SubgroupVarianceCalculator¶
Calculator that calculates variance metrics for subgroups.
Parameters¶
-
X_test (pandas.core.frame.DataFrame)
Processed features test set
-
y_test (pandas.core.frame.DataFrame)
Targets test set
-
sensitive_attributes_dct (dict)
A dictionary where keys are sensitive attributes names (including attributes intersections), and values are privilege values for these subgroups
-
test_protected_groups – defaults to
None
A dictionary where keys are sensitive attributes, and values input dataset rows that are correspondent to these sensitive attributes.
-
computation_mode (str) – defaults to
None
[Optional] A non-default mode for metrics computation. Should be included in the ComputationMode enum.
-
with_predict_proba (bool) – defaults to
True
[Optional] A flag if model can return probabilities for its predictions. If no, only metrics based on labels (not labels and probabilities) will be computed.
Methods¶
compute_subgroup_metrics
Compute variance metrics for subgroups.
Return a dict of dicts where key is 'overall' or a subgroup name, and value is a dict of metrics for this subgroup.
Parameters
- y_preds
- models_predictions (dict)
- save_results (bool)
- result_filename (str) – defaults to
None
- save_dir_path (str) – defaults to
None
save_metrics_to_file
Parameters
- result_filename (str)
- save_dir_path (str)