
DS-GA 3001.009: Responsible Data Science

Data Profiling

Prof. Julia Stoyanovich
Center for Data Science

Computer Science and Engineering at Tandon

@stoyanoj

http://stoyanovich.org/
https://dataresponsibly.github.io/

Title Text

Julia Stoyanovich

Title Text

�2

done?
but where does the data come from?

Responsible data science
• Be transparent and accountable

• Achieve equitable resource distribution

• Be cognizant of the rights and preferences of individuals

Title Text

Julia Stoyanovich

Title Text

�3

A holistic view of the lifecycle

sharing

acquisition

querying

analysis

Title Text

Julia Stoyanovich

Title Text

�4

Understand your data!

https://cra.org/ccc/wp-content/uploads/sites/2/2015/05/bigdatawhitepaper.pdf

“Given the heterogeneity of the flood of data, it is not enough merely to
record it and throw it into a repository. Consider, for example, data
from a range of scientific experiments. If we just have a bunch of data
sets in a repository, it is unlikely anyone will ever be able to find, let
alone reuse, any of this data. With adequate metadata, there is some

hope, but even so, challenges will remain due to differences in
experimental details and in data record structure.”

Title Text

Julia Stoyanovich

Title Text

�5

Understand your data!

https://www.bitbybitbook.com/en/1st-ed/observing-behavior/data/

In the analog age, most of the data that were used for
social research was created for the purpose of doing

research. In the digital age, however, a huge amount of
data is being created by companies and

governments for purposes other than research,
such as providing services, generating profit, and

administering laws. Creative people, however, have
realized that you can repurpose this corporate and

government data for research.

Title Text

Julia Stoyanovich

Title Text

�6

Understand your data!

https://www.bitbybitbook.com/en/1st-ed/observing-behavior/data/

… from the perspective of researchers, big data
sources are “found,” they don’t just fall from the sky.

Instead, data sources that are “found” by researchers
are designed by someone for some purpose.

Because “found” data are designed by someone, I
always recommend that you try to understand as

much as possible about the people and processes
that created your data.

Title Text

Julia Stoyanovich

Title Text

�7

Understand your data!

Need metadata to:

• enable data re-use (have to be able to find it!)

• determine fitness for use of a dataset in a task

• help establish trust in the data analysis process and its
outcomes

[Thomas C. Redman, “Data Driven: Profiting from Your Most Important Business Asset.” 2013]

Data is considered to be of high quality if it’s “fit for intended
uses in operations, decision making and planning”

Julia Stoyanovich �8

Julia Stoyanovich �9

description

privacy

summary

freshness source

Julia Stoyanovich �10

Julia Stoyanovich �11

Julia Stoyanovich �12

 
“No value” is the most frequent value

Title Text

Julia Stoyanovich

Title Text

�13

Data profiling

• A set of activities and processes to determine the metadata about
a given dataset

• Metadata summarizes the data, summaries should be small but
informative

• What is informative depends on the task, or set of tasks, we have
in mind

A related activity is data cleaning

should profiling be task-agnostic or task-specific?

Title Text

Julia Stoyanovich

Title Text

�14

Data cleaning

based on a slide by Heiko Mueller

Spend most time doing
Collecting data (19%)

Cleaning and organizing data (60%)

Title Text

Julia Stoyanovich

Title Text

�15

Data cleaning

Find least enjoyable
Collecting data (21%)

Cleaning and organizing data (57%)

based on a slide by Heiko Mueller

Title Text

Julia Stoyanovich

Title Text

�16

A classification of data profiling tasksClassification of Traditional
Profiling Tasks

Data Profiling | SIGMOD 2017 | Chicago 12

Da
ta

 p
ro

fil
in

g

Single column

Cardinalities

Patterns and
data types

Value
distributions

Multiple columns

Uniqueness

Key discovery

Conditional

Partial

Inclusion
dependencies

Foreign key
discovery

Conditional

Partial

Functional
dependencies

Conditional

Partial

[Abedjan, Golab, Naumann; SIGMOD 2017]

relational data (here: just one table)

Title Text

Julia Stoyanovich

Title Text

�17

An alternative classification

• To help understand the statistics, we look at value ranges, data types,
value distributions per column or across columns, etc

• To help understand the structure - the (business) rules that generated
the data - we look at unique columns / column combinations,
dependencies between columns, etc - reverse-engineer the
relational schema of the data we have

• We need both statistics and structure, they are mutually-reinforcing,
and help us understand the semantics of the data - it’s meaning

Title Text

Julia Stoyanovich

Title Text

�18

A classification of data profiling tasksClassification of Traditional
Profiling Tasks

Data Profiling | SIGMOD 2017 | Chicago 12

Da
ta

 p
ro

fil
in

g

Single column

Cardinalities

Patterns and
data types

Value
distributions

Multiple columns

Uniqueness

Key discovery

Conditional

Partial

Inclusion
dependencies

Foreign key
discovery

Conditional

Partial

Functional
dependencies

Conditional

Partial

[Abedjan, Golab, Naumann; SIGMOD 2017]

relational data (here: just one table)

Title Text

Julia Stoyanovich

Title Text

�19

Single column: cardinalities, data types
[Abedjan, Golab, Naumann; SIGMOD 2017]

• cardinality of relation R - number of rows

• domain cardinality of a column R.a - number of distinct values

• attribute value length: min, max, average, median

• basic data type: string, numeric, date, time, ….

• number of percentage of null values of a given attribute

• regular expressions

• semantic domain: SSN, phone number

• ….

Julia Stoyanovich �20

 
“No value” is the most frequent value

Title Text

Julia Stoyanovich

Title Text

�21

The trouble with null values

Title Text

Julia Stoyanovich

Title Text

�22

50 shades of null

• Unknown - some value definitely belongs here, but I don’t know what it is
(e.g., unknown birthdate)

• Inapplicable - no value makes sense here (e.g., if marital status = single
then spouse name should not have a value)

• Unintentionally omitted - values is left unspecified unintentionally, by
mistake

• Optional - a value may legitimately be left unspecified (e.g., middle name)

• Intentionally withheld (e.g., an unlisted phone number)

• …..

https://www.vertabelo.com/blog/technical-articles/50-shades-of-null-or-how-a-billion-
dollar-mistake-has-been-stalking-a-whole-industry-for-decades

(this selection is mine, see reference below for a slightly different list)

Title Text

Julia Stoyanovich

Title Text

�23

50 shades of null… and it gets worse!

• Hidden missing values -

• 99999 for zip code, Alabama for state

• need data cleaning….

• lots of houses in Philadelphia, PA were built in 1934
(or 1936?) - not really!

how do we detect hidden missing values?

Title Text

Julia Stoyanovich

Title Text

�24

Single column: cardinalities, data types
[Abedjan, Golab, Naumann; SIGMOD 2017]

• cardinality of relation R - number of rows

• domain cardinality of a column R.a - number of distinct values

• attribute value length: min, max, average, median

• basic data type: string, numeric, date, time, ….

• number of percentage of null values of a given attribute

• regular expressions

• semantic domain: SSN, phone number

• ….

Title Text

Julia Stoyanovich

Title Text

�25

Regular expressions
• some attributes will have values that follow a

regular format, e.g, telephone numbers:
212-864-0355 or (212) 864-0355 or
1.212.864-0355

• we may want to identify a small set of regular
expressions that match all (or most) values
in a column

• challenging - very many possibilities!

A regular expression, regex or regexp … is a sequence
of characters that define a search pattern. Usually this
pattern is used by string searching algorithms for “find” or
“find and replace” operations on strings, or for input
validation. It is a technique that developed in theoretical
computer science and formal language theory.
https://en.wikipedia.org/wiki/Regular_expression Stephen Kleene

Title Text

Julia Stoyanovich

Title Text

�26

Inferring regular expressions

based on a slide by Heiko Mueller

Example Regular Expression Language
. Matches any character
abc Sequence of characters
[abc] Matches any of the characters inside []
* Previous character matched zero or more times
? Previous character matched zero or one time
{m} Exactly m repetitions of previous character
^ Matches beginning of a line
$ Matches end of a line
\d Matches any decimal digit
\s Matches any whitespace character
\w Matches any alphanumeric character

• we may want to identify a small set of
regular expressions that match all (or
most) values in a column

• challenging - very many possibilities!

telephone

(201) 368-1000

(201)373-9599

(718) 206-1088

(718) 206-1121

(718) 206-1420

(718) 206-4420

(718) 206-4481

(718) 262-9072

(718) 868-2300

(718) 206-0545

(814) 681-6200

(888) 8NYC-TRS

800-624-4143

Title Text

Julia Stoyanovich

Title Text

If multiple hypotheses explain an
observation, the simplest one
should be preferred.

�27

William of Ockham
(1285-1347)

Lex parsimoniae

Used as a heuristic to help identify a
promising hypothesis to test

Ockham’s motivation: can one prove the
existence of God?

Many applications today: biology,
probability theory, ethics - also good for
inferring regular expressions :)

Oakham’s razor

Title Text

Julia Stoyanovich

Title Text

�28

Inferring regular expressions

based on a slide by Heiko Mueller

telephone

800-624-4143

(201)373-9599

(201) 368-1000

(718) 206-1088

(718) 206-1121

(718) 206-1420

(718) 206-4420

(718) 206-4481

(718) 262-9072

(718) 868-2300

(718) 206-0545

(814) 681-6200

(888) 8NYC-TRS

Simple Algorithm
(1) Group values by length
(2) Find pattern for each group

• Ignore small groups
• Find most specific character at each position

(2 0 1) 3 6 8 - 1 0 0 0

(2 0 1) 2 0 6 - 1 0 8 8

(7 1 8) 2 0 6 - 1 1 2 1

(7 1 8) 2 0 6 - 1 4 2 0

(7 1 8) 2 0 6 - 4 4 2 0

(7 1 8) 2 0 6 - 4 4 8 1

(7 1 8) 2 6 2 - 9 0 7 2

(7 1 8) 8 6 8 - 2 3 0 0

(7 1 8) 2 0 6 - 0 5 4 5

(8 1 4) 6 8 1 - 6 2 0 0

(8 8 8) 8 N Y C - T R S

(\d \d \d) \d \w \w . . \w \w \w

Title Text

Julia Stoyanovich

Title Text

�29

Inferring regular expressions

based on a slide by Heiko Mueller

telephone

800-624-4143

(201)373-9599

(201) 368-1000

(718) 206-1088

(718) 206-1121

(718) 206-1420

(718) 206-4420

(718) 206-4481

(718) 262-9072

(718) 868-2300

(718) 206-0545

(814) 681-6200

(888) 8NYC-TRS

(\d{3}) \d\w{2}.{2}\w{3}

(\d \d \d) \d \w \w . . \w \w \w

ignoring small groups: alternatives?

Simple Algorithm
(1) Group values by length
(2) Find pattern for each group

• Ignore small groups
• Find most specific character at each position

Title Text

Julia Stoyanovich

Title Text

�30

Single column: basic stats, distributions
[Abedjan, Golab, Naumann; SIGMOD 2017]

• min, max, average, median value of R.a

• histogram

• equi-width - (approximately) the same number of distinct values in each
bucket (e.g., age broken down into 5-year windows)

• equi-depth (approximately) the same number of tuples in each bucket

• biased histograms use different granularities for different parts of the
value range to provide better accuracy

• quartiles - three points that divide the numeric values into four equal
groups - a kind of an equi-depth histogram

• first digit - distribution of first digit in numeric values, to check Benford law

• …

Title Text

Julia Stoyanovich

Title Text

�31

The well-chosen average

Title Text

Julia Stoyanovich

Title Text

�32

Is my data biased? (histograms + geo)

Estimated number of drug
users, based on 2011 National
Survey on Drug Use and
Health, in Oakland, CA

[Lum, Isaac; Significance, 2016]

Estimated drug use by race

Title Text

Julia Stoyanovich

Title Text

�33

Is my data biased? (histograms + geo)

Targeted policing for drug
crimes by race

Number of days with targeted
policing for drug crimes in
areas flagged by PredPol
analysis of Oakland, CA,
police data for 2011

[Lum, Isaac; Significance, 2016]

Title Text

Julia Stoyanovich

Title Text

�34

Is my data biased? (histograms + geo)
[Lum, Isaac; Significance, 2016]

Number of drug arrests made
by the Oakland, CA, police
department in 2010

Targeted policing for drug
crimes by race

Title Text

Julia Stoyanovich

Title Text

�35

Benford Law (first digit law)

The distribution of the first digit d of a number, in many naturally
occurring domains, approximately follows

[Benford: “The law of anomalous numbers” Proc. Am. Philos. Soc., 1938]

P(d) = log10 1+
1
d

⎛
⎝⎜

⎞
⎠⎟

1 is the most
frequent leading
digit, followed by
2, etc.

https://en.wikipedia.org/wiki/Benford%27s_law

Title Text

Julia Stoyanovich

Title Text

�36

Benford Law (first digit law)

Holds if log(x) is uniformly distributed. Most accurate when values are
distributed across multiple orders of magnitude, especially if the process
generating the numbers is described by a power law (common in nature)

A logarithmic scale bar. Picking a random x position uniformly on this number
line, roughly 30% of the time the first digit of the number will be 1.

https://en.wikipedia.org/wiki/Benford%27s_law

The distribution of the first digit d of a number, in many naturally
occurring domains, approximately follows

P(d) = log10 1+
1
d

⎛
⎝⎜

⎞
⎠⎟

[Benford: “The law of anomalous numbers” Proc. Am. Philos. Soc., 1938]

Title Text

Julia Stoyanovich

Title Text

�37

height of tallest structures

Benford Law: an example
[Abedjan, Golab, Naumann; SIGMOD 2017]

Title Text

Julia Stoyanovich

Title Text

�38

[Abedjan, Golab, Naumann; SIGMOD 2017]

Benford Law: other examples

• surface area of 355 rivers

• sizes of 3,259 US populations

• 104 physical constants

• 1,800 molecular weights

• 308 numbers contained in an issue of Reader’s Digest

• Street addresses of the first 342 persons listed in American
Men of Science

• ….
used in fraud detection!

[Benford: “The law of anomalous numbers” Proc. Am. Philos. Soc., 1938]

Title Text

Julia Stoyanovich

Title Text

�39

Classification of data profiling tasksClassification of Traditional
Profiling Tasks

Data Profiling | SIGMOD 2017 | Chicago 12

Da
ta

 p
ro

fil
in

g

Single column

Cardinalities

Patterns and
data types

Value
distributions

Multiple columns

Uniqueness

Key discovery

Conditional

Partial

Inclusion
dependencies

Foreign key
discovery

Conditional

Partial

Functional
dependencies

Conditional

Partial

[Abedjan, Golab, Naumann; SIGMOD 2017]

relational data (here: just one table)

Title Text

Julia Stoyanovich

Title Text

�40

An alternative classification

• To help understand the statistics, we look at value ranges, data types,
value distributions per column or across columns, etc

• To help understand the structure - the (business) rules that generated
the data - we look at unique columns / column combinations,
dependencies between columns, etc - reverse-engineer the
relational schema of the data we have

• We need both statistics and structure, they are mutually-reinforcing,
and help us understand the semantics of the data - it’s meaning

next up: relational model basics

Title Text

Julia Stoyanovich

Title Text

�41

The relational model

• Introduced by Edgar F. Codd in 1970
(Turing award)

• At the heart of relational database
management systems (RDBMS)

• a database consists of a collection of
relations (tables)

• tuples are stored in table rows

• attributes of tuples are stored in table
columns

Title Text

Julia Stoyanovich

Title Text

�42

The relational model

• Relations are unordered collections of
tuples

• conceptually, a relation is a set of
tuples

• however, SQL implements a relation
as a multiset (bag) of tuples

• Why this model?

• Simple yet powerful. Great for
processing very large data sets in
bulk

Title Text

Julia Stoyanovich

Title Text

�43

The relational model
Episodes (season: int, num: int, title: string, viewers: long)

season num (tle viewers

1 1 Winter	is	Coming 2.2	M

1 2 The	Kingsroad 2.2	M

2 1 The	North	Remembers 3.9	M

2 2 The	Night	Lands 3.8	M

• Relation: a set or tuples - order doesn’t matter, all tuples are distinct

• Attribute: a column in a relation (e.g., season)

• Domain: data type of an attribute (e.g., season: int)

• Tuple: a row in a relation, e.g., (1, 2, The Kingsroad, 2.2 M)

Title Text

Julia Stoyanovich

Title Text

�44

Schema vs. instances
Relation schema is a description of a relation in terms of relation

name, attribute names, attribute datatypes, constraints (e.g., keys).
A schema describes all valid instances of a relation.

Title Text

Julia Stoyanovich

Title Text

�45

Episodes (season: integer, num: integer, title: string, viewers: integer)schema

instance 2 season num (tle viewers

1 20 Blah,	Blah	and	Blah 0

4 7 Yet	Another	Title 10	B

instance 1 season num (tle viewers

1 1 Winter	is	Coming 2.2	M

1 2 The	Kingsroad 2.2	M

2 1 The	North	Remembers 3.9	M

instance 3 season num (tle viewers

Schema vs. instances
Relation schema is a description of a relation in terms of relation

name, attribute names, attribute datatypes, constraints (e.g., keys).
A schema describes all valid instances of a relation.

Title Text

Julia Stoyanovich

Title Text

�46

Integrity constraints
• Ensure that data adheres to the rules of the application

• Specified when schema is defined

• Checked and enforced by the DBMS when relations are
modified (tuples added / removed / updated)

• Must hold on every valid instance of the database

1. Domain constraints - specify valid data types for each attribute,
e.g., Students (sid: integer, name: string, gpa: decimal)

2. Key constraints - define a unique identifier for each tuple

3. Referential integrity constraints - specify links between tuples

4. Functional dependencies - show relationships within a table

Title Text

Julia Stoyanovich

Title Text

�47

Key constraints

A set of attributes is a candidate key for a relation if:
(1) no two distinct tuples can have the same values for all key attributes

(candidate key uniquely identifies a tuple), and
(2) this is not true for any subset of the key attributes (candidate key is minimal)

• If condition (2) is not met, we have a superkey

• There may be more than one candidate key for a relation, if so, one is
designated as the primary key

• All candidate key should be known to property enforce data integrity

Students (sid: integer, login: string, name: string, dob: date)
Example: name possible candidate keys

Title Text

Julia Stoyanovich

Title Text

�48

Key constraints
Example: Students (sid: integer, login: string, name: string, dob: date)

create table Students (
 sid integer primary key,
 login varchar(128) unique,
 name varchar(128),
 dob date,
 gpa decimal,
 unique (name, dob));

create table Students (
 sid integer unique,
 login varchar(128) unique,
 name varchar(128),
 dob date,
 gpa decimal,
 primary key (name, dob));

create table Students (
 sid integer unique,
 login varchar(128) primary key,
 name varchar(128),
 dob date,
 gpa decimal,
 unique (name, dob));

three possible SQL implementations

NB: every relation must have
exactly one primary key

Title Text

Julia Stoyanovich

Title Text
• Business rules are given: by the client, by the application

designer, by your boss

• Once you know the rules, you create a relational schema that
encodes these business rules (sometimes starting with the entity-
relationship model, sometimes with the relational model directly)

• We can never-ever-ever deduce business rules by looking at an
instance of a relation!

• We can sometimes know which rules do not hold, but we cannot be
sure which rules do hold

�49

id login name

1 jim Jim	Morrison

2 amy Amy	Winehouse

3 amy Amy	Pohler

4 raj Raj	Kapoor

Employee
1.Which column is not a candidate key?
2.Which column(s) may be a candidate key?
3.Give 2 create table statements for which this
instance is valid.

DB 101: Where do business rules come from?

Title Text

Julia Stoyanovich

Title Text

�50

DB (databases) vs. DS (data science)

https://midnightmediamusings.wordpress.com/2014/07/01/plato-and-the-theory-of-forms/

• DB: start with the schema, admit only data that fits; iterative
refinement is possible, and common, but we are still schema-first

• DS: start with the data, figure out what schema it fits, or almost fits -
reasons of usability, repurposing, low start-up cost

the “right” approach is somewhere between these two, data
profiling aims to bridge between the two worlds / points of

view / methodologies

Title Text

Julia Stoyanovich

Title Text

�51

Discovering uniques
Given a relation schema R (A, B, C, D) and a relation instance r, a unique

column combination (or a “unique” for short) is a set of attributes X whose
projection contains no duplicates in r

season

1

1

2

π season(Episodes)
season num

1 1

1 2

2 1

π season,num(Episodes)

Episodes(season,num,title,viewers)
season num (tle viewers

1 1 Winter	is	Coming 2.2	M

1 2 The	Kingsroad 2.2	M

2 1 The	North	Remembers 3.9	M

π title(Episodes)
(tle

Winter	is	Coming

The	Kingsroad

The	North	Remembers

Projection is a relational
algebra operation that takes as
input relation R and returns a
new relation R’ with a subset of
the columns of R.

Title Text

Julia Stoyanovich

Title Text

�52

Discovering uniques

• Recall that more than one set of attributes X may be unique

• It may be the case that X and Y are both unique, and that they
are not disjoint. When is this interesting?

Episodes(season,num,title,viewers)
season num (tle viewers

1 1 Winter	is	Coming 2.2	M

1 2 The	Kingsroad 2.2	M

2 1 The	North	Remembers 3.9	M

Projection is a relational
algebra operation that takes as
input relation R and returns a
new relation R’ with a subset of
the columns of R.

Given a relation schema R (A, B, C, D) and a relation instance r, a unique
column combination (or a “unique” for short) is a set of attributes X whose

projection contains no duplicates in r

Title Text

Julia Stoyanovich

Title Text

�53

Discovering uniques
R (A, B, C, D)

A B C D

AB AC ADBC BD CD

ABC ABD BCD ACD

ABCD

attribute lattice of R

What’s the size of the attribute lattice of R?
Look at all attribute combinations?

4
1

⎛
⎝⎜

⎞
⎠⎟
= 1

4
3

⎛
⎝⎜

⎞
⎠⎟
= 4

4
2

⎛
⎝⎜

⎞
⎠⎟
= 6

4
4

⎛
⎝⎜

⎞
⎠⎟
= 4

Title Text

Julia Stoyanovich

Title Text

�54

Discovering uniques
R (A, B, C, D)

• If X is unique, then what can we say about its superset Y?

• If X is non-unique, then what can we say about its subset Z?

A B C D

AB AC ADBC BD CD

ABC ABD BCD ACD

ABCD

attribute lattice of R

Title Text

Julia Stoyanovich

Title Text

�55

Discovering uniques
Given a relation schema R (A, B, C, D) and a relation instance r, a unique

column combination (or a “unique” for short) is a set of attributes X whose
projection contains no duplicates in r

Given a relation schema R (A, B, C, D) and a relation instance r, a set of
attributes Y is non-unique if its projection contains duplicates in r

X is minimal unique if every subset Y
of X is non-unique

Y is maximal non-unique if every
superset X of Y is unique

A B C D

AB AC ADBC BD CD

ABC ABD BCD ACD

ABCD

Title Text

Julia Stoyanovich

Title Text

�56

From uniques to candidate keys

A set of attributes is a candidate key for a relation if:
(1) no two distinct tuples can have the same values for all key attributes

(candidate key uniquely identifies a tuple), and
(2) this is not true for any subset of the key attributes (candidate key is minimal)

Given a relation schema R (A, B, C, D) and a relation instance r, a unique
column combination is a set of attributes X whose projection contains no

duplicates in r

Episodes(season,num,title,viewers)
season num (tle viewers

1 1 Winter	is	Coming 2.2	M

1 2 The	Kingsroad 2.2	M

2 1 The	North	Remembers 3.9	M

A minimal unique of a relation instance is a (possible) candidate key of the
relation schema. To find all possible candidate keys, find all minimal uniques in a

relation instance.

Title Text

Julia Stoyanovich

Title Text

�57

Pivot: Frequent itemsets & association rules

• Problem formulation due to Agrawal, Imielinski, Swami, SIGMOD 1993

• Solution: the Apriori algorithm by Agrawal & Srikant, VLDB 1994

• Initially for market-basket data analysis, has many other applications,
we’ll see one today

• We wish to answer two related questions:
• Frequent itemsets: Which items are often purchased together, e.g., milk

and cookies are often bought together
• Association rules: Which items will likely be purchased, based on other

purchased items, e.g., if diapers are bought in a transaction, beer is also
likely bought in the same transaction

Title Text

Julia Stoyanovich

Title Text

�58

Market-basket data

• I = {i1, i2, …, im} is the set of available items, e.g., a product catalog of a store

• X ⊂ I is an itemset, e.g., {milk, bread, cereal}

• Transaction t is a set of items purchased together, t ⊆ I, has a transaction id
(TID)

t1: {bread, cheese, milk}
t2: {apple, eggs, salt, yogurt}
t3: {biscuit, cheese, eggs, milk}

• Database T is a set of transactions {t1, t2, …, tn}

• A transaction t supports an itemset X if X ⊆ t
• Itemsets supported by at least minSupp transactions are called frequent

itemsets

minSupp, which can be a number or a percentage, is specified by the user

Title Text

Julia Stoyanovich

Title Text

�59

TID Items
1 A
2 A C
3 A B D
4 A C
5 A B C
6 A B C

minSupp = 2 transactions

How many possible itemsets are there
(excluding the empty itemset)?

24 - 1= 15

itemset support
A 6
B 3
C 4
D 1

A B 3
A C 4
A D 1
B C 2
B D 1
C D 0

A B C 2
A B D 1
B C D 0
A C D 0

A B C D 0

Itemsets

Title Text

Julia Stoyanovich

Title Text
An association rule is an implication X → Y, where X, Y ⊂ I,	and	X	∩Y = ∅

example: {milk, bread} → {cereal}

“A customer who purchased X is also likely to have purchased Y in
the same transaction”
we are interested in rules with a single item in Y

 can we represent {milk, bread} → {cereal, cheese}?

Rule X → Y	holds with support supp in T if supp of transactions
contain X ∪ Y

Rule X → Y holds with confidence conf in T if conf % of transactions
that contain X also contain Y

conf ≈ Pr(Y | X)
conf	(X → Y) = supp	(X ∪ Y) / supp	(X)

�60

Association rules

Title Text

Julia Stoyanovich

Title Text

�61

Association rules
minSupp = 2 transactions
minConf = 0.75

itemset support
A 6
B 3
C 4
D 1

A B 3
A C 4
A D 1
B C 2
B D 1
C D 0

A B C 2
A B D 1
B C D 0
A C D 0

A B C D 0
conf	(X → Y) = supp	(X U Y) / supp	(X)

A → B
B → A

supp = 3
conf = 3 / 6 = 0.5
conf = 3 / 3 = 1.0

B → C
C → B

supp = 2
conf = 2 / 3 = 0.67
conf = 2 / 4 = 0.5

AB → C
AC → B
BC → A

supp = 2
conf = 2 / 3 = 0.67
conf = 2 / 4 = 0.5
conf = 2 / 2 = 1.0

A → C
C → A

supp = 4
conf = 4 / 6 = 0.67
conf = 4 / 4 = 1.0

Title Text

Julia Stoyanovich

Title Text
• Goal: find all association rules that satisfy the user-

specified minimum support and minimum confidence

• Algorithm outline
• Step 1: find all frequent itemsets
• Step 2: find association rules

• Take 1: naïve algorithm for frequent itemset mining
• Enumerate all subsets of I, check their support in T

• What is the complexity?

�62

Association rule mining

Title Text

Julia Stoyanovich

Title Text

�63

Key idea: downward closure
itemset support

A 6
B 3
C 4
D 1

A B 3
A C 4
A D 1
B C 2
B D 1
C D 0

A B C 2
A B D 1
B C D 0
A C D 0

A B C D 0

All subsets of a frequent itemset X are
themselves frequent

The converse is not true! If all subsets of X are
frequent, X is not guaranteed to be frequent

So, if some subset of X is infrequent,
then X cannot be frequent, we know
this apriori

A B C D

AB AC ADBC BD CD

ABC ABD BCD ACD

ABCD

Title Text

Julia Stoyanovich

Title Text
Algorithm	Apriori(T,	minSupp)		

	 F1	=	{frequent	1-itemsets};	 	
	 for	(k	=	2;	Fk-1	≠	∅;	k++)	do	 	 	

	 	 Ck	←	candidate-gen(Fk-1);	
	 	 for	each	transacVon	t	∈	T	do		
	 	 				for	each	candidate	c	∈	Ck	do			 	

	 	 	 if	c	is	contained	in	t	then		 	 	
	 	 	 			c.count++;		
	 	 				end	 	
	 	 end		
	 							Fk	←	{c	∈	Ck	|	c.count	≥	minSupp}		

	 end		
return	F	←	∪k	Fk;

�64

The Apriori algorithm
itemset support

A 6
B 3
C 4
D 1

A B 3
A C 4
A D 1
B C 2
B D 1
C D 0

A B C 2
A B D 1
B C D 0
A C D 0

A B C D 0

Title Text

Julia Stoyanovich

Title Text
The candidate-gen function takes Fk-1 and returns a superset
(called the candidates) of the set of all frequent k-itemsets. It
has two steps:

Join: generate all possible candidate itemsets Ck of length k

Prune: optionally remove those candidates in Ck that have
infrequent subsets

�65

Candidate generation

A B C D

AB AC ADBC BD CD

ABC ABD BCD ACD

ABCD

Title Text

Julia Stoyanovich

Title Text
Assume a lexicographic ordering of the items

Join	
Insert into Ck (

select p.item1, p.item2, …, p.itemk-1, q.itemk-1
from Fk-1 p, Fk-1 q
where p.item1 = q.item1

 and p.item2 = q.item2
and …
and p.itemk-1 < q.itemk-1)			

�66

Candidate generation

why not p.itemk-1 ≠ q.itemk-1?

Prune	
for	each	c	in	Ck	do

for	each	(k-1)	subset	s	of	c	do
if	(s	not	in	Fk-1)	then	

	 	 	 	 delete	c	from	Ck

Title Text

Julia Stoyanovich

Title Text

�67

Generating association rules

Rules	= ∅	
for	each	frequent	k-itemset	X	do		
	 	 				for	each	1-itemset	A	⊂	X	do			 	
	 	 	 compute	conf	(X	/	A	→	A)	=	supp(X)	/	sup	(X	/	A)	

	if	conf	(X	/	A	→	A)	>	minConf	then	 	 	 	
	 	 	 			Rules	← “X	/	A	→	A"	
	 	 				end		 					
							end		
end	 	
return	Rules

Title Text

Julia Stoyanovich

Title Text

• The possible number of frequent itemsets is
exponential, O(2m), where m is the number of items

• Apriori exploits sparseness and locality of data

• Still, it may produce a large number of rules:
thousands, tens of thousands, ….

• So, thresholds should be set carefully. What are
some good heuristics?

�68

Performance of Apriori

Title Text

Julia Stoyanovich

Title Text

�69

Back to data profiling: Discovering uniques
Given a relation schema R (A, B, C, D) and a relation instance r, a unique

column combination (or a “unique” for short) is a set of attributes X whose
projection contains no duplicates in r

Given a relation schema R (A, B, C, D) and a relation instance r, a set of
attributes Y is non-unique if its projection contains duplicates in r

X is minimal unique if every subset Y
of X is non-unique

Y is maximal non-unique if every
superset X of Y is unique

A B C D

AB AC ADBC BD CD

ABC ABD BCD ACD

ABCD

Julia Stoyanovich �70

[Abedjan, Golab, Naumann; SIGMOD 2017]

Title Text

Julia Stoyanovich

Title Text

�71

A set of attributes is a candidate key for a relation if:
(1) no two distinct tuples can have the value values for all key attributes

(candidate key uniquely identifies a tuple), and
(2) this is not true for any subset of the key attributes (candidate key is minimal)

Given a relation schema R (A, B, C, D) and a relation instance r, a unique
column combination is a set of attributes X whose projection contains no

duplicates in r

Episodes(season,num,title,viewers)
season num (tle viewers

1 1 Winter	is	Coming 2.2	M

1 2 The	Kingsroad 2.2	M

2 1 The	North	Remembers 3.9	M

A minimal unique of a relation instance is a (possible) candidate key of the
relation schema. To find such possible candidate keys, find all minimal uniques in a

given relation instance.

From uniques to candidate keys

Title Text

Julia Stoyanovich

Title Text

�72

Apriori-style uniques discovery

A minimal unique of a relation instance is a (possible) candidate key of the
relation schema.

Algorithm	Uniques		//	sketch,	similar	to	HCA	

	 U1	=	{1-uniques}						N1	=	{1-non-uniques}	 	

	 for	(k	=	2;	Nk-1	≠	∅;	k++)	do	 	

	 	 Ck	←	candidate-gen(Nk-1)	

	 	 Uk	←	prune-then-check	(Ck)		

//	prune	candidates	with	unique	sub-sets,	and	with	value	distribu(ons	
that	cannot	be	unique	

//	check	each	candidate	in	pruned	set	for	uniqueness	

	 						Nk	 ←	Ck	\	Uk	

	 end		

return	U	←	∪k	Uk;

[Abedjan, Golab, Naumann; SIGMOD 2017]

Title Text

Julia Stoyanovich

Title Text

�73

Referential integrity constraints
A foreign key defines a directed link between a pair of tuples, R.t and S.t’.
Foreign keys enforce referential integrity, a requirement that a value in an

attribute or attributes of R.t must appear as a value in S.t’.

Example: Students (sid: integer) Courses (cid: integer) Enrolled(sid, cid)

Enrolled.sid must refer to an id of some actual student, per Students.sid

Enrolled.cid must refer to an id of some actual course, per Courses.cid

Title Text

Julia Stoyanovich

Title Text

�74

Referential integrity constraints

create table Courses (
 cid integer primary key
);

cid

101
201

301

401

Courses
create table Students (
 sid integer primary key
);

sid

1
2

3

4

Students

create table Enrolled (
 sid integer, cid integer,
 primary key (sid, cid),
 foreign key (sid) references Students (sid),
 foreign key (cid) references Courses (cid)
);

sid cid

1 101

2 301

2 401

Enrolled

A foreign key defines a directed link between a pair of tuples, R.t and S.t’.
Foreign keys enforce referential integrity, a requirement that a value in an

attribute or attributes of R.t must appear as a value in S.t’.

Title Text

Julia Stoyanovich

Title Text
• A foreign key in a table must reference (point to) a candidate

key in another table.

• That is, the target column(s) are either a primary key or are
designated unique.

• Some relational systems limit this further: a foreign key must
point to a primary key. For efficiency reasons, this is usually a
better choice.

�75

create table Students (
 sid integer primary key,
 login varchar(128) unique,
 name varchar(128),
 dob date,
 gpa decimal,
 unique (name, dob)
);

candidate keys: sid, login, (name, dob)

Referential integrity constraints

create table Sibling_Pairs (
 thing_one integer,
 thing_two integer,
 primary key (thing_one, thing_two),
 foreign key (thing_one)
 references Students(sid),
 foreign key (thing_two)
 references Students(sid)
);

Title Text

Julia Stoyanovich

Title Text

�76

Discovering inclusion dependencies
• An inclusion dependency (IND) between attribute A of relation R and

attribute B of relation S asserts that all values of R.A also appear in S.B:
R.A ⊆ S.B

• We can extend this notion of unary (single-attribute) IND to sets of
attributes R.X and S.Y

• Note that R and S are usually of two different relations (e.g,. Students
and Enrolled)

• Inclusion dependencies must necessarily hold (but are not sufficient) for a
foreign key (aka referential integrity) constraint to hold

How might we go about discovering inclusion dependencies?

Why is inclusion not a sufficient condition for referential integrity?

Title Text

Julia Stoyanovich

Title Text

�77

An inverted index for unary IND

relation R relation S inverted index on values

How do we use this index data structure to find all pairs of
attributes over which inclusion dependencies hold?

Across two relations, within a relation?

[De Marchi, Lopes, Petit; J Intell. Inf. Syst. 2009]

Title Text

Julia Stoyanovich

Title Text

�78

Which IND rules should we try?
• If our goal is to find candidates for foreign key, then the RHS of the

rule should be unique (a candidate key)
• We can extend this notion of unary (single-attribute) IND to sets of

attributes R.X and S.Y

• Note that R and S are usually of two different relations (e.g,.
Students and Enrolled)

• Inclusion dependencies must necessarily hold (but are not sufficient)
for a foreign key (aka referential integrity) constraint to hold

How might we go about discovering inclusion dependencies?

Why is inclusion not a sufficient condition for referential integrity?

Title Text

Julia Stoyanovich

Title Text

�79

Functional dependencies
• Let’s revisit the relational model: the basic abstraction is a relation (a table)

• In a properly designed database, a relation corresponds to a single real-world
entity (e.g., student or course) or to a single relationship between entities (e.g.,
student takes course)

• Sometimes, we represent multiple linked entities, or an entity and some of its
relationships, in the same table, but this is only done to encode specific
business rules correctly

• Unless there are strong performance reasons to do so, we don’t want to
encode many-to-many relationships, together with the entities they relate, in
the same table, because this gives rise to redundancy

• No avoid redundancy, we decompose (normalize) our relations - break them
up into multiple relations

• Functional dependencies guide us in such decompositions

Title Text

Julia Stoyanovich

Title Text
each entity set (Employees and Departments) and the relationship

set (work_in) are mapped to a table of their own

�80

create table Work_In (
 ssn char(11),
 did integer,
 since date,
 primary key (ssn, did),
 foreign key (ssn) references Employee(ssn),
 foreign key (did) references Department(did)
);

create table Employees (
 ssn char(11) primary key,
 name varchar(128) not null,
 title varchar(128)
);

create table Departments (
 did integer primary key,
 name varchar(128) not null,
 budget integer
);

EMPLOYEES(

ssn(
name(

.tle(

DEPARTMENTS(

did(
name(

budget(

work_in(

since(

Example of a many-to-many relationship

Title Text

Julia Stoyanovich

Title Text
each entity set (Employees and Departments) and the relationship

set (work_in) are mapped to a table of their own

�81

create table Employees_Work_In_Departments (
 ssn char(11),
 empName varchar(128) not null,
 title varchar(128),
 did integer,
 deptName varchar(128) not null,
 budget integer,
 since date,
 primary key (ssn, did)
);

EMPLOYEES(

ssn(
name(

.tle(

DEPARTMENTS(

did(
name(

budget(

work_in(

since(

This is incorrect!

Why is this incorrect?
Because of redundancy!

ssn→ empName
ssn→ title
did→ deptName
did→ budget

Title Text

Julia Stoyanovich

Title Text

�82

Functional dependencies (FDs)

 
When two tuples have the same values for all A = {A1,A2,…,An}

then they will also have the same values for all B = {B1,B2,…,Bm}

A1A2…An → B1B2…BmThe functional dependency says:

A functional dependency (FD) is an integrity constraint (IC) that
generalizes the concept of a key. It’s part of a schema or relation R.

A candidate key is a particular kind of an FD: the values of the key
attributes, taken together, uniquely identify a tuple in relation R, and
so functionally determine all of that tuple’s attributes.

Title Text

Julia Stoyanovich

Title Text

�83

Functional dependencies: example

K A B C D

k1 a1 b1 c1 d1
k2 a1 b1 c1 d2
k3 a1 b2 c2 d1
k4 a1 b3 c3 d1

Is this FD satisfied: AB→C
Is this FD satisfied: A→ B
Is this FD satisfied: AB→ B yes, known as a trivial FD

yes

no, violated for tuples k3 and k4

Is this FD satisfied: K→ ABCD yes, K is a key

we know that K is a
candidate key

Title Text

Julia Stoyanovich

Title Text
each entity set (Employees and Departments) and the relationship

set (work_in) are mapped to a table of their own

�84

create table Employees_Work_In_Departments (
 ssn char(11),
 emp_name varchar(128) not null,
 title varchar(128),
 did integer,
 dept_name varchar(128) not null,
 budget integer,
 since date,
 primary key (ssn, did)
);

EMPLOYEES(

ssn(
name(

.tle(

DEPARTMENTS(

did(
name(

budget(

work_in(

since(

FDs are used for normalization

ssn→ empName
ssn→ title
did→ deptName
did→ budget

if we knew these FDs, we’d decompose
this relation to avoid redundancy

Title Text

Julia Stoyanovich

Title Text

�85

FDs and redundancy

A candidate key is a particular kind of an FD: the values of the key
attributes, taken together, uniquely identify a tuple in relation R, and
so functionally determine all of that tuple’s attributes.
• In an ideal world (one with no redundancy), we only have FDs in which a

candidate key is on the left-hand-side, and no other FDs. This is known as
the Boyce-Codd Normal Form (BCNF).

• In a somewhat less ideal world, where we know the schema (including the
FDs), we can attempt to decompose our relation to have no redundancy
(BCNF) or with almost no redundancy (third normal form, 3NF).

• If only a dataset (an instance or R) is given to us, but not the schema, and
no FDs, we can attempt to infer FDs that hold, or almost hold, and to then
either normalize our data, or to clean it accordingly.

A1A2…An → B1B2…Bm

Title Text

Julia Stoyanovich

Title Text

�86

Inferring FDs
Given relation R, detect all minimal non-trivial FDs of the form X → A
where X is a set of attributes and A is a single attribute
FDs	= ∅	

for	each	A	∈	R	do	 	

for	each	X	⊂	Powerset(R	\	A)	do			 	

				if	count	disVnct(X)	=	count	district	(XA)	then		
	 	 	FDs	← “X	→	A”		

	 				end	 	 					
					end		

end	

ring any bells? A B C D

AB AC ADBC BD CD

ABC ABD BCD ACD

ABCD

Title Text

Julia Stoyanovich

Title Text

�87

A B C D

AB AC ADBC BD CD

ABC ABD BCD ACD

ABCD

Inferring FDs: TANE

An Aprior-style algorithm that traverses bottom-up through the attribute lattice

Consider only minimal dependencies: if B → C, don’t check BD → C

Consider only non-trivial dependencies: for a set X, test all X \ A → A, A ∈ X

[Huhtala, Kärkkäinen, Porkka, Toivonen; Computer Journal 1999]

