Overview¶
analyzers¶
Subgroup Error and Variance Analyzers.
This module contains fairness and stability analysing methods for defined subgroups. The purpose of an analyzer is to analyse defined metrics for defined subgroups.
- AbstractOverallVarianceAnalyzer
- AbstractSubgroupAnalyzer
- BatchOverallVarianceAnalyzer
- BatchOverallVarianceAnalyzerPostProcessing
- SubgroupErrorAnalyzer
- SubgroupVarianceAnalyzer
- SubgroupVarianceCalculator
configs¶
Configs amd constants for the source code logic.
custom_classes¶
This module contains custom classes for metrics computation interfaces. The purpose is to split metrics computation and visualization pipeline on components that are highly customizable for future library features.
datasets¶
This module contains sample datasets and data loaders. The purpose is to provide sample datasets for functionality testing and show examples of data loaders (aka dataset classes).
- ACSEmploymentDataset
- ACSIncomeDataset
- ACSMobilityDataset
- ACSPublicCoverageDataset
- ACSTravelTimeDataset
- BankMarketingDataset
- CardiovascularDiseaseDataset
- CompasDataset
- CompasWithoutSensitiveAttrsDataset
- DiabetesDataset2019
- GermanCreditDataset
- LawSchoolDataset
- RicciDataset
- StudentPerformancePortugueseDataset
metrics¶
This module contains functions for computing subgroup variance and error metrics.
- aleatoric_uncertainty
- confusion_matrix_metrics
- iqr
- jitter
- label_stability
- mean_prediction
- overall_uncertainty
- statistical_bias
- std
preprocessing¶
Preprocessing techniques.
This module contains function for input dataset preprocessing.
user_interfaces¶
User interfaces.
This module contains user interfaces for metrics computation.
utils¶
Common helpers and utils.