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Responsible data science

e Be transparent and accountable

e Achieve equitable resource distribution

e Be cognizant of the rights and preferences of individuals
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A holistic view of the lifecycle
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Understand your data!

CRA

Computing Research
Association

“Given the heterogeneity of the flood of data, it is not enough merely to
record it and throw it into a repository. Consider, for example, data
from a range of scientific experiments. If we just have a bunch of data
sets in a repository, it is unlikely anyone will ever be able to find, let
alone reuse, any of this data. With adequate metadata, there is some

hope, but even so, challenges will remain due to differences in
experimental details and in data record structure.”

https://cra.org/ccc/wp-content/uploads/sites/2/2015/05/bigdatawhitepaper.pdf
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Understand your data!

2.2 Big data

In the analog age, most of the data that were used for
social research was created for the purpose of doing
research. In the digital age, however, a huge amount of
data is being created by companies and
governments for purposes other than research,
such as providing services, generating profit, and
administering laws. Creative people, however, have
i EY - sALeANIX. realized that you can repurpose this corporate and

government data for research.

https://www.bitbybitbook.com/en/1st-ed/observing-behavior/data/
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Understand your data!

2.2 Big data

. from the perspective of researchers, big data
sources are “found,” they don't just fall from the sky.
Instead, data sources that are “found” by researchers

T are designed by someone for some purpose.
--3‘*““' i Because “found” data are designed by someone, |

o3 i'g %
'.':..".QJJ (Y

":' ST :.... e

‘::..o.'-.:"i; ® o E always recommend that you try to understand as

' MATTHEW J. SALGANIK - much as possible about the people and processes
that created your data.

https://www.bitbybitbook.com/en/1st-ed/observing-behavior/data/
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Understand your data!

Need metadata to:
e cnable data re-use (have to be able to find it!)
e determine fitness for use of a dataset in a task

e help establish trust in the data analysis process and its
outcomes

Data is considered to be of high quality if it's “fit for intended
uses in operations, decision making and planning”
[Thomas C. Redman, “Data Driven: Profiting from Your Most Important Business Asset.” 2013]
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311 | Search all NYC.gov websites

INVC | Opendata

m Open Data Home Data About ~ Learn ~ Contact Us Blog | Signin

@88 NYC Open Data: Public Dataat .. © 2

Open Data for All
New Yorkers

Search Open Data for things like 311, Buildings, Crime

How You Can Get Involved

QOC

New to Open Data Data Veterans Get in Touch Dive into the Data
Learn what data is and how View details on Open Data Ask a question, leave a Already know what you're
to get started with our How APIs and check status comment, or suggest a looking for? Browse the data
To. alerts. dataset to the NYC Open catalog now.

Data team.
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2010 SAT (College Board) School Level
ReSU|tS Education MOpenData

New York Clty school Ievel College Board SAT results for the graduatlng seniors of 2010. )
; Records contain 2010 College-bound seniors mean SAT scores.

} summary

ol SN
N e

( Records wnth 5or fewer students are suppressed (marked 's’). } privacy

" College- -bound seniors are thosgzud;i?:that complete the SAT (3Test|onna|re when they \
register for the SAT and identify that they will graduate from high school in a specific year.
For example, the 2010 college-bound seniors are those students that self-reported they |
would graduate in 2010. Students are not required to complete the SAT Questionnaire in

{ order to register for the SAT. Students who do not indicate which year they will graduate ! description
from high school will not be included in any college-bound senior report.

Students are linked to schools by identifying which school they attend when registering for a |
College Board exam. A student is only included in a school’s report if he/she self-reports |
being enrolled at that school.

source

di:e eter7v,2}0 )} freshness
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2010 SAT (College Board) School Level
ReSU|tS Education :OpenData

About this Dataset

Updated Update
September 17, 2018
Update Frequency Historical Data
Data Last Updated Metadata Last Updated Automation No
October 6, 2011 September 17, 2018
Date Made Public 10/11/2011
Date Created
October 6, 2011 Dataset Information
Views Downloads Agency Department of Education (DOE)
’ ! Attachments
Data Provided by Dataset SAT Data Dictionary.xlsx
Department of Education Owner
(DOE) NYC )
OpenData TOP'CS
Category Education
Tags doe, sat
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2010 SAT (College Board) School Level
ReSU|tS Education MopenData

What's in this Dataset?

Rows Columns

460 6

Columns in this Dataset

Column Name Description Type

DBN Plain Text T e
School Name Plain Text T e
Number of Test Takers Number w e
Critical Reading Mean Number w e
Mathematics Mean Number w e
Writing Mean Number w e
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2010 SAT (College Board) School Level
ReSU|tS Education mopenData

Add Filter

- I Data Selection A = || € ~ A (f <@
—

f2 Dimension @

# Writing Mean ° i
0
RECOMMENDED COLUMNS 3
(@
# Critical Reading Mean °
“ ”
T oBN . No value” is the most frequent value
# Mathematics Mean °
# Number of Test Takers °
T School Name °
Measure @ ?
g
(Count of Rows) v 5;

+ Add Measure

View Source Data ~+

) ) o ‘
Group Dimension Values Preview of 2010 SAT (College Board) School Level Results
Column Display Options v DBN SchoolName i | Numberc ¢ i | CriticalRea.. i | Mathemati.. : | WritingMea:
Error Bars v 75X754 P754 X - Jeffrey ...

75X012 PS12X LEWIS AN...

75Q256 P256 QUEENSS...
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Data profiling

e A set of activities and processes to determine the metadata about
a given dataset

e Metadata summarizes the data, summaries should be small but
informative

e \What is informative depends on the task, or set of tasks, we have

CAICH=22

iNn Mind

should profiling be task-agnostic or task-specific?

: ; O\
\\/ )
- 27

JOSEPH HELLER

A related activity is data cleaning
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Data cleaning

52,423 views | Mar 23, 2016, 02:33am Forbes

Cleaning Big Data: Most Time-
Consuming, Least Enjoyable Data
Science Task, Survey Says

' Gil Press Contributor ®
I write about technology, entrepreneurs and innot ation.

What data scientists spend the most time doing

® Building training sets: 3%

® (leaning and organizing data: 60%

Spend most time doing
Collecting data (19%)
Cleaning and organizing data (60%)

® (ollecting data sets; 19%
Mining data for patterns: 9%
® Refining algorithms: 4%

® QOther: 5%

based on a slide by Heiko Mueller
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Data cleaning

52,423 views | Mar 23, 2016, 02:33am Forbes

Cleaning Big Data: Most Time-
Consuming, Least Enjoyable Data
Science Task, Survey Says

' Gil Press Contributor ®
I write about technology, entrepreneurs and innovation.

What's the least enjoyable part of data science?

® Building training sets: 10%

® (leaning and organizing data: 57%

Find least enjoyable

® (ollecting data sets: 21% .
e Collecting data (21%)
S Cleaning and organizing data (57%)

® Other: 5%

based on a slide by Heiko Mueller
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A classification of data profiling tasks

[Abedjan, Golab, Naumann; SIGMOD 2017]

a Cardinalities
. Patterns and
. I Single column
= BB G h D BB G data types
uiD sex race MarriageSta DateOfBirth age juv_fel_cour decile_score
[ 2 | 1 0 1 1 4/18/47 69 0 1
[ 3| 2 0 2 1 yam 34 0 3 Value
4 3 0 2 1 s/14/91 2% 0 4 — T
z 4 0 2 1 1/21/93 23 0 8 2)0 dlStI"IbUtlonS
6 | 5 0 1 2 1273 43 0 1 C
7 | 6 0 1 3 82 44 0 1
8 7 0 3 1 7/23/74 41 [} 6 — .
9 | 8 0 1 2 22573 43 0 4 — Key discovery
110 | 5 0 3 1 6/10/%4 21 0 3 Y
111 | 10 0 3 1 6/1/88 27 0 4 O
(12 | 1 1 3 2 82278 37 0 1 bl
13 12 0 2 1 12/2/74 41 0 4 . i it
Bl z - 2 s u g : o Uniqueness Conditional
15 | 14 0 2 1 3/25/85 31 0 3
116 | 15 0 4 4 1/25/79 37 0 1 (]
17 | 16 0 2 1 6/22/9 25 0 10 —
18| 17 0 3 1 12/24/84 31 0 5 Partial
19 | 18 0 3 1 ys/ss 31 0 3 (O
1 20 | 19 0 2 3 6/28/51 64 0 6 D
(21 | 20 0 2 1 11/29/94 21 0 s -
(22| 21 0 3 1 s8/6/s8 27 0 2 Foreign key
23| 2 1 3 1 3/22/95 21 0 4 .
| 24 | 23 0 4 1 1/23/92 24 0 4 discove ry
25 2% 0 3 3 1/10/73 43 0 1
26 25 0 1 1 8/24/83 32 0 3 ; :
27 | 2% 0 2 Y ) 27 0 3 Multiple columns || Inclusion Conditional
= a : : L—nn e : 2 dependencies
relational data (here: just one table) P

Conditional
Functional

dependencies

Partial
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An alternative classification

¢ To help understand the statistics, we |ook at value ranges, data types,
value distributions per column or across columns, etc

¢ To help understand the structure - the (business) rules that generated
the data - we look at unique columns / column combinations,
dependencies between columns, etc - reverse-engineer the
relational schema of the data we have

¢ \We need both statistics and structure, they are mutually-reinforcing,
and help us understand the semantics of the data - it's meaning

Julia Stoyanovich




A classification of data profiling tasks

[Abedjan, Golab, Naumann; SIGMOD 201

' = Cardinalities
Il Patternsand
data types

| ) | V:A = | = o = | D | E F o
uiD sex race MarriageSta DateOfBirth age juv_fel_cour decile_score

2 1 0 1 1 4/18/47 69 0 1
3 2 0 2 1 1y2/8 34 0 3 Value
a 3 0 2 1 s/14/91 24 0 4 ] o !

5 A o 3 1 1/21/93 3 o P distributions
6 5 0 1 2 12273 23 0 1 cC z
7 6 0 1 3 s22/mn 2 0 1 oot i oo R i el T Y
8 7 0 3 1 7/23/74 41 0 6 — .
9 8 ) 1 2 22573 43 ) 4 T Key discovery
10 9 0 3 1 6/10/% 21 0 3 L
11 10 0 3 1 6/1/88 27 0 4 O
12 11 1 3 2 8/22/78 37 0 1 bl
13 12 0 2 1 12/2/74 21 0 4 ] g G

e z - 2 s u g : o Uniqueness Conditional
15 14 0 2 1 3/25/85 31 0 3
16 15 0 4 4 1/25/79 37 0 1 (]
17 16 0 2 1 6/22/90 25 0 10
18 17 0 3 1 12/24/84 31 0 5 + Partial
19 18 0 3 1 1/8/ss 31 0 3 (8]
20 19 0 2 3 6/28/51 64 0 6 D
21 20 0 2 1 11/29/94 21 0 9 -
22 21 0 3 1 8/6/s8 27 0 2 Foreign key
23 2 1 3 1 3/22/95 21 0 4 .
24 23 0 4 1 1/23/92 24 0 4 discove ry
25 24 0 3 3 1/10/73 23 0 1
26 25 0 1 1 8/24/83 32 0 3 : :
27 2 ) 2 1 2/8/89 27 0 3 Multiple columns || Inclusion Conditional
= z z 3 I pm 3 2 2 dependencies

relational data (here: just one table) e

Conditional
Functional
dependencies

Partial
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Single column: cardinalities, data types

[Abedjan, Golab, Naumann; SIGMOD 2017]

e cardinality of relation R - number of rows

e domain cardinality of a column R.a - number of distinct values
e attribute value length: min, max, average, median

e basic data type: string, numeric, date, time, ....

e number of percentage of null values of a given attribute

Julia Stoyanovich




2010 SAT (College Board) School Level
ReSU|tS Education mopenData

Add Filter

- I Data Selection A = || € ~ A (f <@
—

f2 Dimension @

# Writing Mean ° i
0
RECOMMENDED COLUMNS 3
(@
# Critical Reading Mean °
“ ”
T oBN . No value” is the most frequent value
# Mathematics Mean °
# Number of Test Takers °
T School Name °
Measure @ ?
g
(Count of Rows) v 5;

+ Add Measure

View Source Data ~+

) ) o ‘
Group Dimension Values Preview of 2010 SAT (College Board) School Level Results
Column Display Options v DBN SchoolName i | Numberc ¢ i | CriticalRea.. i | Mathemati.. : | WritingMea:
Error Bars v 75X754 P754 X - Jeffrey ...

75X012 PS12X LEWIS AN...

75Q256 P256 QUEENSS...
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The trouble with null values

A CRITI®@UE OF

THE S @ L DATABASGSE LANGUAGE

€C.J.Date

FO Box 2647, Saratoga
California 25070, USA

December 1983

I have argued against null values at length elsewhere [&1, and I
will not repeat those arguments here. Ipn my opinion he null
value concept is far more trouble than it is worth. Certainly it
as never been properly thought through in the existing SOL

-J:i'::._,_‘:.»_g,_ ,"... = e = ~ — l .A~ ,‘ . b= o a . = ...»‘.“...;._, .‘}.

Miscellaneous Items", earlier). For example, the fact that
functions such as AVG simply ignore null values in their argument
violates what should surely be a fundamental principle, viz: The
system should never produce a (spuriously) precise answer to a
query when the data involved in that query is itself imprecise.
At least the system should offer the user the explicit option
either to ignore nulls or to treat their presence as an

exception.
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50 shades of null

e Unknown - some value definitely belongs here, but | don’t know what it is
(e.g., unknown birthdate)

e [napplicable - no value makes sense here (e.g., if marital status = single
then spouse name should not have a value)

¢ Unintentionally omitted - values is left unspecified unintentionally, by
mistake

e Optional - a value may legitimately be left unspecified (e.g., middle name)

e [ntentionally withheld (e.g., an unlisted phone number)

(this selection is mine, see reference below for a slightly different list)

https://www.vertabelo.com/blog/technical-articles/50-shades-of-null-or-how-a-billion-
dollar-mistake-has-been-stalking-a-whole-industry-for-decades
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50 shades of null... and it gets worse!

e Hidden missing values -
e 00999 for zip code, Alabama for state
* need data cleaning....

e |ots of houses in Philadelphia, PA were built in 1934
(or 19367) - not really!

how do we detect hidden missing values?

Julia Stoyanovich




Single column: cardinalities, data types

[Abedjan, Golab, Naumann; SIGMOD 2017]

e regular expressions

e semantic domain: SSN, phone number

Julia Stoyanovich




Regular expressions

e some attributes will have values that follow a
regular format, e.qg, telephone numbers:
212-864-0355 or (212) 864-0355 or
1.212.864-0355

e we may want to identify a small set of reqular
expressions that match all (or most) values
iIn a column

e challenging - very many possibilities!

A regular expression, regex or regexp ... iS a sequence
of characters that define a search pattern. Usually this
pattern is used by string searching algorithms for “find” or
“find and replace” operations on strings, or for input
validation. It is a technique that developed in theoretical
computer science and formal language theory.

https://en.wikipedia.org/wiki/Regular_expression

Julia Stoyanovich



Inferring regular expressions

e Wwe may want to identify a small set of

regular expressions that match all (or

most) values in a column

e challenging - very many possibilities!

Example Regular Expression Language

Matches any character

abc Sequence of characters
[abc] Matches any of the characters inside [ ]
* Previous character matched zero or more times (718)

2
{m}

$

\d
\s
\w

Previous character matched zero or one time
Exactly m repetitions of previous character
Matches beginning of a line

Matches end of a line

Matches any decimal digit

Matches any whitespace character

Matches any alphanumeric character

Julia Stoyanovich

(201)

telephone

368-1000

(201) 373-9599

(718)
(718)
(718)
(718)

(718)

(718)
(718)
(814)

(888)

206-1088

206-1121

206-1420

206-4420

206-4481

262-9072

868-2300

206-0545

681-6200

8NYC-TRS

800-624-4143

based on a slide by Heiko Mueller




Oakham'’s razor

Lex parsimoniae

It multiple hypotheses explain an
observation, the simplest one
should be preferred.

Ockham’s motivation: can one prove the
existence of God?

Used as a heuristic to help identify a N
promising hypothesis to test B =

o L William of Ockham
Many applications today: biology,
probability theory, ethics - also good for (1285-1347)
Inferring regular expressions :)

Julia Stoyanovich




telephone

Inferring regular expressions

800-624-4143

(201) 373-9599

(201)
(718)
(718)
(718)
(718)
(718)
(718)
(718)
(718)
(814)

(888)

Julia Stoyanovich

368-1000

206-1088

206-1121

206-1420

206-4420

206-4481

262-9072

868-2300

206-0545

681-6200

8NYC-TRS

Simple Algorithm
(1) Group values by length
(2) Find pattern for each group
e |gnore small groups
e Find most specific character at each position

(12 0 1 ) 3 6 8 1.0 0 0
(12,0 1) 2,0 6 1.0 8 8
(711 8 ) 2,0 6 111121
(711 8 ) 2,0 6 1.4 20
(711 8 ) 2,0 6 4 4 2 0
(711 8 ) 2|0 6 4 4 8 1
(711 8 ) 26 2 9/0 7 2
(711 8 ) 8 68 2 3,0 0
(17 1.8 ) 2,0 6 0/ 5 4 5
(/18 1 4 ) 68 1 62 0 0
(18,8 8 ) 8 N 'Y T R|S
(1\d\d]N\d]) \d|\w|\w]| . \w | \w | \w

based on a slide by Heiko Mueller




telephone

Inferring regular expressions

800-624-4143

(201) 373-9599

(201)
(718)
(718)
(718)
(718)
(718)
(718)
(718)
(718)
(814)

(888)

Julia Stoyanovich

368-1000

206-1088

206-1121

206-1420

206-4420

206-4481

262-9072

868-2300

206-0545

681-6200

8NYC-TRS

Simple Algorithm
(1) Group values by length
(2) Find pattern for each group
¢ Ignore small groups
e Find most specific character at each position

ignoring small groups: alternatives?

(f\df{\Md]\d|) diwlw| . |. [WwW][\Ww|\w

(\d{3}) \d\w{2}.{2}\w{3}

based on a slide by Heiko Mueller




Single column: basic stats, distributions

[Abedjan, Golab, Naumann; SIGMOD 2017]

e min, max, average, median value of R.a
e histogram

e cqui-width - (approximately) the same number of distinct values in each
bucket (e.g., age broken down into 5-year windows)

e cqui-depth (approximately) the same number of tuples in each bucket

e Dbiased histograms use different granularities for different parts of the
value range to provide better accuracy

e quartiles - three points that divide the numeric values into four equal
groups - a kind of an equi-depth histogram

o first digit - distribution of first digit in numeric values, to check Benford law

Julia Stoyanovich




The well-chosen average

4
s

$3% oo | HOW 'TO

: LIE WITH
STATISTICS

$15,000

e

$10,000 Darrell Huff
%fARlTHMETICAL AVERAGE

$5,700

ﬁtMEDiAN G;*d:: iﬂfnzm

$3,000
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Is my data biased? (histograms + geo)

[Lum, Isaac; Significance, 2016]

Lafayette

omuesr Ul Orinda 5 Estimated number of drug

Sl Berkeley = Cali 3 :

' © B g ok users, based on 2011 National
B e Survey on Drug Use and

o Sibley

cani £ Health, in Oakland, CA

€ Eastpon

Albany

Moraga
'i'-.vr,-a,xy-,'||! y Canyon

. , Piedmont iy Valle Vista
8 L =

$ ) Redwood 500
- - gional Park
400
Uakiaad :
r- o

ANT: 100
Alameda o
Island WAl

1 o
- o ‘> o
e -
_ o
-5 Che
&) ' egior, ° -
S
| |

@

8
15

Percent of population (%)
10
|

Alameda
i 0O.co Col < "‘r‘r:]“
Bay Farm (o] white black other
Island

(b) San Leandro Estimated drug use by race
Google

NalblanA 1 % Map data ©2016 Google
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Is my data biased? (histograms + geo)

[Lum, Isaac; Significance, 2016]

Albany

R
<

Melaughlin /> Berkeley * California,

Eastshore =
‘;m.‘ets‘r_r'i
<
20D @
Emeryville £
50 1@1
th 51 pox
Qaxland
Alameda
Island
Lincoln Ay,
(a)
Google
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o Piedmont
<

/:’

- &

) “200.co Coliseum ad
(s1)

Morag,

q

Percent of population (%)

195
iem 0akland 200 -

T

-~

San Leandro

Map data ©2016 Google

Number of days with targeted
policing for drug crimes in
areas flagged by PredPol
analysis of Oakland, CA,
police data for 2011

Targeted policing for drug

o0 —

v_--
o -

white

crimes by race



Is my data biased? (histograms + geo)

[Lum. Isaac: Sianificance. 2016]

Lafayette

Albany

Unive;
Mclaughlin ~—  Berkeley = Calift
Eastshore 22 Berk
State Park

e
2
Wil

wy o

Emeryvil!

. <:>1

Orinda

Siesta Valley
Recreation

Eastport

Canyon

Py

Moraga

%, Valle Vista
oL N

Redwood
egional Park

Alameda
Island

Alameda

7, 40.co Cu

(61)
Bay Farm
Island
(@)
Google W
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San Leandro

Map data ©2016 Google

Number of drug arrests made
by the Oakland, CA, police
department in 2010

arrests
200

1

50

. 100

50 X © -
[ =

0 ke
- J
—
<3
a ¥ -
S
= J
D
e
D
o o -
(b) white black other

Targeted policing for drug
crimes by race




Benford Law (first digit law)

[Benford: “The law of anomalous numbers” Proc. Am. Philos. Soc., 1938]

The distribution of the first digit d of a number, in many naturally
occurring domains, approximately follows 1

S P(d)=log 1+E

30 - g
25|

20 |----

1 is the most
frequent leading
digit, followed by
2, etc.

Pk [%]

15 |-

10 |-

k
https://en.wikipedia.org/wiki/Benford%27s_law
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Benford Law (first digit law)

[Benford: “The law of anomalous numbers” Proc. Am. Philos. Soc., 1938]

The distribution of the first digit d of a number, in many naturally
occurring domains, approximately follows 1

P(d)=log | 1+ 7

Holds if log(x) is uniformly distributed. Most accurate when values are
distributed across multiple orders of magnitude, especially if the process
generating the numbers is described by a power law (common in nature)

0.7 0.9 7 9 7 S0
L] L] L]

.2 03 040506 08 Z ] 4 5 & g 20 ic 40 5C &0 ap

1.1 1 10 100

A logarithmic scale bar. Picking a random x position uniformly on this number
line, roughly 30% of the time the first digit of the number will be 1.

https://en.wikipedia.org/wiki/Benford%27s_law
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Benford Law: an example

[Abedjan, Golab, Naumann; SIGMOD 2017]

height of tallest structures

40,0
35,0
30,0
25,0
20,0
15,0
10,0

5,0

0,0
1 2 3 = 5

M % 1st digit of the 335 NIST physical constants

Julia Stoyanovich

6 7 8

% expected by Benford’s w



Benford Law: other examples

[Abedjan, Golab, Naumann; SIGMOD 2017]

e surface area of 355 rivers

e sizes of 3,259 US populations

e 104 physical constants

e 1,800 molecular weights

e 308 numbers contained in an issue of Reader’s Digest

e Street addresses of the first 342 persons listed in American
Men of Science

used in fraud detection!

[Benford: “The law of anomalous numbers” Proc. Am. Philos. Soc., 1938]

Julia Stoyanovich




Classification of data profiling tasks

[Abedjan, Golab, Naumann; SIGMOD 2017]

= Cardinalities
Single column Il Patternsand
BB G h D BB G g data types

J ¥ - L
uiD sex race MarriageSta DateOfBirth age juv_fel_cour decile_score

2 1 0 1 1 4/18/47 69 0 1
Ex 2 0 2 1 122/82 34 0 3 Value

4 3 0 2 1 s5/14/91 24 0 4 — L .
z 4 0 2 1 1/21/93 23 0 8 2)0 dlStI"IbUtlonS
6 | 5 0 1 2 Y273 43 0 1 (- B . S T L
7 | 6 0 1 3 g/2n 44 0 1

8 7 0 3 1 7/23/74 41 0 6 o .
9 8 0 1 2 22573 a3 0 4 = Key discovery
110 | 9 0 3 1 §/10/94 21 0 3 Y ;
111 | 10 0 3 1 6/1/88 27 0 4 O
12 | 1 1 3 2 82278 37 0 1 bl

13 12 0 2 1 12/2/74 41 0 4 _ i it
Bl z - 2 s u g : o Uniqueness Conditional
115 | 14 0 2 1 3/25/85 31 0 3 5
116 | 15 0 4 4 1/25/79 37 0 1 O ]
17 | 16 0 2 1 6/22/90 25 0 10 -
118 | 17 0 3 1 12/24/84 31 0 5 Partial
119 | 18 0 3 1 1/8/8s 31 0 3 (O ;
1 20 | 19 0 2 3 6/28/51 64 0 6 D o . - ————
121 | 20 0 2 1 11/29/94 21 0 9  EEEEEE—— s
(22 | 2 0 3 1 8/6/88 27 0 2 Foreign key

23 22 1 3 1 3/22/95 21 0 4 .
|24 | 23 0 4 1 1/23/92 24 0 4 discovery

25 24 0 3 3 110/73 43 0 1

26 25 0 1 1 8/24/83 32 0 3 ; :
27 | 2% 0 2 Y ) 27 0 3 Multiple columns || Inclusion Conditional

= a : : L—nn 2 : 2 dependencies

relational data (here: just one table)

Conditional
Functional

dependencies

Partial
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An alternative classification

¢ To help understand the statistics, we |ook at value ranges, data types,
value distributions per column or across columns, etc

RIS e

NI A NI Las o o = ERINE B N A e s S

e To help understand the structure - the (business) rules that generated
the data - we look at unique columns / column combinations,
dependencies between columns, etc - reverse-engineer the

relational schema of the data we have

¢ \We need both statistics and structure, they are mutually-reinforcing,

and help us understand the semantics of the data - it's meaning

next up: relational model basics
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The relational model

e |ntroduced by Edgar F. Codd in 1970
(Turing award)

NI
BIEBINEIREEEE E

e At the heart of relational database
management systems (RDBMS)
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e g database consists of a collection of
relations (tables)

e tuples are stored in table rows

e attributes of tuples are stored in table
columns
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The relational model

e Relations are unordered collections of
tuples

r5e

e conceptually, a relation is a set of
tuples
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e however, SQL implements a relation
as a multiset (bag) of tuples

e \Why this model?

e Simple yet powerful. Great for
processing very large data sets in
bulk
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The relational model

Episodes (season: int, num: int, title: string, viewers: long)

Winter is Coming 22 M
1 2 The Kingsroad 22 M
2 1 The North Remembers 3.9 M
2 2 The Night Lands 3.8M

e Relation: a set or tuples - order doesn't matter, all tuples are distinct
e Attribute: a column in a relation (e.g., season)
e Domain: data type of an attribute (e.g., season: int)

e Tuple: arow in arelation, e.g., (1, 2, The Kingsroad, 2.2 M)

Julia Stoyanovich




Schema vs. instances

Relation schema is a description of a relation in terms of relation
name, attribute names, attribute datatypes, constraints (e.g., keys).
A schema describes all valid instances of a relation.

...no matter how many instances of white swans
we may have observed, this does not justify the
conclusion that all swans are white.

(Karl Popper)

izquotes.com
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Schema vs. instances

Relation schema is a description of a relation in terms of relation
name, attribute names, attribute datatypes, constraints (e.g., keys).
A schema describes all valid instances of a relation.

schema Episodes (season: integer, num: integer, title: string, viewers: integer)

instance 1 o e

Winter is Coming 22 M
1 2 The Kingsroad 2.2 M
2 1 The North Remembers 3.9 M

instance 2 @M_M

20 Blah, Blah and Blah
7 Yet Another Title 10B

instance 3 @M_M
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Integrity constraints

e Ensure that data adheres to the rules of the application
e Specified when schema is defined

e (Checked and enforced by the DBMS when relations are
modified (tuples added / removed / updated)

e Must hold on every valid instance of the database

1. Domain constraints - specify valid data types for each attribute,
e.g., Students (sid: integer, name: string, gpa: decimal)

2. Key constraints - define a unigque identifier for each tuple

3. Referential integrity constraints - specify links between tuples

4. Functional dependencies - show relationships within a table
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Key constraints

A set of attributes is a candidate key for a relation if:
(1) no two distinct tuples can have the same values for all key attributes
(candidate key uniquely identifies a tuple), and
(2) this is not true for any subset of the key attributes (candidate key is minimal)

e |[f condition (2) is not met, we have a superkey

e There may be more than one candidate key for a relation, if so, one is
designated as the primary key

¢ All candidate key should be known to property enforce data integrity

Example: name possible candidate keys
Students (sid: integer, login: string, name: string, dob: date)
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Key constraints

Example: Students (sid: integer, login: string, name: string, dob: date)

three possible SQL implementations

create table Students ( create table Students (
sid 1integer primary key, sid 1integer unique,
login varchar(128) unique, login varchar(128) primary key,
nhame varchar(128), name varchar(128),
dob date, dob date,
gpa decimal, gpa decimal,
unique (name, dob) ); unique (name, dob) );

create table Students (

sid 1nteger unique,

login varchar(128) unique,

name varchar(128), NB: every relation must have
dob  date, exactly one primary key

gpa decimal,
primary key (name, dob) );

Julia Stoyanovich




DB 101: Where do business rules come from?

e Business rules are given: by the client, by the application
designer, by your boss

e Once you know the rules, you create a relational schema that
encodes these business rules (sometimes starting with the entity-
relationship model, sometimes with the relational model directly)

e \We can never-ever-ever deduce business rules by looking at an
instance of a relation!

e \We can sometimes know which rules do not hold, but we cannot be
sure which rules do hold

Employee _mm

1.Which column is not a candidate key?

1 Jim Morrison

) — T 2.Which column(s) may be a candidate key?
3 — B Pl 3.Give 2 create table statements for which this
4 e B instance is valid.
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DB (databases) vs. DS (data science)

- IDEAL
( L PERFECT
. CAT

s . < IMPERFECT
i ® v

https://midnightmediamusings.wordpress.com/2014/07/01/plato-and-the-theory-of-forms/

e DB: start with the schema, admit only data that fits; iterative
refinement is possible, and common, but we are still schema-first

e DS: start with the data, figure out what schema it fits, or almost fits -
reasons of usability, repurposing, low start-up cost

the “right” approach is somewhere between these two, data
profiling aims to bridge between the two worlds / points of
view / methodologies
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Discovering unigues

Given a relation schema R (A, B, C, D) and a relation instance r, a unique
column combination (or a “unique” for short) is a set of attributes X whose
projection contains no duplicates in r

Episodes(season,num,title,viewers) Projection is a relational

mm_m algebra operation that takes as

iInput relation R and returns a

Winter is Coming 22 M _ _
_ new relation R’ with a subset of
1 2 The Kingsroad 2.2 M
the columns of R.
2 1 The North Remembers 3.9 M

(Episodes) m (Episodes) 7. (Episodes)

season e [ ECH
1 1

S€CZS on

Winter is Coming
The Kingsroad

The North Remembers
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Discovering unigues

Given a relation schema R (A, B, C, D) and a relation instance r, a unique
column combination (or a “unique” for short) is a set of attributes X whose
projection contains no duplicates in r

Episodes(season,num,title,viewers) Projection is a relational

mm_m algebra operation that takes as

iInput relation R and returns a

Winter is Coming 22 M _ _
_ new relation R’ with a subset of
1 2 The Kingsroad 2.2 M
the columns of R.
2 1 The North Remembers 3.9 M

e Recall that more than one set of attributes X may be unigue

e |t may be the case that X and Y are both unigue, and that they
are not disjoint. When is this interesting?
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Discovering unigues

R (A, B, C, D) attribute lattice of R

ABCD (4) |

%\ 1,

ABC ABD  BCD  ACD (1)
—4

(4)
AB AC BC BD CD AD —6

\2)

(4
A B C D 4 =4

What'’s the size of the attribute lattice of R?
Look at all attribute combinations?
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Discovering unigues

R (A, B, C, D) attribute lattice of R

ABCD

ﬂ\

ABC ABD BCD ACD

[RESZFA

AB AC BC BD CD AD

A B C D

e |f Xis unique, then what can we say about its superset Y~

e |f X is non-unique, then what can we say about its subset Z7?
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Discovering unigues

Given a relation schema R (A, B, C, D) and a relation instance r, a unique
column combination (or a “unique” for short) is a set of attributes X whose
projection contains no duplicates in r

Given a relation schema R (A, B, C, D) and a relation instance r, a set of
attributes Y is non-unique if its projection contains duplicates in r

ABCD
X is minimal unique if every subset Y ABC ABD BCD  ACD

of X is non-unique W

Y is maximal non-unique if every

superset X of Yis unigque W
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From unigues to candidate keys

Given a relation schema R (A, B, C, D) and a relation instance r, a unique
column combination is a set of attributes X whose projection contains no
duplicates in r

Episodes(season,num,title,viewers)

Winter is Coming 22 M
1 2 The Kingsroad 2.2 M
2 1 The North Remembers 3.9 M

A set of attributes is a candidate key for a relation if:
(1) no two distinct tuples can have the same values for all key attributes
(candidate key uniquely identifies a tuple), and
(2) this is not true for any subset of the key attributes (candidate key is minimal)

A minimal unique of a relation instance is a (possible) candidate key of the
relation schema. To find all possible candidate keys, find all minimal uniques in a
relation instance.
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Pivot: Frequent itemsets & association rules

Problem formulation due to Agrawal, Imielinski, Swami, SIGMOD 1993

Solution: the Apriori algorithm by Agrawal & Srikant, VLDB 1994

Initially for market-basket data analysis, has many other applications,
we’ll see one today

We wish to answer two related questions:

* Frequent itemsets: Which items are often purchased together, e.g., milk
and cookies are often bought together

« Association rules: Which items will likely be purchased, based on other

purchased items, e.q., if diapers are bought in a transaction, beer is also
likely bought in the same transaction
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Market-basket data

o I={i,I, ... Ii.}Iis the set of available items, e.g., a product catalog of a store
e XC lisanitemset, e.g., {milk, bread, cereal}

e Transaction tis a set of items purchased together, t € I, has a transaction id
(TID)

t,. {bread, cheese, milk}
t,. {apple, eggs, salt, yogurt}
t; {biscuit, cheese, eggs, milk}

e Database Tis a set of transactions {t,, t,, ..., t.}

* A transaction t supports an itemset Xif Xc t

e |temsets supported by at least minSupp transactions are called frequent
itemsets

minSupp, which can be a number or a percentage, is specified by the user
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itemset support
— m—
1 A “*( B 3
2 AC C 4
D 1
3 ABD * AB 3
4 AC Y AC 4
A D 1
5 ABC

% BC 2
6 ABC = 1
. CD 0
minSupp = 2 transactions + ABC >
ABD 1
How many possible itemsets are there BCD 0
(excluding the empty itemset)? ACD 0
ABCD 0

24-1=15
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Associlation rules

An association rule is an implication X - Y, where X, Ycl, and XY =

example: {milk, bread}—{cereal}

“A customer who purchased X is also likely to have purchased Y in
the same transaction”

we are interested in rules with a single item in Y

can we represent {milk, bread} — {cereal, cheese}?

Rule X — Y holds with support supp in T if supp of transactions
contain X uY

Rule X — Y holds with confidence confin T if conf % of transactions
that contain X also contain Y

conf = Pr(Y | X)
conf (X =Y) =supp (X UY) / supp (X)
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Associlation rules

minSupp = 2 transactions

AB—C conf=2/3=0.67
AC B conf=2/4=0.5

ABCD
BC A conf=2/2=1.0v¢ conf (X = Y) =supp (X U Y)/supp (X)

ACD

itemset support
minSupp = 2 1 BT
* B 3
supp =3 * C 4
A —>B conf=3/6=0.5
B—A Conf=3/3=1.0* “ * ADB :13
supp = 2 Y AC 4
B—>C conf=2/3=0.67 / A D 1
C —B conf=2/4=0.5 * BC o
Supp = 4 / BD 1
A—C conf=4/6=0.67 CcD 0
cA conf=4/4=1.0% Y ABC 2
ABD 1
Supp =2 BCD 0
0
0
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Association rule mining

e (Goal: find all association rules that satisfy the user-
specified minimum support and minimum confidence

e Algorithm outline
e Step 1: find all frequent itemsets
e Step 2: find association rules

e TJake 1: naive algorithm for frequent itemset mining
e Enumerate all subsets of I, check their supportin T

e What is the complexity?
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Key idea: downward closure

itemset support #“All subsets of a frequent |temset_X are®
themselves frequent

; B 3 S0, if some subset of X is infrequent,
C 4 then X cannot be frequent, we know
D ] this apriori
¥ AB 3 e Yy
% AC 4
AD 1 ﬂ\
% BC 2 ABC ABD BCD  ACD
BD 1
ch : IR SEFRN
% ABC 2 AB AC BC BD CD AD
ABD 1
ACD 0
ABCD 0 A B ¢ D

The converse is not true! If all subsets of X are
frequent, X is not guaranteed to be frequent
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The Apriori algorithm

Algorithm Apriori(T, minSupp)
F, = {frequent 1-itemsets}, A 6

for (k=2; F_,# 9; k++) do ; g 2
C, < candidate-gen(F, ,); D ]

for each transaction t € T do I 2 g i

for each candidate c € C, do AD 1

if c is contained in t then % B C 2
c.count++; CB) B (1)

end Y ABC 2

end ABD 1

F, & {c € C, | c.count 2 minSupp} BCD 0
end AAB%DD 8

return F < U, F;
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Candidate generation

The candidate-gen function takes F,_, and returns a superset

(called the candidates) of the set of all frequent k-itemsets. It
has two steps:

Join: generate all possible candidate itemsets C, of length k

Prune: optionally remove those candidates in C, that have
infrequent subsets ABCD
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Candidate generation

Assume a lexicographic ordering of the items

Join
Insert into C, (
select p.itemy, p.1item,, .., p.1tem_;, qg.1tem .,

from Feer Py Frer G

where p.1tem; = g.1tem;

and p.i1tem, = g.1tem,

and :

and p.item._; < q.item._;) why not p.item,_; # q.item,_;?
Prune

for eachcin C, do
for each (k-1) subset s of c do
if (s notin F,_;) then
delete c from C,
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Generating association rules

Rules =@
for each frequent k-itemset X do
for each 1-itemset A c X do
compute conf (X /A = A) =supp(X) / sup (X / A)
if conf (X/ A = A) > minConf then
Rules < “X /A > A"
end
end
end
return Rules
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Performance of Apriori

e The possible number of frequent itemsets is
exponential, O(2m), where m is the number of items

e Apriori exploits sparseness and locality of data

e Sitill, it may produce a large number of rules:
thousands, tens of thousands, ....

e 50, thresholds should be set carefully. What are
some good heuristics?
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Back to data profiling: Discovering unigues

Given a relation schema R (A, B, C, D) and a relation instance r, a unique
column combination (or a “unique” for short) is a set of attributes X whose
projection contains no duplicates in r

Given a relation schema R (A, B, C, D) and a relation instance r, a set of
attributes Y is non-unique if its projection contains duplicates in r

ABCD
X is minimal unique if every subset Y ABC ABD BCD  ACD

of X is non-unique W

Y is maximal non-unique if every

superset X of Yis unigque W
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[Abedjan, Golab, Naumann; SIGMOD 2017]
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From unigues to candidate keys

Given a relation schema R (A, B, C, D) and a relation instance r, a unique
column combination is a set of attributes X whose projection contains no
duplicates in r

Episodes(season,num,title,viewers)

Winter is Coming 22 M
1 2 The Kingsroad 2.2 M
2 1 The North Remembers 3.9 M

A set of attributes is a candidate key for a relation if:
(1) no two distinct tuples can have the value values for all key attributes
(candidate key uniquely identifies a tuple), and
(2) this is not true for any subset of the key attributes (candidate key is minimal)

A minimal unique of a relation instance is a (possible) candidate key of the
relation schema. To find such possible candidate keys, find all minimal uniques in a
given relation instance.
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Apriori-style uniques discovery

[Abedjan, Golab, Naumann; SIGMOD 2017]

A minimal unique of a relation instance is a (possible) candidate key of the
relation schema.

Algorithm Uniques // sketch, similar to HCA

U, = {1-uniques} N, ={1-non-uniques}
for (k=2; N, # @; k++) do

C, < candidate-gen(N, )

U, < prune-then-check (C,)

// ?rune candidates with unique sub-sets, and with value distributions
hat cannot be unique

// check each candidate in pruned set for uniqueness
N, < C\U,
end

return U « U, U,;
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Referential integrity constraints

A foreign key defines a directed link between a pair of tuples, R.t and S.t'.
Foreign keys enforce referential integrity, a requirement that a value in an
attribute or attributes of R.t must appear as a value in S.t'.

Example: Students (sid: integer) Courses (cid: integer) Enrolled(sid, cid)

Enrolled.sid must refer to an id of some actual student, per Students.sid

Enrolled.cid must refer to an id of some actual course, per Courses.cid

Julia Stoyanovich




Referential integrity constraints

A foreign key defines a directed link between a pair of tuples, R.t and S.t'.
Foreign keys enforce referential integrity, a requirement that a value in an
attribute or attributes of R.t must appear as a value in S.t'.

Students Courses
create table Students ( m create table Courses ( m
sid integer primary key 1 cid integer primary key 101
D; 2 D; 201
3 301
4 401
Enrolled
create table Enrolled ( _
sid integer, cid 1integer, 1 101
primary key (sid, cid), 2 301
foreign key (sid) references Students (sid),
foreign key (cid) references Courses (cid) 2 a0t
DK
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Referential integrity constraints

e A foreign key in a table must reference (point to) a candidate
key in another table.

e Thatis, the target column(s) are either a primary key or are
designated unique.

e Some relational systems limit this further: a foreign key must
point to a primary key. For efficiency reasons, this is usually a
better choice.

create table Sibling_Pairs (

create table Students ( thing_one  integer

sid 1integer primary key, thing_two integer,

login varchar(128) unique, primary key (thing_one, thing_two),

name varchar(128), foreign key (thing_one)

dob date, references Students(sid),

gpa decimal, foreign key (thing_two)

unique (name, dob) references Students(sid)
D3 D

candidate keys: sid, login, (hame, dob)
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Discovering inclusion dependencies

e An inclusion dependency (IND) between attribute A of relation R and
attribute B of relation S asserts that all values of R.A also appear in S.B:

RACS.B

e \We can extend this notion of unary (single-attribute) IND to sets of
attributes R.Xand S.Y

e Note that R and S are usually of two different relations (e.g,. Students
and Enrolled)

e |nclusion dependencies must necessarily hold (but are not sufficient) for a
foreign key (aka referential integrity) constraint to hold

Why is inclusion not a sufficient condition for referential integrity?

How might we go about discovering inclusion dependencies?
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An inverted index for unary IND

[De Marchi, Lopes, Petit; J Intell. Inf. Syst. 2009]

f A B Value Colu mnﬁ

1 3 1 3 1 A C
1 4 2 3 2 A, C
2 3 4 4 3 B.D
1 5 7 4 4 B.D
5 B
\_ W, \_ Y, \7 c )
relation R relation S Inverted index on values

How do we use this index data structure to find all pairs of
attributes over which inclusion dependencies hold?

Across two relations, within a relation?
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Which IND rules should we try?

e |f our goal is to find candidates for foreign key, then the RHS of the
rule should be unigque (a candidate key)

e \We can extend this notion of unary (single-attribute) IND to sets of
attributes R.Xand S.Y

e Note that Rand $ are usually of two different relations (e.q,.
Students and Enrolled)

e [nclusion dependencies must necessarily hold (but are not sufficient)
for a foreign key (aka referential integrity) constraint to hold

Why is inclusion not a sufficient condition for referential integrity?

How might we go about discovering inclusion dependencies?
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Functional dependencies

e [ et's revisit the relational model: the basic abstraction is a relation (a table)

e |n a properly designed database, a relation corresponds to a single real-world
entity (e.g., student or course) or to a single relationship between entities (e.qg.,
student takes course)

e Sometimes, we represent multiple linked entities, or an entity and some of its
relationships, in the same table, but this is only done to encode specific
business rules correctly

e Unless there are strong performance reasons to do so, we don’t want to
encode many-to-many relationships, together with the entities they relate, in
the same table, because this gives rise to redundancy

e No avoid redundancy, we decompose (normalize) our relations - break them
up into multiple relations

e Functional dependencies guide us in such decompositions
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Example of a many-to-many relationship

each entity set (Employees and Departments) and the relationship
set (work_in) are mapped to a table of their own

name (Cname >
% <> (did ) ~Chudget
EMPLOYEES work_in DEPARTMENTS

create table Employees (

ssh char(11) primary key, ble Work 1
name varchar(128) not null, create table Work_In (
title  varchar(128) ssn char(11),

): did integer,

’ since date,

<primary key (ssn, did),>
creg:z tablfﬂﬂ;;;rtmenﬁskf;ary key foreign Key (ssn) references Employee(ssn),
’ foreign k did f D tment(did

name varchar(128) not null, y oreign key (did) references Department(did)

budget integer
¥
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This IS Incorrect!

each entity set (Employees and Departments) and the relationship
set (work_in) are mapped to a table of their own

>

EMPLOYEES DEPARTMENTS

. . "
create table Employees_Work_In_Departments ( Why is this incorrect?

ssn char(11), Because of redundancy!
empName varchar(128) not null,
title varchar(128), S — empName
did integer,
deptName  varchar(128) not null, ssn — title
budget integer, )
since date, did — deptName
primary key (ssn, did) .
); did — budget
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Functional dependencies (FDs)

A functional dependency (FD) is an integrity constraint (IC) that
generalizes the concept of a key. It's part of a schema or relation R.

The functional dependency A/A,...A — B,B,...B_ says:

When two tuples have the same values for all A={A,,A,,...,A }
then they will also have the same values for all B={B,,B,,...,B,}
A candidate key is a particular kind of an FD: the values of the key

attributes, taken together, uniquely identify a tuple in relation R, and
so functionally determine all of that tuple’s attributes.
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Functional dependencies: example

we know that K is a

candidate key

ves, K is a key

yes

no, violated for tuples k3 and k4

K A B C D
k1 ail b1 c1 d1
k2 ai b1 c1 d2
k3 at b2 c2 d1
k4 ai b3 c3 d1

s this FD satisfied: K — ABCD

s this FD satisfied: AB — C

s this FD satisfied: A — B

s this FD satisfied: AB — B
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FDs are used for normalization

each entity set (Employees and Departments) and the relationship
set (work_in) are mapped to a table of their own

>

EMPLOYEES DEPARTMENTS
create table Employees_Work_In_Departments ( SSNn — empName
ssn char(11),
emp_name varchar(128) not null, ssn — title
title varchar(128),
did integer, did — a’eptName
dept_name  varchar(128) not null,
budget integer, did — budget
since date,
; primary key (ssn, did) if we knew these FDs, we’d decompose

this relation to avoid redundancy

Julia Stoyanovich




FDs and redundancy

AA,..A —>BB,...B,

A candidate key is a particular kind of an FD: the values of the key
attributes, taken together, uniquely identify a tuple in relation R, and
so functionally determine all of that tuple’s attributes.

e |n an ideal world (one with no redundancy), we only have FDs in which a
candidate key is on the left-hand-side, and no other FDs. This is known as
the Boyce-Codd Normal Form (BCNF).

e |n a somewhat less ideal world, where we know the schema (including the
FDs), we can attempt to decompose our relation to have no redundancy
(BCNF) or with almost no redundancy (third normal form, 3NF).

e |f only a dataset (an instance or R) is given to us, but not the schema, and
no FDs, we can attempt to infer FDs that hold, or almost hold, and to then
either normalize our data, or to clean it accordingly.
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Inferring FDs

Given relation R, detect all minimal non-trivial FDs of the form X — A
where Xis a set of attributes and A is a single attribute

FDs =&
foreach A€ Rdo

for each X c Powerset( R\ A) do ABCD
if count distinct(X) = count district (XA) thenﬂ\
FDs < “X > A” ABC ABD  BCD  ACD
end AB AC BC BD CD AD
ring any bells? A B C D
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Inferring FDs: TANE

[Huhtala, Karkkainen, Porkka, Toivonen; Computer Journal 1999]

An Aprior-style algorithm that traverses bottom-up through the attribute lattice
Consider only minimal dependencies: if B = C, don’t check BD — C

Consider only non-trivial dependencies: for a set X, testall X\A = A, Ae X

ABCD
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