Data Validation and Data Cleaning
Sebastian Schelter
Moore-Sloan Fellow, Center for Data Science, New York University
Overview

- Introduction & Overview
- Exemplary Error Detection and Data Cleaning Techniques
 - Quantitative Data: Robust Univariate Outlier Detection
 - Categorical Data: String Normalization
 - Candidate Key Detection at Scale with Hyperloglog Sketches
 - Missing Value Imputation using Supervised Learning
- Summary & References
Overview

• **Introduction & Overview**

• **Exemplary Error Detection and Data Cleaning Techniques**
 – Quantitative Data: Robust Univariate Outlier Detection
 – Categorical Data: String Normalization
 – Candidate Key Detection at Scale with Hyperloglog Sketches
 – Missing Value Imputation using Supervised Learning

• **Summary & References**
USE THE CRS DATABASE TO SIZE THE MARKET.

THAT DATA IS WRONG.

THEN USE THE SIBS DATABASE.

THAT DATA IS ALSO WRONG.

CAN YOU AVERAGE THEM?

SURE. I CAN MULTIPLY THEM TOO.
Why is Data Quality Important?

- **Impact on organisational decisions**
 - missing or incorrect data can result in wrong decision making

- **Legal obligations in certain business scenarios**
 - plug type information required for selling electric devices in EU

- **Impact on machine learning models**
 - Cleaner data can greatly improve model performance

- **Potential for causing biased decisions in ML-based systems**
 - Not well understood, area of active research

- **Operational stability: missing and inconsistent data can cause havoc in production systems**
 - Crashes (e.g., due to “NullPointerExceptionExceptions” for missing attributes)
 - Wrong predictions (e.g., change of scale in attributes)
Data: Academia vs the Real-World

- **Academic datasets**
 - Static
 - Often down-sampled, cleaned and aggregated before publication
 - Attributes typically well understood
 - Most of time: size convenient for processing on desktop machines
 - Example: UCI ML datasets

- **Real-world data**
 - Constantly changing
 - Often hundreds of attributes
 - Data originates from multiple sources / people / teams / systems
 - Several potentially inconsistent copies
 - Often too large to conveniently handle on a desktop machine
 - Often difficult to access (e.g., data compressed and partitioned in a distributed filesystem)
Changes in Data Collection Strategies

- **Pre-Internet Era**
 - Data collected in transactional, relational databases
 - “Extract-Transform-Load” export to data warehouses for analysis
 (relational databases optimized for analytical workloads)
 - Modelling of the data and its schema before collection

- **Internet Era: “Collect first, analyze later”**
 - Advent of the internet gave rise to vast amount of semi-structured data
 - New data stores established (key-value stores, document databases, data lakes)
 - Scale to very large datasets
 - Relaxed consistency (e.g. no distributed transactions)
 - Enforce fewer modelling decisions at collection time
 - “Schema-on-Read”: application has to determine how to interpret data
 - Economic incentives
 - Decreasing storage costs
 - Data becomes valuable as input to ML-based applications
Sources of Error in Data

- **Data entry errors**
 - Typos in forms
 - Different spellings for the same real-world entity (e.g., addresses, names)

- **Measurement errors**
 - Outside interference in measurement process
 - Placement of sensors

- **Distillation errors**
 - Editorial bias in data summaries
 - Domain-specific statistical analyses not understood by database manager

- **Data integration errors**
 - Resolution of inconsistencies w.r.t. duplicate entries
 - Unification of units, measurement periods

Hellerstein: "Quantitative data cleaning for large databases.", 2008
Dimensions of Data Quality

- **Completeness**
 - Degree to which data required to describe a real-world object is available

- **Consistency: Intra-relation constraints (range of admissible values)**
 - Specific data type, interval for a numerical column, set of values for a categorical column

- **Consistency: Inter-relation constraints**
 - Validity of references to other data entries (e.g., “foreign keys” in databases)

- **Syntactic and semantic accuracy**
 - Syntactic accuracy compares the representation of a value with a corresponding definition domain
 - E.g.: value *blue* for color attribute syntactically accurate for *red* product in online shop
 - Semantic accuracy compares a value with its real-world representation
 - E.g.: value *XL* for color attribute neither syntactically nor semantically accurate for this product

Approaches to Improve Data Quality

- **Data entry interface design**
 - Enforce integrity constraints (e.g., constraints on numeric values, referential integrity)
 - Can force users to “invent” dirty data

- **Organisational management**
 - Streamlining of processes for data collection and analysis
 - Capturing of lineage and metadata

- **Automated data auditing and data cleaning**
 - Application of automated techniques to identify and rectify data errors

- **Exploratory data analysis and data cleaning**
 - Human-in-the-loop approach necessary most of the time
 - Interaction between data visualisation and data cleaning
 - Iterative process
Approaches to Improve Data Quality

- **Data entry interface design**
 - Enforce integrity constraints (e.g., constraints on numeric values, referential integrity)
 - Can force users to “invent” dirty data

- **Organisational management**
 - Streamlining of processes for data collection and analysis
 - Capturing of lineage and metadata

- **Automated data auditing and data cleaning**
 - Application of automated techniques to identify and rectify data errors

- **Exploratory data analysis and data cleaning**
 - Human-in-the-loop approach necessary most of the time
 - Interaction between data visualisation and data cleaning
 - Iterative process
Data Cleaning: Types and Techniques

- **Quantitative data**
 - Integers or floating point numbers in different shapes (sets, tensors, time series)
 - Challenges: unit conversion (especially for volatile units like currency)
 - Foundation of cleaning techniques: **outlier detection**

- **Categorical data**
 - Names or codes to assign data into groups, no ordering or distance defined
 - Common problem: misspelling upon data entry
 - Foundation of cleaning techniques: **normalization / deduplication**

- **Postal addresses**
 - Special case of categorical data, typically entered as free text
 - Major challenge: **deduplication**

- **Identifiers / Keys**
 - Unique identifiers for data objects (e.g., product codes, phone numbers, SSNs)
 - Challenge: detect reuse of identifier across distinct objects
 - Challenge: Ensure **referential integrity**
The Need for the “Human in the Loop”

- Unrealistic assumptions about error detection in academia:
 - Existence of error detecting rules assumed:
 Integrity Constraints, Functional Dependencies, Conditional Functional Dependencies, Denial Constraints
 - Often focus on most efficient and accurate way to apply cleaning steps according to rules

- In practice: error detection already a very hard problem
 - Consequence: Human-in-the-loop solutions required
 - Data exploration and visualisation crucial
 - Iterative cleaning
 - Popular implementations: Open Refine, Trifacta

https://trifacta.com
Overview

• Introduction & Overview

• Exemplary Error Detection and Data Cleaning Techniques
 – Quantitative Data: Robust Univariate Outlier Detection
 – Categorical Data: String Normalization
 – Candidate Key Detection at Scale with Hyperloglog Sketches
 – Missing Value Imputation using Supervised Learning

• Summary & References
Robust Univariate Outlier Detection

- **Univariate analysis**
 - Simple approach: investigate the set of values of a single attribute of our dataset
 - Statistical perspective: values considered to be a sample of some data generating process

- **Center & Dispersion**
 - Set of values has a *center* that defines what is “average”
 - Set of values has a *dispersion* that defines what is “far from average”

- **Outlier detection**
 - Assumption: erroneous values “far away” from typical values in the set
 - Approach: identify outliers using statistical techniques
 - Problem: How to reliably compute them when the data is dirty / erroneous?

Hellerstein: "Quantitative data cleaning for large databases", 2008
Example: Age Data

- Set of age values of employees in a company:

 12 13 14 21 22 26 33 35 36 37 39 42 45 47 54 57 61 68 450
Example: Age Data

- Set of age values of employees in a company:

 12 13 14 21 22 26 33 35 36 37 39 42 45 47 54 57 61 68 450

 minors

 impossible age
Example: Age Data

- **Set of age values of employees in a company:**

 12 13 14 21 22 26 33 35 36 37 39 42 45 47 54 57 61 68 450

- **Potential approach:**
 - Assume normal distribution of age values
 - Compute mean and standard deviation
 - Flag values more 2 standard deviations away from mean
 - Interval is \([96 - 2 \times 59, 9 + 2 \times 59] = [-22, 214]\)
 - Misses first three values!

- **Problem: “Masking”**
 - Magnitude of one outlier shifts center and dispersion
 - “Masks” other outliers
Robust Statistics

- **Idea: consider effect of corrupted data values on distribution**
 - Estimators should be robust to such corruptions
 - *Breakdown point*: threshold of corrupt values before estimator produces arbitrarily erroneous results

- **Robust Centers**
 - *Median*: value for which half of the dataset is smaller (affected by position not magnitude of outliers)
 - *Trimmed Mean*: remove k% of highest and lowest values, compute mean from rest

- **Robust Dispersion**
 - *Mean Absolute Deviation*: robust analogy to standard deviation
 - Measures median distance of all values from the sample median
Example: Age Data

- Set of age values of employees in a company:

 12 13 14 21 22 26 33 35 36 37 39 42 45 47 54 57 61 68 450

- Cleaned set of age values:

 21 22 22 23 24 26 33 35 36 37 39 42 45 47 54 57 61 68

- Robust centers in example closer to center on clean data:
 - Median 37 (dirty) 39 (clean)
 - Mean ~96 (dirty) ~40 (clean)
 - 10%-Trimmed mean ~39 (dirty)

- Robust dispersion provides better interval on dirty data:
 - 1 standard deviation [37, 155] (includes six non-outliers)
 - 1.48 MAD [16, 61] (includes one non-outlier)
Overview

• Introduction & Overview

• **Exemplary Error Detection and Data Cleaning Techniques**
 - Quantitative Data: Robust Univariate Outlier Detection
 - **Categorical Data: String Normalization**
 - Candidate Key Detection at Scale with Hyperloglog Sketches
 - Missing Value Imputation using Supervised Learning

• Summary & References
Normalization of String Data

- Free-text entry of categorical attributes very error-prone:
 - Different spellings (Jérôme vs Jerome)
 - Different punctuation (ACME Inc. vs ACME, Inc)
 - Typos (Alice → Ailce)
 - Misunderstandings (Rupert → Robert)

- Normalization with simple heuristic clustering algorithm:
 - Keying function k
 - Compute key $k(s)$ per string s
 - group pairs $(s, k(s))$ by $k(s)$ and count pairs
 - Automatic: Replace all strings in a group with string with highest cardinality
 - Human-in-the-Loop: shows groups and statistics to user

- Extensively used in OpenRefine
String Normalization

- “Fingerprint keying”: remove punctuation and case sensitivity
 - remove whitespace around the string
 - lowercase the string
 - remove all punctuation and control characters
 - find ASCII equivalents of characters
 - tokenize (split by whitespace)
 - order fragments and deduplicate them

ACT, INC. → act inc
ACT INC → act inc
ACT, Inc → act inc
Act Inc → act inc
String Normalization

- **“SOUNDEX”: Algorithm for phonetic indexing of English strings**

 - Save the first letter.
 - Remove all occurrences of a, e, i, o, u, y, h, w
 - Replace all consonants (include the first letter) with digits as follows:
 - b, f, p, v → 1 ; c, g, j, k, q, s, x, z → 2 ; d, t → 3, l → 4 ; m, n → 5 ; r → 6
 - Replace all adjacent same digits with one digit.
 - If the saved letter's digit is the same as the resulting first digit, remove the digit (keep the letter).
 - Append 3 zeros if result contains less than 3 digits. Remove all except first letter and 3 digits after it

 Robert → R163
 Rupert → R163

Overview

• Introduction & Overview

• **Exemplary Error Detection and Data Cleaning Techniques**
 - Quantitative Data: Robust Univariate Outlier Detection
 - Categorical Data: String Normalization
 - **Candidate Key Detection at Scale with Hyperloglog Sketches**
 - Missing Value Imputation using Supervised Learning

• Summary & References
Frequency Statistics of Categorical Data

- **In some cases: frequency of values more important than actual values**
 - Especially for categorical data attributes (where values have no ordering and no distance)
 - E.g. “species code” in a dataset of animal sightings

- **Application: Discovery of “Candidate Keys”**
 - Key: attribute or combination of attributes that uniquely identifies a tuple in a relation
 - In clean data:
 - Frequency of every value of the candidate key attribute should be 1
 - Number of distinct values equals number of tuples
 - Both conditions can be violated in case of dirty data
Heuristics for Discovering “Dirty Keys”

- **Idea:** discover attributes intended to be used as keys in dirty data

- **“Unique Row Ratio”**
 - Ratio of distinct values of an attribute to the number of tuples
 - Attribute is potential key if heuristic close to 1.0
 - Problem: “frequency outliers”: small number of values with very high frequency often caused by UIs forcing users to “invent” common “dummy values” like 00000 or 12345

- **“Unique Value Ratio”**
 - Ratio of unique values to number of distinct values
 - Attribute is potential key if heuristic close to 1.0
 - More robust against frequency outliers

- **Problem of both approaches:** high memory requirements during computation
Cardinality Estimation with HLL Sketches

- **Problem**: exact counting requires memory linear in the number of distinct elements
 - E.g., to maintain a hashtable with values and counts
 - Does not scale to large or unbounded datasets

- **HyperLogLog (HLL) Sketch**
 - "**sketch**" data structure: approximate counting with drastically less memory
 - Uses **randomization to approximate the cardinality of a multiset**

HyperLogLog: Idea

- **Apply hash function** h to every element to be counted (h must produce uniformly distributed outputs)

 - $h(“hello”) \rightarrow 10011$

 - $h(“world”) \rightarrow 11011$

 - $h(“hello”) \rightarrow 10011$

 - $h(“alice”) \rightarrow 00101$

 - $h(“world”) \rightarrow 11011$

- Keep track of the **maximum number of leading zeros** of the bit representations of all observed hash values

- Intuitively: **hash values with more leading zeros are less likely and indicate a larger cardinality**

- If bit pattern $0^{q-1}1$ is observed at the beginning of a hash value, estimate size of multiset as 2^q
HyperLogLog: Details

- Algorithm applies several techniques to reduce variability of these measurements
 - Input stream divided into \(m \) substreams \(S_i \) with \(m = 2^p \)
 - \(p \) number of bits of hash values to store
 - Array of registers \(M, M[i] \) stores max number of leading zeros + 1 from stream \(S_i \)
 - Final estimate uses bias-corrected harmonic mean of the estimations on the substreams
 \[
 \alpha_m m^2 \sum_{i=1}^{m} 2^{-M[i]}
 \]

- Extremely powerful in practice
 - Low memory requirements: e.g., SparkSQL implementation uses less than 3.5 KB for the registers, works on billions of elements
 - Easy to parallelize as registers can be cheaply merged via max function
 - Allows to run cardinality estimation on multiple columns of huge tables with a single scan

- Basis of key detection in data validation library “deequ”
 https://github.com/awslabs/deequ
Overview

• Introduction & Overview

• Exemplary Error Detection and Data Cleaning Techniques
 – Quantitative Data: Robust Univariate Outlier Detection
 – Categorical Data: String Normalization
 – Candidate Key Detection at Scale with Hyperloglog Sketches
 – Missing Value Imputation

• Summary & References
Missing data is a central data quality problem

Missing for various reasons

- **Missing Completely at Random** (MCAR)
- **Missing at Random** (MAR)
- **Not Missing at Random** (NMAR)

Various ways to handle missing data for ML applications

- **Complete-case analysis** (remove examples with missing attributes)
- Add **placeholder symbol** for missing values
- **Impute missing values**
 - Often implemented with techniques from popular ML libraries, like mean and mode imputation
 - ML: supervised learning for missing value imputation
• Assume tabular data
• Want to impute missing values in a column with categorical data
• Idea: apply techniques from supervised learning
• Example: product catalog, colors missing
 \[p(\text{color}=\text{yellow} \mid \text{other columns, imputation model}) \]
• Treat imputation problem as multi-class classification problem

Imputation of Categorical Data (2)

- Must encode table data from feature columns to a numerical representation

- Standard encoding techniques
 - “One-hot” encoding of categorical columns (zero vector with as many dimensions as distinct values, 1 in corresponding dimensions)
 - Standardisation of numerical columns (subtract mean, divide by standard deviation)
 - Character sequences for textual columns
Imputation of Categorical Data (3)

- Train neural network to predict likelihood of values to impute
 \[p(y|\hat{x}, \theta) = \text{softmax} [W\hat{x} + b] \]

- Concatenation of featurizers into single feature vector
 \[\hat{x} = [\phi_1(x^1), \phi_2(x^2), \ldots, \phi_C(x^C)] \in \mathbb{R}^D \]

- Standard featurization techniques
 - Embeddings for one-hot encoded categories
 - Hashed n-grams or LSTMs for character sequences

- Open source implementation “datawig” available at
 https://github.com/awslabs/datawig
Overview

• Introduction & Overview

• Exemplary Error Detection and Data Cleaning Techniques
 – Quantitative Data: Robust Univariate Outlier Detection
 – Categorical Data: String Normalization
 – Candidate Key Detection at Scale with Hyperloglog Sketches
 – Missing Value Imputation

• Summary & References
Data quality important for: decision making, conforming to legal obligations, improving the performance of ML models, operation of data processing systems.

Real-world data is always messy and difficult to handle.

Dimensions of data quality: completeness, consistency, syntactic & semantic accuracy.

Data cleaning techniques:
- Quantitative data: outlier detection
- Categorical data: normalisation / deduplication
- Postal addresses: deduplication
- Identifiers / keys: ensuring referential integrity

Error detection is already a very hard problem: typically requires iterative cleaning, visualisation and a human-in-the-loop.
References