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New Jersey bail reform
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n or subjected to onerous conditions of release.

Switching from a system based solely on instinct and
experience (often referred to as “gut instinct”) to one in which
judges have access to scientific, objective risk assessment
tools could further the criminal justice system’s central goals

of increasing public safety, reducing crime, and making the
most effective, fair, and efficient use of public resources.

Risk Assessment and Release/Detention
Decision Making in New Jersey
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of NEW JERSEY
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Fairness In risk assessment

e A risk assessment tool gives a probability estimate of a
future outcome

e Used in many domains:

® |nsurance, criminal sentencing, medical testing, hiring,
banking

e also in less-obvious set-ups, like online advertising

e Fairness is concerned with how different kinds of error are
distributed among sub-populations

e Recall our discussion on fairness in classification - similar?
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Racial bias in criminal sentencing

Ma,(hine Bias A commercial tool COMPAS

: . ; , o . automatically predicts some
There's software used across the country to predict future criminals. An : : C oy
it's biased against blacks. categories of future crime to assist in

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica ball and SentenCIHQ deClSIOnS |t IS
May 23, 2016 used in courts in the US.

Prediction Fails Differently for Black Defendants

WHITE AFRICAN AMERICAN

Labeled Higher Risk, But Didn't Re-Offend
Labeled Lower Risk, Yet Did Re-Offend

Overall, Northpointe’s assessment tool correctly predicts recidivism 61 percent of the time. But blacks are almost twice as likely
as whites to be labeled a higher risk but not actually re-offend. It makes the opposite mistake among whites: They are much
more likely than blacks to be labeled lower risk but go on to commit other crimes.

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencin

Julia Stoyanovich 5




Desirable properties of risk tools

[J. Kleinberg, S. Mullainathan, M. Raghavan; ITCS (2017)]

“risk assessment tool / instrument” = “risk tool / instrument”
for brevity in the rest of today’s slides

e (alibration

e Balance for the positive class

e Balance for the negative class

can we have all these properties?
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Calibration

positive risk score
outcomes: 0.2 0.6 0.8
do recidivate .
.|l @ | © @D | O @
white o @ o
© © @®
SN S, @ S ®
black| © @ |0© ¢ © &
© o %o o ©

given the output of a risk tool, likelihood of belonging to
the positive class is independent of group membership

0.6 means 0.6 for any defendant - likelihood of recidivism

why do we want calibration?
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Calibration in COMPAS

[J. Kleinberg, S. Mullainathan, M. Raghavan; ITCS 2017]

Predictive parity (also called calibration)
an risk tool identifies a set of instances as having probability x of
constituting positive instances, then approximately an x fraction of this
set are indeed positive instances, over-all and in sub-populations

COMPAS is well-calibrated: in the window around 40%,
the fraction of defendants who were re-arrested is ~40%,
both over-all and per group.

Broward County

1
]
: — Black defendants
: — White defendants
1
1

0% 259% 50% 75%  100%
Probability of reoffending
[plot from Corbett-Davies et al.; KDD 2017)]
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Balance

[J. Kleinberg, S. Mullainathan, M. Raghavan; ITCS 2017]

e Balance for the positive class: Positive instances are those who
go on to re-offend. The average score of positive instances
should be the same across groups.

e Balance for the negative class: Negative instances are those
who do not go on to re-offend. The average score of negative
instances should be the same across groups.

e (eneralization of: Both groups should have equal false positive
rates and equal false negative rates.

e Different from statistical parity!

the chance of making a mistake does not depend on race

Julia Stoyanovich




Desiderata, re-stated

[J. Kleinberg, S. Mullainathan, M. Raghavan; ITCS (2017)]

e [or each group, a vp fraction in each bin b is positive
e Average score of positive class same across groups

e Average score of negative class same across groups

can we have all these properties?

Julia Stoyanovich




Achievable only in trivial cases

[J. Kleinberg, S. Mullainathan, M. Raghavan; ITCS (2017)]

e Perfect information: the tool knows who recidivates
(score 1) and who does not (score 0)

e Equal base rates: the fraction of positive-class people
IS the same for both groups

cannot even find a good approximate solution
a negative result, need tradeoffs

proof sketched out in (starts 12 min in)
https://www.youtube.com/watch?v=UUC8tMNxwV8
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Group fairness impossibility result

[A. Chouldechova; arXiv:1610.07524v1 (2017)]

If a predictive instrument satisfies predictive parity, but the prevalence of the

phenomenon differs between groups, then the instrument cannot achieve equal
false positive rates and equal false negative rates across these groups

Recidivism rates in the ProPublica dataset are higher for
the black group than for the white group

https://www.propublica.org/article/now-we-analyzed-the-compas-recidivism-algorithm
What is recidivism?: Northpointe [the maker of COMPAS] defined
recidivism as “a finger-printable arrest involving a charge and a filing
for any uniform crime reporting (UCR) code.”
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Fairness for whom?

Decision-maker: of those based on a slide by Arvind Narayanan

I've labeled high-risk, how

many will recidivate? labeled labeled
low-risk high-risk

Defendant: how likely am |

to be incorrectly classified did not

Pigh-risk? ecidivate | 11N FP

Society: (think positive
interventions) is the
selected set recidivated FN TP
demographically
balanced?

different metrics matter to different stakeholders
https://www.propublica.org/article/propublica-responds-to-

companys-critique-of-machine-bias-story
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Impossibility theorem

based on a slide by Arvind Narayanan
Metric Equalized under

Selection probability Demographic parity

Pos. predictive value Predictive parity Chouldechova
Neg. predictive value paper
False positive rate Error rate balance

False negative rate Error rate balance

Accuracy Accuracy equity

All these metrics can be expressed in terms of FP, FN, TP, TN

If these metrics are equal for 2 groups, some trivial algebra shows
that the prevalence (in the COMPAS example, of recidivism, as
measured by re-arrest) is also the same for 2 groups

Nothing special about these metrics, can pick any 3!

Julia Stoyanovich




Ways to evaluate binary classifiers

True condition

Total i i
) Condition positive
population
Predicted .
B True positive,
condition
i Power
Predicted  positive
condition  predicted
e False negative,
condition
. Type Il error
negative

True positive rate (TPR), Recall,

Sensitivity, probability of detection

— __ 2 True positive
> Condition positive

False negative rate (FNR),

2 False negative

Miss rate = 2 Condition positive

Julia Stoyanovich

Condition negative

False positive,

Type | error

True negative

False positive rate (FPR), Fall-out,

probability of false alarm
— __ 2 False positive
2 Condition negative
True negative rate (TNR),
Specificity (SPC)

— __2 True negative
2 Condition negative

based on a slide by Arvind Narayanan

2 Condition positive

Prevalence = % Total population

Positive predictive value (PPV),

Precision =

2 True positive
2 Predicted condition positive

False omission rate (FOR) =

2 False negative
2 Predicted condition negative

=

Positive likelihood ratio (LR+) = FIE_R

Negative likelihood ratio (LR-) = %

364 impossibility theorems :)

Accuracy (ACC) =

2 True positive + Z True negative
2 Total population

False discovery rate (FDR) =

2 False positive
2 Predicted condition positive

Negative predictive value (NPV) =

2 True negative
2 Predicted condition negative

Diagnostic odds

F4 score =
ratio (DOR) 2
_ LR+ =
- LR- Recall ~ Precision




Individual fairness

based slides by Arvind Narayanan

Individual fairness: assuming Broward County
scores are calibrated, we cannot !

. . I — Black defendants
pick a single threshold for 2 | — White defendants

groups that equalizes both the
False Positives Rate and the

False Negatives Rate 0% oo 0% B 100%
Probability of reoffending
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What's the right answer?

There is no single answer!

Need transparency and public debate

e (Consider harms and benefits to different stakeholders

e Being transparent about which fairness criteria we use, how we
trade them off

e Recall “Learning Fair Representations™: a typical ML approach

L:AZ -LZ+AX -Lx+Ay -Ly
group/ individual Eilit
fairness fairness y

apples + oranges + fairness =?
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causal interpretations

of fairness




Effect on sub-populations

Simpson’s paradox
disparate impact at the full population level disappears or reverses
when looking at sub-populations!

grad school admissions
admitted denied
F 1512 2809
M 3715 4727

positive
outcomes

35%
of women

UC Berkeley 1973: it appears men were admitted at higher rate.
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Effect on sub-populations

Simpson’s paradox
disparate impact at the full population level disappears or reverses
when looking at sub-populations!

whole
Men Women favored group population
Department
Applicants Admitted | Applicants = Admitted
A 825 62% 108 82% women 35%
B 560 63% o5 68% women of women
C 325 37% 593 34% men
D 417 33% 375 35% women
E 191 28% 393 24% men
F 373 6% 341 7% women

UC Berkeley 1973: women applied to more competitive departments,
with low rates of admission among qualified applicants.
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Correlation is not causation!

Cannot claim a causal relationship based on
observational data alone. Need a story.

129

4.5 Direct and Indirect Effects

~ U Figure 4.9 Causal relationships relevant 10 Berkeley's sex
discrimination study. Adjusting for department choice (X5)
or career objective (Z) (or both) would be inappropriate in
estimating the direct effect of gender on admission. The ap
propriate adjustment is given in (4.10).

X2 (choice) - “resolving variable”,
then the effect of X1 on Y through X2 is “fair”

applicant’s gender:

the direct effect of X1 on Y is unfair

X,
X> = applicant’s choice of department;

Z = applicant’s (pre-cnrollment) carcer objectives:
Y = admission outcome (accept/reject):
U =

applicant’s aptitude (unrecorded). from Pearl’s “Causality”, page 129
Note that U affects applicant’s career objective and also the admission outcome Y (say,

through verbal skills (unrecorded)).
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Time

Causal interpretations of fairness

[T.J. VanderWeele and W.R. Robinson; Epidemiology (2074)]

arrows represent possible causal relationships

D: Decision

e

Time

D: Decision

we (society) decide which of these are “OK”

Julia Stoyanovich
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Fairness in ranking

[K. Yang & J. Stoyanovich, FATML (2016)]

Input: database of items (individuals, colleges, cars, ...) '@g’-
b N\

Score-based ranker: computes the score of each item using -

known formula, then sorts items on score oD
ofo)

Output: permutation of the items (complete or top-k)

* ranker *

id sex race age cat

W 25
B 23
27

a
b

w | d|1w»w|d

(o}

B 45

(@)
= (2|2 ||
=

W 60 U

What is a positive outcome in a ranking?
ldea: Rankings are relative, fairness measures should be rank-aware
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The order of things

DEPT. OF EDUCATION FEBRUARY 14 & 21, 2011 ISSUE

THE ORDER OF THINGS
—I— H E N EW YO RKE R What college rankings really tell us.

0 By Malcolm Gladwell

1. Chevrolet Corvette 205
2. Lotus Evora 195

3. Porsche Cayman 195

1. Lotus Evora 205

2. Porsche Cayman 198

3. Chevrolet Corvette 192 1. Porsche Cayman 193
2. Chevrolet Corvette 186

3. Lotus Evora 182
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Rankings are not benign!

DEPT. OF EDUCATION FEBRUARY 14 & 21, 2011 ISSUE

THE ORDER OF THINGS
T H E N EW YO R KE R What college rankings really tell us.

a By Malcolm Gladwell

Rankings are not benign. They enshrine very particular ideologies,
and, at a time when American higher education is facing a crisis of
accessibility and affordability, we have adopted a de-facto standard of
college quality that is uninterested in both of those factors. And why?
Because a group of magazine analysts in an office building in
Washington, D.C., decided twenty years ago to value selectivity over
efficacy, to use proxies that scarcely relate to what they're meant to be
proxies for, and to pretend that they can compare a large, diverse,
low-cost land-grant university in rural Pennsylvania with a small,
expensive, private Jewish university on two campuses in Manhattan.

Julia Stoyanovich




Location-location-location

[K. Yang & J. Stoyanovich, FATML (2016)]
gender is the sensitive attribute, input is balanced

Algorithm 1 Ranking generator

Require: Ranking 7, fairness probability f.
{Initialize the output ranking o}
g0
f=rnst 1 M 1 M
T =1TNS”
while (z7 #0) A (r # 0) do
p = random([0, 1])
if p < f then
Pop an item from the top of the list 7.
o — pop(t™)
else
Pop an item from the top of the list ™.
o« pop(t™)
end if
: end while 10
o1t

;0’(—‘[— /=0

: return o

rank gender rank gender rank gender
M
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parity in outcomes
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Rank-aware fairness

[K. Yang & J. Stoyanovich, FATML (2016)]

-
o

—8— 200 in protected group
—%¥— 500 in protected group
—l- 800 in protected group

o o o
R (=] (o2

o
[N

Normalized discounted difference

O
=)
o

0.2 0.4 0.6 0.8 1.0
Fairness probability

Figure 3: rND on 1,000 items
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o o o o -
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Normalized discounted KL-divergence

O
==}

—&— 200 in protected group
—¥— 500 in protected group
—— 800 in protected group,

.0 0.2 0.4 0.6 0.8

Fairness probability

Figure 4: rKL on 1,000 items

1.0

o o e =
N 2} ® o

Normalized discounted ratio

o
[N

o
==}

—&— 200 in protected grou
—%¥— 500 in protected group
—fl- 800 in protected group

.0 0.1 0.2 0.3 0.4 0.5

Fairness probability

Figure 5: rRD on 1,000 items




In an optimization framework

[K. Yang & J. Stoyanovich, FATML (2016)]

0.30 : : : 0.09
9 0.08 I Normalized discounted KL-divergence .

© 0.25 | 0.07 Normalized discounted difference
o 0 . . .
£0.20 - 80.06 —— Normalized discounted ratio
— C . . = e .
() = —— Group fairness in optimization
£0.15 - 80
9 - a 0.04
o) Mg ¥, - =)
5 0.10 ©0.03
o ©0.02

0.05 0.01

0'000 100 200 300 400 500 O'OOO 100 200 300 400 500

Iterations(*10) Iterations(*10)

Figure 6: Accuracy and fairness on German Credit, ranked by sum of normalized attribute values, with k = 10.
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Designing fair rankers

[A. Asudeh, HV Jagadish, J. Stoyanovich, G. Das; ACM SIGMQOD (2019)]

>

&0 0%

id sex race age cat 1 2 ﬂ

F W 25 T =

: 63

b F B | 23 | s ranker * -~

c M | W | 27 | T ©

d M B 45 S
e M W 60 U

‘4

oracle

>
R 4
!
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More fairness in ranking

Designing Fair Ranking Schemes

Abolfazl Asudeht, H. V. Jagadisht, Julia Stoyanovich!, Gautam Das't
TUniversity of Michigan, *Drexel University, *fUniversity of Texas at Arlington

f{asudeh, jagi@umich.edu, *stoyanovich@drexel.edu, 'gdas@uta.edu

ABSTRACT

Items from a database are often ranked based on a combination of
multiple criteria. A user may have the flexibility to accept combi-
nations that weigh these criteria differently, within limits. On the
other hand, this choice of weights can greatly affect the fairness of
the produced ranking. In this paper, we develop a system that helps
users choose criterion weights that lead to greater fairness.

We consider ranking functions that compute the score of each
item as a weighted sum of (numeric) attribute values, and then sort
items on their score. Each ranking function can be expressed as a
vector of weights, or as a point in a multi-dimensional space. For a
broad range of fairness criteria, we show how to efficiently identify
regions in this space that satisfy these criteria. Using this identifica-
tion method, our system is able to tell users whether their proposed
ranking function satisfies the desired fairness criteria and, if it does
not, to suggest the smallest modification that does. We develop
user-controllable approximation that and indexing techniques that
are applied during preprocessing, and support sub-second response
times during the online phase. Our extensive experiments on real

Aatacate Adamanctrata that niir mathnadce ara ahla tn find calutinne that

ACM SIGMOD 2019

impact processes that are directly designed and validated by hu-
mans. Perhaps the most immediate example of such a process is a
score-based ranker. In this paper we consider the task of designing
a fair score-based ranking scheme.

Ranking of individuals is ubiquitous, and is used, for example, to
establish credit worthiness, desirability for college admissions and
employment, and attractiveness as dating partners. A prominent
family of ranking schemes are score-based rankers, which compute
the score of each individual from some database D, sort the individ-
uals in decreasing order of score, and finally return either the full
ranked list, or its highest-scoring sub-set, the top-k. Many score-
based rankers compute the score of an individual as a linear combi-
nation of attribute values, with non-negative weights. Designing a
ranking scheme amounts to selecting a set of weights, one for each
feature, and validating the outcome on the database D.

Our goal is to assist the user in designing a ranking scheme that
both reflects a user’s a priori notion of quality and is fair, in the
sense that it mitigates preexisting bias with respect to a protected
Seature that is embodied in the data. In line with prior work [17,27,
31-33], a protected feature denotes membership of an individual

parity in outcomes
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Score-based rankers

[A. Asudeh, HV Jagadish, J. Stoyanovich, G. Das; ACM SIGMQOD (2019)]

e tuple x in D; score(x): sum of attribute values, with non-negative
weights (a common special case of monotone aggregation)

¢ weights subjectively chosen by a user: 0.5 g+ 0.5s, where g -
normalized GPA, s - normalized SAT; why not 0.45 g + 0.55 s?

D /
d | x1 To ||T1 + T2
t1 | 0.63 | 0.71 1.34
to | 0.72 | 0.65 1.37
ts | 0.58 | 0.78 1.36
ta4 | 0.7 | 0.68 1.38
ts | 0.53 | 0.82 1.35
te | 0.61 | 0.79 1.4
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Geometry of a (2D) ranker

[A. Asudeh, HV Jagadish, J. Stoyanovich, G. Das; ACM SIGMQOD (2019)]

D f
1d T i) T1 + T2
t1 | 0.63 | 0.71 1.34
ta | 0.72 | 0.65 1.37
ts | 0.58 | 0.78 1.36
ta | 0.7 | 0.68 1.38
ts | 0.53 | 0.82 1.35
te | 0.61 | 0.79 1.4

0.9
X,
0.8 -tf’nf% ot FY
2, +N
’::.’.'o K//
0.7 t1"»§: ’.t4
t.
0.6 2
w4
0.5—— ‘ ' 'X '
05 06 07 08 091

e tuples are points in 2D, scoring functions are rays starting from the origin

e t0 determine a ranking of the points, we read it off from the projections of the
points onto the ray of the scoring function, walking the ray towards the origin

* examples: f(x)=x+x, f(x)=x f(x)=x,
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Goal: find a satisfactory function

[A. Asudeh, HV Jagadish, J. Stoyanovich, G. Das; ACM SIGMQOD (2019)]

Closest Satisfactory Function: Given a dataset D) with n
items over d scalar scoring attributes, a fairness oracle O :
Vi(D) — {T.L1}, and a linear scoring function f with the
weight vector w = (wy, Wa, - - - , Wy), find the function ' with
the weight vector w’ such that O(V (D)) = T andthe angular
distance between w and w' is minimized.

How might we approach this? Why is this difficult?
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Ordering exchange

[A. Asudeh, HV Jagadish, J. Stoyanovich, G. Das; ACM SIGMQOD (2019)]

Key idea: only look at scoring functions that change the relative
order between some pair of points. These are the only points where
the fairness oracle may change its mind!

((12) 620 Lm (L= 0] 630
: //.t2 ) o,
,----/ -

0 1 2 0 1 2

An ordering exchange is a set of functions that score a pair of
points equally. In 2D, it corresponds to a single function.
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Outline of approach

[A. Asudeh, HV Jagadish, J. Stoyanovich, G. Das; ACM SIGMQOD (2019)]

5] 1 3.5

Pre-processing ta | 1.5 | 3.1

.. . 3 | 1.91 | 2.3

e Transform the original space into the dual tg 53 [ 18
space (in 2D, points become lines) : ' :

t= | 3.2 | 09

e Sort points per f(x)=x; compute ordering
exchanges between adjacent pairs of
points

e Sweep the space with a ray from the x-axis |
to the y-axis, find satisfactory regions |
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Outline of approach

[A. Asudeh, HV Jagadish, J. Stoyanovich, G. Das; ACM SIGMQOD (2019)]

At query time

e [ ook for a satisfactory region closest to the
query function

e |n 2D, thisis simply binary search

e Beyond 2D, everything is hard, and expensive
to compute
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And lots more algorithmic + systems work

[A. Asudeh, HV Jagadish, J. Stoyanovich, G. Das; ACM SIGMQOD (2019)]

e Multi-dimensional indexing methods for “arrangement
construction”

e Sampling of items (does work), sampling of functions (doesn'’t
work) to speed up index construction

e Experiments on COMPAS and on US Department of
Transportation (DOT) - flights / airlines - datasets

Follow-up work on designing fair ranking functions
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Looking at trade-offs

[K. Yang, V. Gkatzelis, J. Stoyanovich, IJCAI (2019)]

Balanced Ranking with Diversity Constraints

Ke Y

'New York Un ;'W

gineering

"Dre
ky630@ du
. IJCAI 2019
A5
Abstract \:‘; “ sociologists and political sci-

Many set selection and ranking .
cently been enhanced with diver
aim to explicitly increase repres
cally disadvantaged populations
overall representativeness of th
unintended consequence of thes
ever, is reduced in-group fairnes
didates from a given group m.
ones, and this unfairness may nc
across groups. In this paper 1
nomenon using datasets that con
sitive attributes. We then introd
straints, aimed at balancing th
across groups, and formalize the
tion problems as integer linear
these programs, we conduct an
uation with real datasets, and ,
ble trade-offs between balance
mance in the presence of divers:

....

:ki, 2005]. Last but not least,
ed to ensure dataset represen-
ielecting a group of patients to
edical treatment, or to under-
iedical services [Cohen et al.,
isit in this paper.

evaluate and mitigate an unin-
diversity constraints may have
ition and ranking algorithms.
it these algorithms do not sys-
y items in particular groups. In
-up more precise.

associated with multiple sen-
1 a quality score (or utility), a
‘0 select k of these items aim-
tility, computed as the sum of
s. The score of an item is a
omputed and stored as a phys-
nputed on the fly. The output

PRUSSPh DRSS PR PR P N

loss balance

parity in outcomes

Julia Stoyanovich




Ranking with diversity constraints

[K. Yang, V. Gkatzelis, J. Stoyanovich, IJCAI (2019)]
Goal: pick k=4 candidates, including 2 of each gender, and at

least one candidate per ethnicity, maximizing the total score of the
selected candidates.

Male Female
White C96) | D(95) | score=373
Black Y J
Asian | 1(87)

Table 1: A set of 12 individuals with sensitive attributes race and
gender. Each cell lists an individual’s ID, and score in parentheses.

Problem: In-group fairness fails for Female (C and D not picked, which
G and K are), Black (E and F are not picked, while G is), and Asian (I and
J are not picked, while K is). In-group fairness holds for White and Male
groups though (those with higher scores)!
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Ranking with diversity constraints

[K. Yang, V. Gkatzelis, J. Stoyanovich, IJCAI (2019)]
Goal: pick k=4 candidates, including 2 of each gender, and at
least one candidate per ethnicity, maximizing the total score of the
selected candidates.

Male Female
White B (98) D (95) |
Black LEODI F©1) eu-m- H89) | gcore=372
Asian | 1(87) | J(87) L (83)

Table 1: A set of 12 individuals with sensitive attributes race and
gender. Each cell lists an individual’s ID, and score in parentheses.

Problem: In-group fairness fails for Female (C and D not picked, which
G and K are), Black (E and F are not picked, while G is), and Asian (I and
J are not picked, while K is). In-group fairness holds for White and Male
groups though (those with higher scores)!

Insight: while in-group fairness will inevitably fail to some extent because
of diversity constraints, this loss should be balanced across groups.

Julia Stoyanovich




Trading off utility, diversity and fairness

[K. Yang, V. Gkatzelis, J. Stoyanovich, IJCAI (2019)]

Goal: select and rank k items

Utility: each item has a score, maximize the sum of
scores of selected items

Diversity: items have labels, pick at least Kyp items
for each label v in each prefix of length p <k

Fairness: ensure that loss is balanced across all
groups. We call this in-group fairness, IGF.

What’s a good IGF measure?
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Balancing loss across groups

[K. Yang, V. Gkatzelis, J. Stoyanovich, IJCAI (2019)]

ordered list of female students

female student

C

D

G

H

K

score

95

95

90

86

83

83

A

A

score(K) 091 highest-scoring

score(D) skipped item

lowest-scoring

IGFRatio( Female) = selected item

use an ILP, to maximize utility, subject to diversity
and IGF loss constraints

Also propose another measure, IGFAQQ, see paper.
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Exploring the trade-off

[K. Yang, V. Gkatzelis, J. Stoyanovich, IJCAI (2019)]

BEFORE: diversity constraints only AFTER: diversity and fairness
constraints
1.0 ° <
1.0
0.8 0.8
o
%0‘6 <80.6
b w

0.2 / 0.2

0020 40 60 80 100 9020 40 60 80 100
k k
fairness differs among groups fairness balanced across groups

‘l Black '. White -'- Filipino Chinese === American Indian

MEPS (Medical Expenditure Panel Survey): sensitive attributes race and age
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