity constraints, but in this outcome

it hurts historically disadvantaged groups (e.g., females and

Black candidates) more. However, one can still try to dis-

tribute this unfairness in a more “balanced” way across dif-

ferent sensitive attribute values. For instance, an alternative

committee selection could be tA, C, E, Ku, with utility 372.

For only a small drop in utility, this ensures that the top fe-

male, male, White, and Black candidates are selected.

Example 1 illustrates that diversity constraints may in-
evitably lead to unfairness within groups of candidates. An
important concern is that, unless appropriately managed, this
unfairness may disproportionately affect demographic groups
with lower scores. This is particularly problematic when
lower scores are the result of historical disadvantage, as may,
for example, be the case in standardized testing [Brunn-Bevel
and Byrd, 2015]. In this paper, we focus on this phenomenon
and our goal is to provide measures for quantifying fairness
in this context, to which we refer as in-group fairness, and to
study the extent to which its impact can be balanced across
groups rather than disproportionately affect a few groups.

Contributions We make the following contributions:

• We observe that diversity constraints can impact in-
group fairness, and introduce two novel measures that
quantify this impact.

• We observe that the extent to which in-group fairness
is violated in datasets with multiple sensitive attributes
may be quite different for different attribute values.

• We translate each of our in-group fairness measures into
a set of constraints for an integer linear program.

• We experimentally evaluate the feasible trade-offs be-
tween balance and utility, under diversity constraints.

Organization. After providing the required definitions and
notation in Section 2, we introduce our notions of in-group
fairness in Section 3. We translate in-group fairness into con-
straints for an integer linear program in Section 4, and use the
leximin criterion to select the best feasible parameters. We
present experiments on real datsets in Section 5, discuss re-
lated work in Section 6, and conclude in Section 7.

2 Preliminaries and Notation

Both the set selection and the ranking problem are defined
given a set I of n items (or candidates), along with a score
si associated with each item i P I; this score summarizes the
qualifications or the relevance of each item. The goal of the
set selection problem is to choose a subset A Ñ I of k ! n
of these items aiming to maximize the total score

∞
iPA si.

The ranking problem, apart from selecting the items, also re-
quires that the items are ranked — assigned to distinct posi-
tions 1, 2, . . . , k. In this paper we study the impact of diver-
sity constraints that may be enforced on the outcome.

Each item is labeled based on a set Y of sensitive attributes.
For instance, if the items correspond to job candidates, the
sensitive attributes could be “race”, “gender”, or “national-
ity”. Each attribute y P Y may take one of a predefined
set (or domain) of values, or labels, Ly; for the attribute
“gender”, the set of values would include “male” and “fe-
male”. We refer to attributes that have only two values (e.g.,
the values tmale, femaleu for “gender”) as binary. We use
L “ î

yPY Ly to denote the set of all the attribute values
related to attributes in the set Y . (To simplify notation, we
assume that domains of attribute values do not overlap.)

Given a sensitive attribute value v P L, we let Iv Ñ I
denote the set of items that satisfy this label. For instance, if
v corresponds to the label “female”, then Iv is the set of all
female candidates. We refer to such a set Iv as a group (e.g.,
the group of female candidates). For each attribute value v
and item i P Iv , we let Ii,v “ tj P Iv : sj • siu be the
set of items with attribute value v that have a score greater
than or equal to si (including i); for simplicity, and without
loss of generality, we assume that no two scores are exactly
equal. In Example 1 if we let v correspond to the attribute
value “Black” and let i be candidate G, then Ii,v “ tE, F, Gu
and Si,v “ 272. We also use smax “ maxiPItsiu and smin “
miniPItsiu to denote the maximum and minimum scores over
all available items. Let � “ smax{smin be the ratio of the
maximum over the minimum score.

For a given selection, A, of k items, we use Av Ñ Iv to
denote the subset of items in Iv that are in A, and Bv Ñ Iv for
those that are not. Also, av “ miniPAvtsiu is the lowest score
among the ones that were accepted and bv “ maxiPBvtsiu
the highest score among the items in Iv that were rejected. We
say that a set selection of k items is in-group fair with respect
to v if bv § av , i.e., no rejected candidate in Iv is better than
an accepted one. In Section 3 we define two measures for
quantifying how in-group fair a solution is. Finally, we use
Ai,v “ Av X Ii,v to denote the set of selected items in Iv
whose score is at least si for some i P Av .

Goal: pick k=4 candidates, including 2 of each gender, and at 
least one candidate per ethnicity, maximizing the total score of the 
selected candidates.

Problem: In-group fairness fails for Female (C and D not picked, which 
G and K are), Black (E and F are not picked, while G is), and Asian (I and 
J are not picked, while K is). In-group fairness holds for White and Male 
groups though (those with higher scores)!  

Insight: while in-group fairness will inevitably fail to some extent because 
of diversity constraints, this loss should be balanced across groups.

score=372

Ranking with diversity constraints
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Trading off utility, diversity and fairness
[K. Yang,  V. Gkatzelis, J. Stoyanovich, IJCAI (2019)]

Goal: select and rank k items

Utility: each item has a score, maximize the sum of 
scores of selected items 

Diversity: items have labels, pick at least Kv,p  items 
for each label v in each prefix of length p < k

Fairness: ensure that  loss is balanced across all 
groups.  We call this in-group fairness, IGF.

What’s a good IGF measure?
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Balancing loss across groups
[K. Yang,  V. Gkatzelis, J. Stoyanovich, IJCAI (2019)]

female student C D G H K L
score 95 95 90 86 83 83

ordered list of female students
 

highest-scoring 
skipped item

lowest-scoring 
selected itemIGFRatio(Female) = score(K )

score(D)
= 0.91

Also propose another measure, IGFAgg, see paper.

use an ILP, to maximize utility, subject to diversity 
and IGF loss constraints
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Exploring the trade-off
[K. Yang,  V. Gkatzelis, J. Stoyanovich, IJCAI (2019)]

BEFORE: diversity constraints only AFTER: diversity and fairness 
constraints 

MEPS (Medical Expenditure Panel Survey): sensitive attributes race and age 

fairness differs among groups fairness balanced across groups 


